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Inferring Population Structure and Admixture
Proportions in Low Depth NGS Data
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ABSTRACT We here present two methods for inferring population structure and admixture proportions in low depth next-
generation sequencing data. Inference of population structure is essential in both population genetics and association studies
and is often performed using principal component analysis or clustering-based approaches. Next-generation sequencing
methods provide large amounts of genetic data but are associated with statistical uncertainty for especially low depth sequencing
data. Models can account for this uncertainty by working directly on genotype likelihoods of the unobserved genotypes. We
propose a method for inferring population structure through principal component analysis in an iterative approach of estimating
individual allele frequencies, where we demonstrate improved accuracy in samples with low and variable sequencing depth
for both simulated and real datasets. We also use the estimated individual allele frequencies in a fast non-negative matrix
factorization method to estimate admixture proportions. Both methods have been implemented in the PCAngsd framework

available at http://www.popgen.dk/software/.
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OPULATION genetic studies often consist of individuals
P of diverse ancestries, and inference of population structure
therefore plays an important role in population genetics and
association studies. Population stratification can act as a con-
founding factor in association studies as it can lead to spurious
associations (Marchini et al. 2004). Principal component analysis
(PCA) was first introduced to genetic data in Menozzi ef al. (1978)
to produce synthetic maps in an exploratory analysis of genetic
variation. PCA is now a common tool in population genetic
studies, where its dimension reduction properties can be used to
visualize population structure by summarizing the genetic vari-
ation through principal components (Novembre and Stephens
2008), correct for population stratification in association studies,
investigate demographic history (Patterson et al. 2006; Fumagalli
et al. 2013; Price et al. 2006) as well as perform genome selection
scans (Galinsky et al. 2016; Hao et al. 2015; Luu et al. 2017). PCA
is an appealing approach to infer population structure as the
aim is not to classify the individuals into discrete populations,
however instead describe continuous axes of genetic variation
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such that heterogeneous populations and admixed individuals
can be better represented (Patterson et al. 2006). Another suc-
cessful approach in modeling complex population structure is
to estimate admixture proportions based on clustering-based
methods (Pritchard et al. 2000; Tang et al. 2005; Alexander ef al.
2009; Skotte et al. 2013), such as the popular software ADMIX-
TURE, which have also been used for correction of population
stratification in association studies (Price ef al. 2010).

Next-generation sequencing (NGS) methods (Metzker 2010)
produce a large amount of DNA sequencing data at low cost
and are commonly used in population genetic studies (Nielsen
et al. 2012). But NGS methods are associated with high error
rates usually caused by several factors such as sampling, align-
ment and sequencing errors. Many NGS studies are based on
medium (<15X) and low (<5X) depth data due to the demand
for large sample sizes as seen in large-scale sequencing studies,
e.g. 1000 Genomes Project Consortium (Consortium et al. 2010,
2012). However, the use of medium and especially low depth
sequencing data introduces challenges rooted in the statistical
uncertainty induced when calling genotypes and variants in
these scenarios (Nielsen et al. 2012). The statistical uncertainty
increases for low depth samples due to the increased difficulty
of distinguishing a variable site from a sequencing error with the
information provided. Problems can arise due to chromosomes
being sampled with replacement in the sequencing process, and
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both alleles may not have been sampled for a heterozygous indi-
vidual in low depth scenarios. Homozygous genotypes may also
be wrongly inferred as heterozygous due to sequencing errors.
Thus, genotype calling will associate individuals with a statis-
tical uncertainty which should be taken into account (Nielsen
etal. 2011, 2012).

To overcome these problems related to NGS data and geno-
type calling, probabilistic methods have been developed to take
use of genotype likelihoods in combination with external in-
formation for various population genetic parameters (Kim ef al.
2011; Nielsen et al. 2012; Korneliussen et al. 2014; Skotte et al. 2013;
Fumagalli et al. 2013; Vieira et al. 2013; Kousathanas et al. 2017),
such that posterior genotype probabilities can be used to model
the related uncertainty. Genotype likelihoods can be estimated
to incorporate errors of the sequencing process such as the base
quality scores as well as the allele sampling (McKenna et al. 2010).
These posterior genotype probabilities have also been used to
call genotypes with a higher accuracy than previous methods
for low depth NGS data (Nielsen et al. 2011, 2012).

We present two new methods for low depth NGS data using
genotype likelihoods to model complex population structure
that connect the results of PCA with the admixture proportions
of clustering-based approaches. A method has been developed
to perform PCA in an iterative approach of estimating individ-
ual allele frequencies to compute a covariance matrix, while
another method uses the estimated individual allele frequencies
in an accelerated non-negative matrix factorization (NMF) al-
gorithm to estimate admixture proportions. The performances
of the two methods are assessed on both simulated and real
datasets in regards to existing methods for both low depth NGS
and genotype data. The methods have been implemented in a
framework called PCAngsd (Principal Component Analysis of
Next-Generation Sequencing Data).

Materials and Methods

We will analyze NGS data of n diploid individuals across m
variable sites. These sites will either be known or called single-
nucleotide polymorphisms (SNPs), which are assumed to be
diallelic such that the major and minor allele of each SNP have
been inferred. This can either be done from sequencing reads
(Kim et al. 2011) or from genotype likelihoods (Korneliussen et al.
2014) and only three different genotypes will be possible. Thus,
we assume that a genotype G can be seen as a Binomial random
variable with realizations 0, 1 and 2 that represent the number
of copies of the minor allele in a site for a given individual in the
absence of population structure. The expectation and variance of
G can therefore be defined as [E[G] = 2p and Var[G] = 2p(1 — p)
with p representing the allele frequency of a population, which
we also refer to as population allele frequency.

However, genotypes are not observed in NGS data and we
will instead work on genotype likelihoods that also include
information of the sequencing process. The genotype likelihoods
are the probability of the observed sequencing data X given the
three different possible genotypes, P(X |G = g), forg =0,1,2.
One method to compute genotype likelihoods from sequencing
reads is described in the supplementary material based on the
simple GATK model (McKenna et al. 2010).

External information can be incorporated to define posterior
genotype probabilities using Bayes’ theorem in combination
with genotype likelihoods (Nielsen et al. 2011). The population
allele frequency is often used as information in the estimation of
prior genotype probability P(G;s | ps), for an individual i in site
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s (Kim et al. 2011; Nielsen et al. 2012; Fumagalli et al. 2013; Vieira
et al. 2013). Assuming the population is in Hardy-Weinberg
Equilibrium (HWE) for a site s, the prior genotype probability
is then given as P(G;s = 0| ps) = (1 — ps)%, P(Gis = 1| ps) =
2ps(1 — ps) and P(G;s = 2|ps) = p? for the three different
possible genotypes. As defined in Kim et al. (2011), using the
estimated population allele frequency ps, the posterior genotype
probability is computed as follows for individual i in site s:

P(Xis | Gis = §)P(Gis = g | Ps) _
Zé/:@ P(Xis | Gis = §')P(Gis = &' | Ps)
1)

P(Gjs = g | Xis, Ps) =

PCA

The standard way of performing PCA in population genetics
and using it to infer population structure is based on the method
defined in Patterson et al. (2006). For a genotype matrix G of
n individuals and m variable sites, the n X n covariance ma-
trix C, also known as the genetic relationship matrix (GRM), is
computed as follows for two individuals i and j:

l i (8is — 2Ps)(gjs — 2Ps)
2ps(1 = ps) .

Here gj; is the observed genotype for individual 7 in site s to
distinguish it from G defined above for unobserved genotypes,
and p is the estimated population allele frequency. The principal
components are then inferred by performing an eigendecom-
position of the covariance matrix, such that C = VEVT with
V being the matrix of eigenvectors and X the diagonal matrix
of the corresponding eigenvalues. Principal components and
eigenvectors will be used interchangeably throughout this study.
The top principal components capture most of the population
structure as they represent axes of genetic variation in the dataset
(Patterson et al. 2006).

This method has been extended to NGS data in Fumagalli
et al. (2013), as well as in Skotte et al. (2012), using the proba-
bilistic framework described in equation 1, by summing over
the genotypes of each individual weighted by the joint poste-
rior genotype probabilities under the assumption of HWE in
the whole sample. The method has been implemented in the
ngsTools framework (Fumagalli et al. 2014). The covariance
matrix is estimated as follows for NGS data using only known
variable sites for two individuals i and ;:

@

1 m Yoo Zq] o(8i —2Ps)(gj — 2ps)P(Gis = 81, Gjs

=8&j ‘ XlS/XfSVﬁs)
m = 2ps(1 — ps) '

®
ngsTools splits up the joint posterior probability,
P(Gisr st | Xis, str ﬁs)r into P(Gis | Xis,s ﬁS)P(st | XjSI fas)
for i # j by assuming conditional independence between
individuals given the estimated population allele frequencies.
The non-diagonal entries in the covariance matrix are now
directly estimated from the posterior expectations of the
genotype instead of the observed genotypes as described
in equation 2. The original method weighs each site by its
probability of being a variable site such that SNP calling is
not needed prior to the covariance matrix estimation. This is
not taking into account in this study as we are using called
variable sites to infer population structure. The population
allele frequencies are estimated from the genotype likelihoods
using an expectation maximization (EM) algorithm (Kim et al.
2011) as described in the supplementary material.
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The problem with this approach is that the assumption of
conditional independence between individuals given the popu-
lation allele frequency is only valid when there is no population
structure. Here we propose a novel approach of estimating the
covariance matrix using iteratively estimated individual allele
frequencies to update the prior information of the posterior geno-
type probability. Thereby we condition on the individual allele
frequencies as in the clustering-based approaches.

Individual allele frequencies

A model for estimating individual allele frequencies based on
population structure was introduced in STRUCTURE (Pritchard
et al. 2000) as later described in equation 13. Hao et al. proposed
a different model for estimating individual allele frequencies IT
by using the information in the principal components instead
of having an assumption of K ancestral populations (Hao ef al.
2015). The model is defined as the matrix product,

IT = SA, 4)

where S represents the population structure such that A rep-
resents the mapping of the population structure S to the allele
frequencies. Hao et al. estimated the individual allele frequen-
cies through a singular value decomposition (SVD) method,
where genotypes are reconstructed using only the top D princi-
pal components such that they will be modeled by population
structure. A similar approach has been proposed by Conomos
et al. (Conomos et al. 2016) where the inferred principal com-
ponents are used to estimate individual allele frequencies in a
simple linear regression model. However, due to working on
NGS data and not knowing the genotypes, we are extending the
method of Hao et al. to NGS data by using posterior expecta-
tions of the genotypes, referred to as genotype dosages, instead
of genotypes. Thus we will be using,

2
IE*[Gis | Xis, ﬁs} = Z gP(Gis =38 | Xis, ﬁs)' ®)
g=0

for individual i in site s.

The individual allele frequencies are then estimated by per-
forming a SVD on the centered genotype dosages and recon-
structing them using only the top D principal components. 2p
is then added to the reconstruction and scaled by % based on
a Binomial distribution assumption of G;;, fori =1,...,n and
s =1,...,m, to produce the individual allele frequencies. Since
SVD is a real valued method, we will have to truncate the esti-
mated individual allele frequencies in order to constrain them
in the range [0,1]. However, Hao et al. showed that the re-
sulting estimates were still very accurate for common variants
considering this limitation.

For ease of notation, let E be the n x m matrix of genotype
dosages, ¢;; = E[Gjs | Xjs, ps], fori=1,...,nands =1,...,m.
The following steps for estimating the individual allele frequen-
cies are adopted from the SVD method (Hao et al. 2015) to work
on NGS data:

Algorithm 1: SVD method for estimating individual allele frequencies.
1. The centered genotype dosages are constructed as Egc) =E —-2p
fori=1,...,n.

2. Perform SVD on the centered genotype dosages, E(¢) = WAUT,
where W will represent population structure similarly to V.

3. Define EEDC) to be the prediction of the centered genotype dosages

using only the top D principal components, E(Egj) =W1.pA1pUT .

4. Estimate I1 by adding 2p to Eg) row-wise and scaling by %, based
on 7 ~ %]E[Gz‘:]

For matrix notations define § = [1,Wy,...,Wp] and AT =
% [2p, U161, ..., Updp], all representing column vectors, such
that equation 4 can be approximated as I1 = SA. Finally, IT
is truncated to constrain allele frequency estimates in a range
based on a small value 7 (1.0 x 10~4), such that 7t;; € [6,1 — 9]
fori=1,...,nands=1,...,m.

We now incorporate the individual allele frequencies into the
estimation of posterior genotype probabilities. The estimated
individual allele frequencies are used as updated prior informa-
tion instead of the population allele frequencies. The individual
allele frequencies will then be able to model missing data with
better estimates of the genotypes given the inferred population
structure of the individuals. Thus, the posterior genotype proba-
bilities are estimated as follows for individual i in site s:

P(Xis | Gis = g)P(Gis - g‘ Tis)

Zé’:o P(Xis | Gis = g/)p(cis = g/ | ﬁis)
(6)

Each individual are now seen as a single population with
allele frequency 7;;, where as the prior genotype probability are
estimated assuming HWE, such that P(G = 0| #;5) = (1 — #;)?,
P(G = 1|#;) = 2(1 — i) 7t;s and P(G = 2| A;5) = 74 An
updated definition of the posterior expectations of the genotypes
are then given as:

P(Gis =8 ‘ Xis, ﬁis) =

2
E[G | Xjs, 7tis] = ZgP(G = g | Xis, tis)- (7)
g=0

This procedure of updating the prior information can be
iterated to estimate new individual allele frequencies on the
basis of updated population structure. Therefore, we propose
the following algorithm for an iterative procedure of estimating

the individual allele frequencies.

Algorithm 2: Iterative estimation of individual allele frequencies.

1. Estimate population allele frequencies p from genotype likelihoods
(See supplementary materials).

2. Estimate posterior genotype probabilities and genotype dosages E
based on genotype likelihoods and p.

3. Estimate IT using the SVD based method on E as described in
Algorithm 1.

4. Estimate posterior genotype probabilities and genotype dosages E
using updated prior information, I1.

5. Repeat step 3 and 4 until individual allele frequencies have con-
verged.

Convergence of our iterative method is defined as when the
root-mean-square deviation (RMSD) of the inferred population
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structure in the SVD W are smaller than a value 6 (1.0 x 10~2)
between two successive iterations. The RMSD of iteration ¢ + 1
for D principal components is given as,

RMSD — - wgy)z. 8)

1 1
BEE

Covariance matrix

We now use the final set of individual allele frequencies to es-
timate an updated covariance matrix in a similar model as in
equation 3, but incorporating the individual allele frequencies
into the joint posterior probability. The entries of the covariance
matrix C are now defined as follow for individuals i and j:

1M Z;i:o Zéjzo(gi - 2735)(8] —2ps)P(Gi=gi, Gj=gj ‘ Xis, Xjs, Tis, 7js)
m 4 2ps(1 - ps) ’

&)

For i # j, the joint posterior probability can be computed

as P(G; | Xis, 7tis)P(G;j | Xjs, 7tjs), since the individuals are condi-

tionally independent given the individual allele frequencies in

contrary to the assumption made in the model of Fumagalli et al.

using population allele frequencies. The above equation can be

expressed in terms of the genotype dosages for ease of notation
and computation:

o l i ZfZgi:O Z;:O(gi_zﬁS)(gj_zﬁS)P(Gi:gi ‘ XiSrﬁiS)P(Gj:gj ‘ X]S/ﬁjs‘)
T m =1 2ps(1 — ps)
_ l i (]E[Gi | XiS/ﬁIS] 72ﬁ5)<]E[G/' ‘ st:ﬁfsl 72135)
m = 2ps(1 = ps)

(10)

However for i = j (diagonal of the covariance matrix), the
joint posterior probability is simplified to P(G; | X;;, 7t;s) such
that the estimation of the diagonal covariance entries is given as:

1 Y2 _o(8i —2Ps)?P(Gi = & | Xis, is)
Cij = % Z .

= 2ps(1 = ps) an

An eigendecomposition of the updated estimated covariance
matrix is then performed to obtain the principal components
as described earlier, C = VEVT. Note that V and W from
algorithm 1 are not the same even though they both represent
population structure through axes of genetic variation in the
dataset. This is due to a different scaling and the joint posterior
probability of equation 11 is not taken into account in W for

i=j.

Number of principal components

It can be hard to determine the optimal number of principal
components that represent population structure. In our method,
we are using Velicier’s minimum average partial (MAP) test
as proposed by Shriner (Shriner 2011) to automatically detect
the number of top principal components D used for estimating
the individual allele frequencies. Shriner showed that the test
based on a Tracy-Widom distribution (Patterson et al. 2006) sys-
tematically overestimates the number of significant principal
components and even performs worse for datasets including
admixed individuals. However, in order to be able to perform
the MAP test and detect the optimal D, an initial covariance
matrix is estimated based on the model in equation 3.

The MAP test is performed on the estimated initial covari-
ance matrix C for NGS data as an approximation of the Pearsson

4 Meisner and Albrechtsen

correlation matrix used by Shriner. Using the notation of Shriner,
C; is defined as the matrix of partial correlations after having
partialed out the first d principal components. Velicer (Velicer
n (G

j=1 n(n—1)"
where C?,z‘j represents the entry in C} for individuals i and j.

1976) proposed the summary statistic I[; = Y./ ; ; £

Thus, the test statistic I; represents the average squared corre-
lation after partialing out the top d principal components. The
number of top principal components that represent population
structure is then chosen as argmin, Iy, ford =0,...,m —1. We
have used the same implementation of the MAP test as Shriner.

The MAP test and the preceding estimation of the initial
covariance matrix can be avoided by having prior knowledge
of an optimal D for the dataset being analyzed and manually
selecting D.

Genotype calling

As previously shown in Nielsen et al. (2012); Fumagalli et al.
(2013), genotypes can be called from posterior genotype proba-
bilities to achieve higher accuracy in low depth NGS scenarios.
We can adapt this concept to our posterior genotype probabili-
ties based on individual allele frequencies, such that genotypes
can be called at a higher accuracy in structured populations from
low depth NGS data. The genotype for individual i in site s is
called as follows:

8is = argmax P(Gjs = g | Xjs, 7js). (12)
g€{0,1,2}
Admixture proportions

Based on the likelihood model defined in STRUCTURE
(Pritchard et al. 2000), individual allele frequencies IT can be esti-
mated using admixture proportions Q and population-specific
allele frequencies F (Alexander et al. 2009), such that:

K
Tlis = Z qikfsk/ (13)
k=1

for an individual i in a variable site s. This is based on an
assumption of K ancestral populations where Zle gik = land
0<4gq,f<1Vgqf € (QF). Here Q and F must be inferred
in order to estimate the individual allele frequencies, where
as K is assumed to be known. One probabilistic approach for
inferring population structure through admixture proportions
for low depth NGS data has been implemented in the NGSadmix
software (Skotte et al. 2013). Here both parameters, Q and F, are
jointly estimated in an EM algorithm using genotype likelihoods.

In our case, we have already estimated the individual al-
lele frequencies based on our iterative procedure using PCA
described above. K can be chosen as the number of principal
components D + 1, since it would explain the number of distinct
ancestral population from which the individual allele frequen-
cies have been estimated from. There is however not always a
direct interpretation between principal components and admix-
ture proportions (Alexander et al. 2009). Therefore, we propose
an approach based on non-negative matrix factorization (NMF)
to infer Q and F using only our estimated individual allele fre-
quencies as information for low depth NGS data. NMF has
previously been applied directly on genotype data to infer pop-
ulation structure and admixture proportions by Frichot et al.
(Frichot et al. 2014), where their method showed comparable
accuracy and faster run-time in comparison to ADMIXTURE.
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NMF is a dimension reduction and factor analysis method
for finding a low-rank approximation of a matrix, which is sim-
ilar to PCA, but NMF is constrained to find non-negative low
dimensional matrices. For an non-negative matrix IT € IR”ﬁ’”,
the goal of NMF is to find an approximation of IT based on two
non-negative factor matrices Q € ]R'}FXK and F € ]RTXK, such
that:

I ~ QF’. (14)

Q will consist of columns of non-negative basis vectors such
that linear combinations of these approximates IT through F.
Thus based on the non-negative nature of our parameters, we
can apply the ideas of NMF to infer admixture proportions Q
and population-specific allele frequencies F from our individual
allele frequencies. We use a combination of recent research in
NMF to minimize the following least squares problem with a
sparseness constraint on Q:

2 m K
min |11~ QFT || +a )" )" lail, (1)
QF FooiZie=
forQ > 0,F > 0and & > 0. Here || . || is the Frobenius norm
of a matrix and « is the regularization parameter controlling the
sparseness enforced as also introduced in Frichot et al. (2014).
Lee and Seung (Lee and Seung 1999, 2001) proposed an mul-
tiplicative update (MU) algorithm to solve the standard NMF
problem without the sparseness constraint included above. Their
update rules can be seen as conservative steps in a gradient de-
scent optimization problem for updating F and Q, which ensure
that the non-negative constraint holds for each update. Hoyer
(Hoyer 2002) extended the MU to incorporate the sparseness
constraint described in equation 15 for Q. For « > 0, the regu-
larization parameter is used to reduce noise, especially induced
by the uncertainty of low depth NGS data, in the estimated ad-
mixture proportions by enforcing sparseness in the solution. An
iteration of using the MU rules are then described as follows:

AT A ()
R(t+1) —_ B0 1" Q
F FY® F(t)Q ) TQ(t)’ (16)
Q(t+1) — Q(t) ® — TEC (17)

QOB TR 4 o

where ® represents element-wise multiplication and the di-
vision operator is element-wise as well.

However, MU has been shown to have a slow convergence
rate, especially for dense matrices, and our approach is therefore
to accelerate MU by combining two different techniques. We
propose an algorithm of combining the acceleration scheme de-
scribed by Gillis and Glineur (Gillis and Glineur 2012) with the
asymmetric stochastic gradient descent algorithm (ASG-MU) of
Serizel et al. (Serizel ef al. 2016) for updating F and Q in a fast
approach. The acceleration scheme of Gillis and Glineur (2011)
updates each matrix F and Q a fixed number of times at a lower
computational cost without losing the convergence properties
of MU. We simply incorporate this acceleration scheme inside
ASG-MU that works by randomly assigning the columns of IT
into a set of B mini-batches, which are then updated sequentially
in a permuted order to improve the convergence rate and perfor-
mance of MU (Serizel et al. 2016). After each update, we truncate
the entries of both F and Q to be in range [0, 1] and normalize
the rows of Q to sum to one. The concept of combining an accel-
eration scheme with a stochastic gradient descent approach for
MU has also been explored in Kasai (2017).

The algorithm is iterated until the admixture proportions
has converged. Convergence is defined as when the RMSD of
estimated admixture proportions of two successive iterations
are smaller than a value ¢ (1.0 x 10~%). The RMSD of iteration
t+1is given as,

RMSD — | L 30 3 (g0 40y 18
= ﬁﬂZ(qik 7qik)' (18)
i=1k=1

The a parameter enforcing sparseness in the estimated so-
lution of Q is arbitrarily specified. However the use of the
likelihood measure in the NGSdamix (Skotte et al. 2013) model
can be used to determine the a parameter fitting the dataset. The
likelihood measure is defined as:

n m 2
ﬁ(Q/F) = Z P(Xz’s | Gis = g)P(Gis = g| ﬁis) 19)
i=1s=1g=0

where 7T;; = Z,Ile Gik fr- Based on the fast estimation of ad-
mixture proportions using our NMF algorithm, a set of a values
can be tested and measured sequentially using the likelihood
measure. This can be performed without sacrificing significant
run-time compared to NGSadmix due to already having esti-
mated the individual allele frequencies for a particular K.

Implementation

Both presented methods have been implemented in a Python
framework named PCAngsd (Principal Component Analysis
of Next Generation Sequencing Data). The framework is freely
available at http://www.popgen.dk/software/.

The memory requirements of PCAngsd is O (mn) as the entire
matrix of genotype likelihoods needs to be stored in memory
for both methods. The most computational expensive step is the
estimation of individual allele frequencies and covariance matrix
(O(m?n)). However, a fast SVD method for only computing the
top D eigenvectors, implemented in the Scipy library (Jones et al.
2014) using ARPACK (Lehoucq et al. 1998) as an eigensolver, has
been used to speed up the iterative estimations of the individual
allele frequencies. PCAngsd is multithreaded as well to take
advantage of several cores and the backbone of the framework
is based on Numpy data structures (Walt et al. 2011) using the
Numba library (Lam et al. 2015) to speed up bottlenecks with
just-in-time (JIT) compilation.

Simple simulation of genotypes and sequencing data

Low depth NGS data has been simulated as genotype likelihoods
to test the capabilities of our two presented methods. Allele fre-
quencies of the reference panel of the Human Genome Diversity
Project (HGDP) (Cann et al. 2002) have been used to generate a
total of 380 individuals from three distinct populations (French,
Han Chinese, Yoruba) including admixed individuals in approx-
imately 0.4 million SNPs across all autosomes. As the allele
frequencies are known for each population, the genotypes of
each individual can be sampled from a Binomial distribution
for each diallelic SNP, using the population-specific allele fre-
quency or an admixed allele frequency as parameter. No LD
has been simulated. The genotypes are therefore known and
are used in the evaluation of our methods in our low depth
scenarios. The number of reads in each SNP are sampled from
a Poisson distribution with a mean parameter resembling the
average sequencing depth of the individual, and the genotype is
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Figure 1 PCA plots of the top 2 principal components in the simulated dataset consisting of 380 individuals and 0.4 million variable
sites. The left-hand plot shows the PCA performed on the known genotypes using equation 2. The middle plot shows the PCA

performed by PCAngsd, and the right-hand plot displays the PCA performed by the ngsTools model (equation 3).
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Figure 2 Admixture plots for K = 3 of the simulated dataset where each bar represents a single individual and the different colors
reflect each of the K components. The first plot is the admixture proportions estimated in ADMIXTURE using the known geno-
types, which we use as the ground-truth in our simulation studies. The second plot shows admixture proportions estimated using
PCAngsd with parameter « = 0 and the bottom plot using NGSadmix.
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used to sample the number of derived alleles from a Binomial
distribution using the sampled depth as parameter. The average
sequencing depth of each individual is sampled uniformly ran-
dom from a range of [0.5,5]. Sequencing errors are incorporated
by sampling each read with a probability € = 0.01 of being an
error. The genotype likelihoods are then finally generated from
the probability mass function of a Binomial distribution using
the sampled parameters and €. This approach of genotype likeli-
hood simulation has previously been used in Kim et al. (2011);
Vieira et al. (2013); Skotte et al. (2013).

A complex admixture scenario has been constructed to test
the capabilities of our methods. 100 individuals have been sam-
pled directly from each of the population-specific allele frequen-
cies (non-admixed), while 50 individuals have been sampled
to have equal ancestry from each of the three distinct popula-
tions (three-way admixture). At last, 30 individuals have been
sampled from a gradient of ancestry between all pairs of the
ancestral populations (two-way admixture).

1000 Genomes low depth sequencing data

We also analyze human low coverage NGS data of 193 individ-
uals from the 1000 Genomes Project Consortium (Consortium
et al. 2010, 2012). The individuals are from four different popula-
tions consisting of 41 from CEU (Utah residents with Northern
and Western European ancestry), 40 from CHB (Han Chinese
in Beijing), 48 from YRI (Yoruba in Ibadan) and 64 individuals
from MXL (Mexican ancestry in Los Angeles) representing an
admixed scenario of European and Native American ancestry.
The individuals from the low coverage datasets have a varying
sequencing depth from 1.5 — 12.5X after site filtering. An advan-
tage of using the low coverage data of the 1000 Genomes Project
data is that overlapping reliable genotypes are available which
can be used for validation purposes.

SNP calling and estimation of genotype likelihoods of the
1000 Genomes dataset has been performed in ANGSD (Kor-
neliussen et al. 2014) using simple read quality filters. A signif-
icance threshold of 1.0 x 10~® has been used for SNP calling
alongside a MAF threshold of 0.05 to remove rare variants. A
total number of 8 million variable sites across all autosomes
have been used in the analyses. The full ANGSD command
used to generate the genotype likelihoods is provided in the
supplementary material.

Waterbuck low depth sequencing data

Lastly, an animal dataset (non-model organism) has also been
included in our study. A reduced low depth NGS dataset of
the waterbuck (Kobus ellipsiprymnus) originating from Pedersen
et al. (unpublished) has been analyzed. The dataset consists
of 73 samples that have been sampled at 5 different sites in
Africa with a varying sequencing depth from 2.2 — 4.7X aligned
to 730 scaffolds. The dataset has been reduced to only include
sampling sites with more than 10 samples such that the inferred
axes of genetic variation will reflect true population structure. As
performed for the 1000 Genomes dataset, genotype likelihoods
has been estimated in ANGSD with the same SNP and MAF
filters. A total number of 9.4 million SNPs across the autosomes
of the waterbuck is analyzed in this study.

Results

For the simulated and 1000 Genomes datasets, results estimated
in PCAngsd on low depth NGS data are evaluated against the
results estimated from genotype data. The model in equation 2

8 Meisner and Albrechtsen

is used to perform PCA, while ADMIXTURE is used to estimate
admixture proportions on the "true" genotype datasets. The
performance of PCAngsd is also compared to existing genotype
likelihood methods with the ngsTools model (equation 3) for
performing PCA, and NGSadmix (equation 19) for estimating
admixture proportions. In all the following cases of admixture
plots estimated by PCAngsd, we have used B = 5 and « has been
chosen as the one maximizing the likelihood measure described
above (equation 19), also shown in Figure S5.

RMSD is used to evaluate the performances of both NGS
methods for estimating admixture proportions in terms of accu-
racy:

1 K n 2
RMSD = J =2y (=i V), o

where ql(feno) and ql(liq ) represents the estimated admixture

proportion for individual i in ancestral population k from known
genotypes and NGS data, respectively. The accuracy of the in-
ferred PCA plots of both NGS methods are also compared to the
PCA plots of the known genotypes for the simulated and 1000
Genomes datasets using RMSD. However, a Procrustes analysis
(Wang et al. 2010; Fumagalli ef al. 2013) must be performed prior
to the comparison as the direction of the principal components
can differ based on the eigendecomposition of the covariance
matrices.

All tests in this study have been performed server-side using
32 threads (Intel® Xeon® CPU E5-2690) for both PCAngsd and
NGSadmix.

Simulation

The results of performing PCA on the simulated dataset based on
frequencies from 3 human populations are displayed in Figure
1, where we simulated unadmixed, two-way admixed and three-
way admixed individuals. The MAP test reported 2 significant
principal components which was also expected for individuals
simulated from three distinct populations. The inferred principal
components clearly shows the importance of taking individual
allele frequencies into account in the probabilistic framework.
Here PCAngsd is able to infer the population structure of in-
dividuals from distinct populations and admixed individuals
nicely as also verified by a Procrustes analysis obtaining a RMSD
of 0.00121, when compared to the PCA inferred from the true
genotypes. There is clear bias in the results of the ngsTools model
where the patterns are representing sequencing depth instead of
population structure as made apparent in Figure S1. The indi-
viduals are acting as a gradient towards the origin due to their
varying sequencing depth. The biased performance of ngsTools
is also reflected in the corresponding Procrustes analysis with a
RMSD of 0.0174.

The estimated admixture proportions of the simulated
dataset are displayed in Figure 2. PCAngsd estimates the admix-
ture proportions well with a RMSD of 0.00476 compared to the
ADMIXTURE estimates of the known genotypes, but is however
outperformed by NGSadmix with a RMSD of 0.00184. For the
380 individuals and 0.4 million SNPs using K = 3, PCAngsd
had an average run-time of only 2.9 minutes while NGSadmix
had an average run-time of 7.9 minutes.

1000 Genomes

The methods of PCAngsd have also been applied to the CEU
(European ancestry), CHB (Chinese ancestry), YRI (Nigerian
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Figure 3 PCA plots of the top 2 principal components for the 1000 Genomes dataset with 193 individuals and 8 million variable
sites. The left-hand plot is based on the known genotypes of the overlapping variable sites in the low depth NGS data, the middle
plot is performed by PCAngsd and the right-hand plot is performed by the ngsTools model.
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Figure 4 Admixture plots for K = 4 of the 1000 Genomes dataset where each bar represents a single individual and the different
colors reflect each of the K components. The first plot is the admixture proportions estimated in ADMIXTURE using the known
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Figure 5 PCA plots of the top 4 principal components for the waterbuck dataset with 73 individuals and 9.4 million variable sites.
The first row displays the plots of the first and second principal components for PCAngsd and the ngsTools model, respectively,
while the second row displays the plots of the third and fourth principal components.
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reflect each of the K components. The first plot is the admixture proportions estimated in PCAngsd with parameter « = 5000 and
the second plot shows the admixture proportions estimated in NGSadmix.
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ancestry) and MXL (Mexican ancestry) populations of the low
coverage 1000 Genomes dataset. The MAP test indicated evi-
dence of 3 significant principal components meaning that the
Native American ancestry explains enough genetic variance in
the dataset to represent an axis of its own. The results of the PCA
are displayed in Figure 3. As was also seen for the simulated
dataset, PCAngsd is able to cluster all individuals almost per-
fectly, while the ngsTools model is only able to capture some of
the same population structure patterns with some of the popula-
tions looking admixed. Its results are still biased by the variable
sequencing depth as seen as well in Figure S2. The RMSD val-
ues of the Procrustes analyses verify the observations, where
PCAngsd has a RMSD of 0.00182 compared to ngsTools with a
RMSD of 0.0075.

The admixture plots are displayed in Figure 4. PCAngsd is
not able to outperform NGSadmix in terms of accuracy, however
it is still able to estimate a very similar result. PCAngsd has
some issues with noise in its estimation but is however able to
reduce it with the use of the sparseness parameter « = 1500. The
likelihood measure in equation 19 has been used to easily find
an optimal « as seen in Figure S5. PCAngsd estimates the admix-
ture proportions with a RMSD of 0.0108 compared to NGSadmix
with a RMSD of 0.007148. The average run-time for 193 indi-
viduals and 8 million SNPs using K = 4 was 27.3 minutes for
PCAngsd and 7.1 hours for NGSadmix, making PCAngsd more
than 15x faster than NGSadmix while both performing PCA and
estimating admixture proportions.

Waterbuck

Lastly, we have analyzed the low depth whole genome sequenc-
ing waterbuck dataset consisting of 73 individuals from 5 locali-
ties. The MAP test reported 4 significant principal components
for explaining the genetic variation in the dataset which also fits
with having 5 distinct waterbuck sampling sites. The PCA plots
are visualized in Figure 5, where the top 4 principal components
have been plotted for each method. Once again, PCAngsd is able
to cluster the populations much better than the ngsTools model,
however the effect is not as apparent as for the other datasets.
Interestingly, populations can switch positions between the two
methods as seen with Samole on the second principal component
and Samburu and Matetsi on the third principal component.

As some few clusters are not so well defined, they will affect
the admixture plots seen in Figure 6, where the increased level of
noise is hard to remove without also affecting the true ancestry
signals. Still, PCAngsd is capturing the same ancestry signals
as NGSadmix with the use of the sparseness parameter. It is
worth noting that an admixed individual of Ugalla and QENP is
captured in both PCA and admixture estimation of PCAngsd as
also verified by the NGSadmix method. The run-times for the
waterbuck dataset consisting of 73 samples and 9.4 million SNPs
using K = 5 was an average of 14.5 minutes for PCAngsd while
NGSadmix had an average run-time of 3.2 hours, thus making
PCAngsd more than 13x faster.

Discussion

We have presented two methods for inferring population struc-
ture and admixture proportions in low depth NGS data and
both methods have been implemented in a framework named
PCAngsd. We have developed a framework using genotype
likelihoods to iteratively estimate individual allele frequencies
based on PCA. We have connected principal components to ad-
mixture proportions such that we are able to infer and estimate

12 Meisner and Albrechtsen

both in a very fast approach making it feasible to analyze large
datasets.

Based on the results when inferring population structure us-
ing PCA, it is clear that the increased uncertainty of low depth
sequencing data biases the clustering of populations using the
ngsTools model which also takes genotype uncertainty into ac-
count. Contrary to PCAngsd, population structure is not taking
into account when using the posterior genotype probabilities
to estimate the covariance matrix. The ngsTools model uses
population allele frequencies as prior information for all indi-
viduals such that individuals are assumed to be sampled from a
homogeneous population. This assumption is of course violated
when individuals are sampled from structured populations with
diverge ancestries. Missing data is therefore modeled by popula-
tion allele frequencies that resemble an average across the entire
sample, which is similar to setting standardized genotypes to
0 in the estimation of the covariance matrix for genotype data.
As an effect of this, the low depth individuals are modeled by
sequencing depth instead of population structure. These results
may lead to misinterpretations of population structure or admix-
ture only due to low and variable sequencing depth. But the
bias is not seen for individuals with equal sequencing depth as
shown in Figure S4 for the ngsTools model. Here all individu-
als have been simulated with an average sequencing depth of
2.5X such that individuals will approximately inherit the same
amount of missing data. However, PCAngsd is able to overcome
the observed bias of low and variable sequencing depth by using
individual allele frequencies as prior information, which leads to
more accurate results in all datasets of the study, as missing data
is modeled by inferred population structure. The assumption of
conditional independence between individuals in the estimation
of the covariance matrix (equation 10) also holds for structured
populations by conditioning on individual allele frequencies.

The number of significant eigenvectors used in the estimation
of individual allele frequencies is determined by the MAP test.
The MAP test is performed on the covariance matrix estimated
from the ngsTools model. Thus in cases of complex population
structure and low and variable sequencing depth, it is possible
that the MAP test will not find a suitable number of significant
eigenvectors to represent the genetic variation of the dataset. It
could therefore be more relevant to use prior information regard-
ing the number of eigenvectors needed for the dataset instead.
However for each of the cases analyzed in this study, the MAP
test inferred the expected number of significant eigenvectors to
describe the population structure.

PCAngsd is able to approximate the results of NGSadmix to a
high degree when estimating admixture proportions using solely
the estimated individual allele frequencies. However, PCAngsd
is not able to outperform NGSadmix in terms of accuracy, but
it is however able to capture the exact same ancestry patterns
as the clustering-based methods in a much faster approach, as
shown by the run-times of each method. Another advantage
of PCAngsd is that the estimated individual allele frequencies
are only needed to be computed once for a specific K, thus
multiple different a’s and random seeds can be tested in the
same run for an even greater speed advantage over NGSadmix,
since the iterative estimation of individual allele frequencies is
the most computational expensive step in PCAngsd. PCAngsd
is therefore an appealing alternative for estimating admixture
proportions for low depth NGS data as convergence and run-
time can be a problem for a large number of parameters in
NGSadmix. PCAngsd was only seen to converge to a single
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Dataset n m K PCAngsd NGSadmix Depth
Simulated 380 0.4 million 3 2.9 min (2.1 min) 7.9 min 0.5 —5X
1000 Genomes 193 8 million 4 273 min (19.5 min) 424.9 min 1.5 —-12.5X
Waterbuck 73 94 million 5 14.5 min (9.3 min) 192 min 22-47X

Table 1 Average run-times of 10 initializations for both PCAngsd and NGSadmix. The run-times reported for PCAngsd include
reading of data and estimation of covariance matrix and admixture proportions, while run-times listed in parentheses only in-
clude estimation of admixture proportions, when parsing previously estimated individual allele frequencies. All tests have been

performed server-side using 32 threads.

solution for all our practical tests, where we used five batches
for all analyses (B = 5).

Both methods of the PCAngsd framework rely on an repre-
sentative set of individual allele frequencies which we model
using the inferred principal components of the SVD on the geno-
type dosages. The number of individuals representing each
population or subpopulation is essential for inferring principal
components that describe true population structure as each indi-
vidual will contribute to the construction of these axes of genetic
variation. This particular effect can be seen in the PCA results of
the waterbuck dataset where the populations are only described
by a low number of individuals such that some of the clusters
are not so well defined as for the other datasets. The admixture
proportions estimated from the waterbuck dataset are therefore
affected as well which can be seen by the additional noise in the
admixture plots.

The PCAngsd framework might be able to push the lower
boundaries of sequencing depth required to perform population
genetic analyses using NGS data of large-scale genetic studies.
PCAngsd demonstrates an effective approach on dealing with
merged datasets of various sequencing depths as well, as miss-
ing data will be modeled by population structure. The estimated
individual allele frequencies contain a lot of information regard-
ing population structure and can open up for the development
and extension of population genetic models based on a similar
probabilistic framework to naturally correct for population struc-
ture in order to obtain more accurate estimates in heterogeneous
populations.
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