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Abstract 

BACKGROUND Triple-negative breast cancer (TNBC) patients generally have poor 

prognosis but could be led to a better outcome if the risk can be identified in the stage 

without symptoms. Previously, determining the hereditary risk relied solely on 

assessing the potential damage due to single mutations or individually damaged genes, 

which has led to fragmentation in our understanding of genetic risk, particularly when 

multiple factors are involved. It is currently difficult to obtain a complete picture of 

genetic risk that unites individual discoveries under a single theoretical frame, not to 

mention a category method for systematically assessing all individuals within a 

population.  

 

METHODS We postulated that there is a persistent stress from certain deterministic 

pathogenic factors on the whole population, so that we can simply solve this problem 

by assessing the innate stress resistance in each individual. This stress resistance is 

encoded in germline DNA and can be disrupted by rare mutations in certain genes. 

We developed a method to statistically infer whether a set of cancer related pathways 

in individual subjects would be differentially active or repressed driven by all 

currently mutated genes.  

 

RESULTS We divided all 141 subjects including 29 TNBC patients and 112 normal 

females from Southern China into five categories of TNBC risk: very high risk, high 

risk, average, low risk, and zero risk. Approximately 4.5% and 31% were evaluated to 

be at very high risk of TNBC in normal population and patients, respectively. 

Whereas around 25% would have zero risk of TNBC in normal population. 
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Surprisingly, lymphatic metastasis correlated with the risk of disease (r2 = 0.99, p = 

0.0035) in patient population.  

  

CONCLUSIONS Our findings suggested that a health human genome could encode 

an ability fully protecting the individual from a persistent neoplastic threat. 
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Introduction 

According to data from the China National Central Cancer Registry, the incidence 

(268,600 new cases in 2015) and mortality (69,500 death cases in 2015) of breast 

cancer has continued to increase in China over the past two decades, and is fast 

becoming a major health concern in women.1,2 Triple-negative breast cancer (TNBC) 

is defined by ≤1% estrogen receptor positive tumor cells, progesterone receptor 

negativity, and normal HER2-receptor expression detected by immunohistochemistry 

or in situ hybridization analysis (separately or combined).3 Among all types of breast 

cancer, TNBC makes up 15%–20% of cases, usually affecting younger women.4 

Compared with other types of breast cancer, patients with TNBC generally have poor 

prognosis due to the combination of its inherent aggressive clinical behavior and lack 

of molecular targets for therapy.5,6 On the other hand, studies have shown that 

screening and appropriate treatment can reduce breast cancer mortality. The 

contribution of screening and treatment in reducing cancer mortality differs according 

to the breast cancer subtype, of which the TNBC subtype benefits the most.7 This has 

spurred major efforts in identifying potential molecular features that can be used to 

assess the risk for TNBC for surveillance, early detection, and timely treatment. The 

goal is a better outcome to prolong survival in patients with TNBC and to reduce 

TNBC-specific mortality.7,8  

 

Identification of patients at risk for TNBC by genetic testing has been proven to help 

reduce breast cancer mortality.9 Correspondingly, using a small number of high-

penetrance mutations with a much larger number of low-penetrance variants to build a 

risk model for breast cancer is widely accepted. Much effort has focused on trying to 

identify and characterize high- and low-penetrance susceptibility genes. The well-
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known inherited BRCA1/2 (Breast Cancer genes 1 and 2) mutations are considered to 

be the most powerful predictors of the risk of developing breast cancer.10,11 However, 

those studies have proven to be very complex and they have not provided conclusive 

data.12 Furthermore, BRCA1/2, the known high-penetrance genes account for no more 

than 25% of breast cancer cases based on prior studies and mathematical 

modeling.13,14 The remaining more than 75% of the familial risk for breast cancer is 

still unexplained and the extent of the contribution of an individual’s genotype to the 

risk for breast cancer10 is still unknown. Moreover, healthy women with breast cancer 

risk genotypes, but without symptoms, are not included in the current risk models.  

 

In this paper, we postulated a persistent stress from certain deterministic pathogenic 

factors on the whole population, so that we can simply solve the problem by assessing 

the innate stress resistance in each individual. This resistance is encoded in germline 

DNA and can be disrupted by rarely occurring mutations in certain genes. We 

developed a multiple-step method to statistically infer the resistance for each 

individual by measuring function of a set of pathways disrupted by any rare mutations. 

Consequently, a population without symptoms could be categorized into 5 resistance 

levels, in which 4.45% were classified as very high risk/very low resistance and, 

amazingly, up to 25% were classified as zero risk/fully protected. Interestingly, lymph 

node status is strongly associated with the five levels. Our method provides a new 

way to truly understand the nature of health and the possibly final weapon inside us 

against cancers.  
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Methods 

Study design and patients 

The general design of the study is presented in Fig. 1. This study was approved by the 

research ethics committee at Guangdong General Hospital, Guangdong Academy of 

Medicals Sciences. Written informed consent was obtained from all participants to 

allow the use of banked tissues (including white blood cells and oral epithelial cells), 

and for collection of pathological data and clinical follow-up data. The characteristics 

of the TNBC patients are described in supplemental Table 1.  

 

Whole-exome sequencing 

Oral epithelial cells or peripheral blood leukocytes were collected from individuals. 

Each sequenced sample was prepared according to the Illumina protocols. Paired-end 

multiplex sequencing of samples was performed on the Illumina HiSeq X Ten 

sequencing platform.  

 

Variant calling 

Paired-end raw sequence reads were mapped to the human reference genome (UCSC 

hg19) using Burrows-Wheeler Aligner15 using default settings. Variants calling was 

carried out using the HaplotypeCaller module in Genome Analysis Toolkit16  

following GATK Best Practices. The variants then were annotated by ANNOVAR17 

based on RefGene.  

 

Variant coding 

Genes were coded as 1 or 0 based on whether or not there was any mutation in the 

gene. The Z-score was calculated using both mutation and expression data from the 
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COSMIC Cell Line Project.18 Briefly, for each gene, all cell lines were separated into 

two groups based on whether or not they carried this gene mutation, and the 

differences between the average expression of each gene could then be calculated. We 

randomly assigned group labels to each cell line while maintaining group size, and 

then calculated the difference between the two simulated groups. This process was 

repeated 10000 times and the Z-score was calculated as the standardized value of the 

difference in the average expression. 

� �  
� �  �

�
 

Where μ and σ are the mean and standard deviation, respectively. 

 

Statistical analysis 

Method implemented in NMRCLUST19 was used for clustering. This method uses the 

average linkage to define how clusters are built up, followed by penalty function that 

simultaneously optimizes the number of clusters and the average spread of the clusters. 

Naïve bayes20 that was implemented in R package caret21 was used to build the binary 

classifiers. We first randomly split the data into training group (75%) and testing 

group (25%) while preserve the overall class distribution of the data. Then the 10-fold 

cross validation was used to search the optimal parameters. All statistical analyses 

were conducted using an in-house developed script in Perl, Matlab, and R.   
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Results 

The study recruited 29 TNBC patients and 112 healthy aged women (78.49 ± 1.24 

years). We found 107 SNPs from their genomic DNA of each subject, of which 104 

were rare (MAF < 0.01) germline mutations, which were used for coding. Those rare 

germline variants were coded into around 300 genes with mutations (Fig. 1, left 

panel). Using the reference database (Fig. 1, right panel), we expanded the number of 

deterministically regulated expression genes to about 1000 which will be compared to 

the signatures of cancer related pathways. Finally, we projected the rare germline 

variants onto a spectrum of active/resting pathways less than one hundred.   

 

Rare germline mutation profiles are exceptionally sparse 

A germline variant with a frequency of less than 0.01 was defined as a rare germline 

variant. The average numbers of genes with rare germline variants in healthy people 

ranged from 220 to 300 as shown in Fig. 2B, which appeared to have a normal 

distribution. When comparing the number of mutated genes between any two 

individuals, we found between 4 and 34 shared genes, which also appeared to have a 

normal distribution (Fig. 2C). This suggests that most people have about 220 to 300 

genes with rare germline variants, but there were only about 4 to 34 common mutated 

genes between any two individuals.  

 

These rare variants were then coded into genes. In the cluster diagram (Fig. 2A), the 

variants in the genes were high-dimensional, sparse, discrete, and nonstandard. 

Almost no similar variation patterns were observed between any two individuals, 

which indicated each person was unique. This is well illustrated in the upper panel of 

Fig. 2F. The Pearson correlation coefficient histogram was narrow and evenly 
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distributed toward zero with a median value was < 0.05. Therefore, few rules could be 

inferred based on their gene mutation patterns, even being given sharp and 

meaningful phenotypes in current subjects.  

 

We next coded the variants by their presence in cancer dependencies22 and clustered 

them based on their effect on gene expression. We could infer, to some extent, a little 

more regularity from the cluster diagram (Fig. 2D). The correlation coefficient 

histogram shifted to the right of the X-axis and the range extended to from -0.3 to 0.5 

(Fig. 2F, middle panel), indicating there might be some complicated rules in the gene 

expression.  

 

When the rare variants effect on gene expression were projected onto the pathway 

activity, we observed better clustering (Fig. 2E). The correlation coefficient histogram 

was no longer a normal distribution and shifted more to the right of the X-axis and the 

range extended to from -0.5 to 0.9, with a median value was 0.5 (Fig. 2F, lower panel). 

When the germline variant information was gradually mapped onto the low-

dimensional functional feature space, the internal regularity of the population 

gradually increased, suggesting that individuals with similar phenotypes might follow 

the same rules in this low-dimensional feature space. 

 

Most pathways are downregulated in TNBC patients 

When we projected the rare germline variants of the 29 TNBC patients onto those 

pathways, the cluster diagram showed a regular pattern (Fig. 3A). However, the 

patterns in the cluster diagram appeared to be complex and could not be generalized 

by specific pathways. Next, we compared the pathway activities between the 112 
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healthy people and the 29 TNBC patients to try to characterize the features in TNBC 

patients. The upregulated pathways activity did not contribute to TNBC patient 

clustering (Fig. 3B, asterisk line), whereas the downregulated pathways activity 

greatly contributed to the TNBC clustering (Fig. 3B, dot line). When each pathway’s 

activity was further examined (Fig. 3C), we found 83% of the pathway activities were 

downregulated, indicating a repressed trend in most pathways in TNBC. In addition, 

the Z-score cutoff value tended to the minimum (Fig. 3B), the more the pathway 

activity was downregulated, suggesting the risk/resistance for TNBC could be 

predicted by a small number of pathways. With the Z-score cutoff value set to -4 (Fig. 

3D), the risk/resistance of TNBC could be predicted by just three pathways. 

 

Three pathways can predict the risk of TNBC 

To test our model, we chose three repressed pathways to predict the risk/resistance of 

TNBC. From Fig. 4A, we can see the average AUC appears to be a normal 

distribution, with a median value of 0.75. Fig. 4B shows the ROC curve with 95% 

confidence interval (CI) of false positive rate. With Z-score cutoff values set as from -

1 to 0, the prediction accuracy was more than 70% (Fig. 4C) and false discovery rate 

was less than 30% (Fig. 4D), indicating high efficacy for predicting TNBC 

risk/resistance by three downregulated pathways. 

  

Clustering people into five categorizes base on three pathways 

We used the germline features of the three identified pathways to categorize the 

pooled study sample (112 healthy people and 29 TNBC patients) into groups 

corresponding to the level of TNBC risk/resistance. The result suggested that the 

appropriate number of cluster groups was 16 with a penalty < 22 (Fig. 5A). For each 
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group, we compared the proportion, Z score, and ratio of proportions between healthy 

people and TNBC patients (Fig. 5B), and found some groups had values that were 

very close. The groups with similar values were then combined to give the final five 

groups (Fig. 5C), which indicated five different levels of TNBC risk/resistance in this 

population. We found 31.03% TNBC patients and 4.45% healthy people fell into class 

1 (very high risk/very low resistance) with a Z-score of 8, which indicated those with 

this pathway pattern had a TNBC risk/resistance about eight standard deviations 

above/below the mean risk/resistance. The proportion of TNBC patients was more 

than twice compared to the proportion of healthy people in class 2 (high risk/low 

resistance). Class 3 (average risk/resistance) included similar proportions of healthy 

people and TNBC patients, which suggested the risk of TNBC in this group was not 

related to germline variants. Notably, healthy people in class 4 (low risk/high 

resistance) might have protective factors against TNBC, as they had a lower risk of 

TNBC. Likewise, class 5 (zero risk) included 25% healthy people, but no TNBC 

patients, which indicated those with this pathway pattern had no risk of TNBC. In 

terms of predictive value, 4.45% healthy people (class 1) had very high risk/very low 

resistance of TNBC, which indicated the elimination trend; 16% healthy people (class 

1 and 2) were at high risk of TNBC; and nearly 50% healthy people (class 4 and 5) 

were protected from TNBC. When the five groups were sorted by Z-scores, the 

distribution of the pathway activities appeared regular (Fig. 5D, left panel), according 

to the risk/resistance level. For individuals with certain germline backgrounds of rare 

genetic variants, the risk of TNBC could be significantly different. We offer a web-

based service for assessment of the resistance/risk level using our methods to help 

other users of interest to evaluate the resistance/risk level of their patients or healthy 

subjects if the users provide the germline mutation information to us. The service is 
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available at http://philrivers.vicp.io:9900/. 

 

Risk/Resistance classes are associated with lymph node metastasis 

Next, we analyzed the clinical features of the TNBC patients. We observed a strong 

association (r2 = 0.99, p = 0.0035) between Lymph node status and the five classes 

(Fig. 5D, right panel). We found 67% patients in class 1 had lymph node metastasis, 

indicating aggressive pathway activity patterns. Likewise, 44% patients in class 2 and 

25% in class 3 also had lymph node metastasis. No patients in class 4 had lymph node 

metastasis. Correspondingly, the median onset age of patients in class 1 was younger 

than that in class 2 and 3 but is not statistical significant (Fig. 5E). To a certain extent, 

we were able to confirm the activation of these three pathways was related to the risk 

of TNBC and its progression. 

 

Discussion 

The aim of this study was to gain a deeper understanding of the genetic features of 

TNBC. With regards to gene mutations, gene expressions, and cancer pathways, we 

found the distance between genetic codes of any two individuals was generally 

becoming closer. When we projected the rare germline variants onto cancer pathways, 

significant genetic features were identified in the 29 TNBC patients. Furthermore, 

when pooling all 112 healthy people and 29 TNBC patients, we were able classify 

them into five risk/resistance groups for TNBC based on three repressed pathways. In 

these five groups, each individual with a certain pathway activity pattern had a 

different degree of risk/resistance for TNBC (in a spectrum from very high to zero 

risk). People with low or no risk (class 4 and 5) might have protective factors against 

TNBC, whereas those with very high risk/low resistance (class 1) will develop TNBC.  
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Surprisingly, the risk/resistance patterns were closely associated with lymph node 

status, and very high risk/low resistance patients (class 1) tended to have lymph node 

metastasis, whereas low risk/high resistance patients (class 4) did not have lymph 

node metastasis, even in those with the same tumor staging. Because lymph node 

status has been identified as a significant independent prognostic factor for TNBC 

progress, mortality, and overall survival,23-25 our rare germline variants-based 

risk/resistance patterns can be correlated to TNBC prognosis. The results may have 

important implications for our understanding of TNBC pathogenesis, allowing more 

aggressive treatments and monitoring of certain subgroups at risk of TNBC. 

 

Cancer is a complex genetic disease that is a result of the accumulation of genomic 

alterations.26 Germline variations predispose individuals to cancer and somatic 

alterations initiate and trigger the progression of cancer.26 Although genetic data, 

especially rare variants, could provide useful risk prediction,27 more efficient and 

accurate genetic-association models need to be established. We know that DNA and 

its structure holds massive amounts of information, which can be represented by 

binary values (on or off28). Changes in multiple DNA sequences could contribute to 

one gene expression (“many to one”). Therefore, gene expression is continuous and 

informative. In this study, we collected all rare genetic variants in 112 healthy people 

and coded those rare variants into gene expressions. We obtained more regular 

patterns compared with gene mutation patterns. However, the data from rare genetic 

variants were high-dimensional and nonstandard. When we projected the genetic rare 

events onto cancer pathways, the cluster diagram appeared to be regular. We also 

showed that several individuals with similar phenotypes might share similar pathway 
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activity patterns. Using this method, we found many TNBC patients shared similar 

characteristics and cancer pathways. When we compared the pathway patterns 

between healthy people and TNBC patients, we found three repressed pathways in 

TNBC. Surprisingly, based on only these three pathway activity patterns, we were 

able to grade the TNBC risk/resistance into different classes of risk/resistance. Most 

importantly, using this model, we were able to definitively identify subpopulations 

that have high risk for TNBC and those that have no risk.  

 

Our model is a multivariate composite assessment model, in which all rare genetic 

variants of an individual are used to estimate the possibility of downstream events, 

which can be used to grade the risk of TNBC. At the genetic level, many tiny driving 

forces are counted together to determine the occurrence of certain downstream events, 

such as cancer. Our models give a very well-defined understanding of hereditary 

predispositions for TNBC. However, larger population-based prospective studies are 

required to validate these findings. With appropriate study populations, we can 

establish germline risk models for other pathological types, which could lead to 

general mechanisms. On the other hand, there is no patient in class 5 but 25% healthy 

people fall into this category, which indicates about a quarter of people have no risk 

of TNBC. Further research is needed to study whether these people have innate 

resistance that is coded by genetics to most type of cancers and to investigate the 

underlying mechanism of resistance to cancer. These results may revolutionize our 

current understanding of cancer and provide new strategy for realizing precision 

healthy. 
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Figure 1. Flow diagram illustrating the workflow developed for this study. GATK best 

practices workflow was used for variants calling on whole exome sequencing data. 

Annotation was performed using ANNOVAR.  Variants were filtered based on frequency and 

function. Then variants were mapped to genes and pathways for analysis. 

 

Figure 2. Relationship between any two individuals. (A) Heatmap shows the present and 

absent of rare variants on genes. Columns represent genes and rows represent individuals. (B) 

The histogram of the number of genes with rare germline variants. (C) The histogram of the 

number of shared mutated genes between any two individuals.  (D) Heatmap shows the 

present and absent of rare variants on cancer dependencies. Columns represent cancer 

dependencies and rows represent individuals. (E) Heatmap shows the present and absent of 

rare variants on pathways. Columns represent pathways and rows represent individuals. (F) 

The histogram of correlation coefficient between any two individuals based on variants 

present or absent on genes (upper panel), cancer dependencies (middle panel) and pathways 

(lower panel). 

 

Figure 3. Contribution of pathways in TNBC clustering. (A)Heatmap shows the pattern of 

pathways in TNBC patients. Columns represent pathways and rows represent patients. (B) 

Scatterplots showing the relationship between Z score and the ratio of false positive to called 

positive in both down-regulated pathways and up-regulated pathways. (C) States of pathways. 

Z score larger than 0 represents up-regulated and less than 0 represents down-regulated. (D) 

Scatterplots showing the relationship between Z score and the logarithm of false discovery 

rate with base 10. 
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Figure 4. Performance of TNBC risk prediction. (A) Histogram of AUC. (B) ROC curve 

with 95% CI of the false positive rate. (C) Distribution of accuracy with 95% CI. (D) 

Distribution of false discovery rate with 95% CI. 

 

Figure 5. Clustering analysis results and its correlation with clinical features. (A) 

Determining the number of clusters with different penalty values. (B) Distribution of TNBC 

patients and controls in the 16 clusters (C) Distribution of TNBC patients and controls in the 

combined 5 clusters. (D) Left panel: heatmap shows the pattern of pathways in different 

clusters. Columns represent pathways and rows represent clusters. Right panel: Statistics of 

lymph node and onset age of patients in each cluster. (E) Boxplots showing the onset age of 

different clusters. 
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