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ABSTRACT 

The ability to precisely compute the location and direction of sounds in external 

space is a crucial perceptual process to efficiently interact with dynamic 

environments. Little is known, however, about how the human brain implements 

spatial hearing. In our study, we used fMRI to characterize the brain activity of 

humans listening to left, right, up and down moving as well as static sounds. Whole 

brain univariate results contrasting moving and static sounds varying in their 

location revealed a robust functional preference for auditory motion in bilateral 

human Planum Temporale (hPT). Importantly, multivariate pattern classification 

analysis showed that hPT contains information about both auditory motion 

directions and, to a lesser extent, sound source locations. More precisely, we 

observed that our classifier successfully decoded opposite axes of motion (vertical 

versus horizontal) but was less able to classify opposite within-axis direction (left 

versus right or up versus down); reminiscent of the axis of motion organization 

observed in the middle-temporal cortex for vision. Further multivariate analyses 

demonstrated that even if motion direction and location rely on partially shared 

pattern geometries in PT, the responses elicited by static and moving sounds were 

however highly distinct. Altogether our results demonstrate that human PT codes 

for auditory motion and location but that the underlying neural computation linked 

to motion processing is more reliable and partially distinct from the one supporting 

sound source location.  
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INTRODUCTION  

The ability to precisely locate and track moving information is a crucial 

perceptual skill for efficient interaction with the environment. While the brain 

mechanisms underlying the processing of visual localization and visual motion have 

received considerable attention (Braddick et al., 2001; Britten et al., 1996; Movshon 

and Newsome, 1996; Newsome and Park, 1988), much less is known about how the 

brain implements spatial hearing. The representation of auditory space relies on the 

computations and comparison of intensity, temporal and spectral cues that arise at 

each ear (Blauert, 1982; Searle et al., 1976). In the auditory pathway, these cues are 

both processed and integrated in the thalamus, brainstem and cortex in order to 

create an integrated neural representation of auditory space (Boudreau and 

Tsuchitani, 1968; Goldberg and Brown, 1969; Imig et al., 2000; Ingham et al., 2001; 

Young et al., 1992; Yin and Chan, 1990). At the cortical level, the acoustic space 

lacks point-to-point spatial representation (Derey et al., 2016; Middlebrooks, 2002; 

Middlebrooks and Bremen, 2013; Middlebrooks and Pettigrew, 1981; Ortiz-Rios et 

al., 2017; Rajan et al., 1990). However, differences in spatial selectivity along 

anterior-posterior auditory areas suggest that specific regions within the auditory 

cortex might specialize in the processing of spatial hearing. Lesion studies have 

indeed demonstrated the critical role of the auditory cortex for spatial hearing in 

humans (Duffour-Nikolov et al., 2012; Sanchez-Longo and Forster, 1958; Zatorre 

and Belin, 2001). Similar to the visual cortex dual-stream processing model, partially 

distinct ventral “what” and dorsal “where” auditory processing streams have been 

proposed for auditory processing (Barrett and Hall, 2006; Lomber and Malhotra, 

2008; Rauschecker and Tian, 2000; Recanzone, 2000; Romanski et al., 1999; Tian et 

al., 2001; Warren and Griffiths, 2003). However, it remains poorly understood how 

the human brain implements the processing of auditory motion and location, and 

how these two processes differ from each other.  

One candidate region that might integrate spatial cues to compute motion 

and location information in the human auditory cortex is the planum temporale 

(hPT) (Barrett and Hall, 2006; Baumgart and Gaschler-Markefski, 1999; Warren et 

al., 2002). hPT is located in the superior temporal gyrus, posterior to Helsch’ gyrus, 
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and is typically considered part of the dorsal auditory stream (Poirier et al., 2017; 

Rauschecker and Tian, 2000; Recanzone, 2000; Romanski et al., 1999; Tian et al., 

2001). Some authors have suggested that hPT equally engages in the processing of 

moving sounds and the location of static sound-sources (Barrett and Hall, 2006; 

Derey et al., 2016; Krumbholz et al., 2005; Smith et al., 2004, 2007, 2010; Zatorre et 

al., 2002). This proposition is supported by early animal electrophysiological studies 

suggesting the existence of neurons in the auditory cortex that are selective to 

sound source location and motion directions (Altman, 1968, 1994; Benson et al., 

1981; Doan et al., 1999; Imig et al., 1990; Middlebrooks and Pettigrew, 1981; 

Poirier et al., 1997; Rajan et al., 1990), which display similar response profiles for 

moving and sound source locations (Ahissar et al., 1992; Doan et al., 1999; Poirier 

et al., 1997). In contrast, other studies in animals (Poirier et al., 2017) and humans 

(Baumgart and Gaschler-Markefski, 1999; Bremmer et al., 2001; Griffiths et al., 

1998; Hall and Moore, 2003; Krumbholz et al., 2005; Lewis et al., 2000; Pavani et 

al., 2002; Poirier et al., 2005) pointed toward a more specific role of hPT for 

auditory motion processing. In addition to the shared or distinct nature of the 

neural representation of auditory motion and location in the hPT, the characteristic 

tuning of this region for separate direction or axis of motion/location remains 

unknown.  

The main goals of the present study were threefold. First, using multivariate 

pattern analysis (MVPA), we investigated whether information about auditory 

motion direction and sound-source location can be retrieved from the pattern of 

activity in hPT. Further, we asked whether the spatial distribution of the neural 

representation is in the format of “preferred axis of motion” as observed in the 

visual motion selective regions (Albright et al., 1984; Zimmermann et al., 2011). 

Finally, we aimed at characterizing whether the processing of motion direction (e.g. 

going to the left) and sound-source location (e.g. being in the left) rely on common 

neural representations in the hPT.  
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MATERIALS AND METHODS 

 

Participants 

Eighteen participants with no reported auditory problems were recruited for the 

study. Two participants were excluded due to poor spatial hearing performance in 

the task. The final sample, therefore, included 16 right-handed participants (8 

females, age range: 20 to 42, mean ± SD = 31.7 ± 5.6 years). Participants were 

blindfolded and instructed to keep their eyes closed throughout the experiments 

and practice runs. All the procedures were approved by the research ethics boards 

of the Centre for Mind/Brain Sciences (CIMeC) and University of Trento. 

Experiments were undertaken with the understanding and written consent of each 

participant. 

 

Auditory stimuli  

Our limited knowledge of the auditory space processing in the cortex of humans 

might be a consequence of the technical challenge of evoking vivid perceptual 

experience of auditory space inside fMRI. To create an externalized ecological 

sensation of sound location and motion, we relied on individual in-ear stereo 

recordings that were recorded in a semi-anechoic room and from 30 loudspeakers 

on horizontal and vertical planes, mounted on two semicircular wooden structures 

with a radius of 1.1m (see Fig. 1A). Participants were seated in the center of the 

apparatus with their head on a chin-rest, such that the speakers on the horizontal 

and vertical planes were equally distant from participants’ ears. Then, these 

recordings were re-played to the participants when they were inside the functional 

MRI (fMRI). By using such sound system with in-ear recordings, auditory stimuli 

automatically convolved with each individuals’ own pinna and head related transfer 

function to produce a salient auditory perception in external space. 
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Figure 1. Stimuli and Experimental Design. (A) The acoustic apparatus used to present 
auditory moving and static sounds while binaural recordings were carried out for each participant 
before the fMRI session. (B) Auditory stimuli presented inside the fMRI consisted of 8 conditions: 
leftward, rightward, downward and upward moving stimuli and left, right, down and up static stimuli. 
Each condition was presented for 15 s (12 repetition of 1250 ms sound, no ISI) and followed by 7 s 
gap for indicating the corresponding direction/location in space and 8 s of silence (total inter-block 
interval was 15 s). Sound presentation and response button press were pseudo-randomized. Subjects 
were asked to respond as accurately as possible during the gap period. (C) The behavioural 
performance inside the scanner. 

 

The auditory stimuli were prepared using custom MATLAB scripts (r2013b; 

Matworks). Auditory stimuli were recorded using binaural in-ear omni-directional 

microphones (Sound Professionals-TFB-2; ‘flat’ frequency range 20–20,000 Hz) 

connected to a portable Zoom H4n digital wave recorder (16-bit, stereo, 44.1 kHz 

sampling rate). Microphones were positioned at the opening of participant’s left 

and right auditory ear canals. While auditory stimuli were played, participants were 

listening without performing any task with head fixed to the chin-rest in front of 

them. Binaural in-ear recordings allowed combining binaural properties such as 

interaural time and intensity differences, and participant specific monaural filtering 

cues to create reliable and ecological auditory space sensation (Pavani et al., 2002).  

 

Stimuli recordings 

Moving stimuli were covering 120° in space/visual field in horizontal and vertical 

axes. In order to create smooth moving stimuli, pink noise fragments of 83.333 ms 

were played in 15 consecutive loudspeakers, each separated by 4 degrees. 

Leftward auditory motion sweep contained pink noise fragments going from outer 

right to the outer left and vice versa for rightwards motion sweeps. A similar design 

was used for the vertical axis. Participants therefore perceived moving sweeps 

covering an arc of 120° achieved in 1250 ms (speed = 96°/s; 50 ms fade in/out) 

(a) Recording moving and static sounds (b) fMRI design (c) Behavioral results inside fMRI
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containing the same sounds for all four directions. The choice of the movement 

speed of the motion stimuli aimed to create listening experience relevant to 

everyday-life conditions. Moreover, at such velocity it has been demonstrated that 

human listeners are not able to make the differences between concatenated static 

stimuli from motion stimuli elicited by a single moving object (Poirier et al., 2005), 

supporting the subject’s report that our stimuli were perceived as smoothly moving 

(no perception of successive snapshots). Static sounds lasted 1250 ms (50 ms fade 

in/out) at the most outer speakers of the auditory apparatus (-60° for left, +60° for 

right in horizontal axis, +60° for up and -60° for down positions in vertical axis).  

Before the recordings, the sound pressure levels (SPL) were measured from 

the subject’s head position and ensured that each speaker conveys 65dB-A SPL. All 

participants reported strong sensation of auditory motion and were able to detect 

locations with high accuracy (see Fig 1C). Throughout the experiment, participants 

were blindfolded. Stimuli recordings were conducted in a session that lasted 

approximately 10 minutes, requiring the participant to remain still during this 

period.  

 

Auditory experiment 

Auditory stimuli were presented via MR-compatible closed-ear headphones (Serene 

Sound, Resonance Technology; 500-10KHz frequency response) that provided 

average ambient noise cancellation of about 30 dB-A, and amplitude was adjusted 

according to each participant’s comfort level. To familiarize the participants with 

the task, they completed a practice session outside of the scanner while lying down 

until they reached above 80% accuracy.  

Each run consisted of the 8 conditions (4 motion and 4 static) randomly 

presented using a block-design. Each condition was presented for 15 s (12 

repetition of 1250 ms sound, no ISI) and followed by 7 s gap for indicating the 

corresponding direction/location in space and 8 s of silence (total inter-block 

interval was 15 s). The ramp applied at the beginning and at the end of each sound 

creates static bursts and minimized adaptation to the static sounds. During the 

response gap, participants heard a voice saying “left”, “right”, “up”, and “down” in 
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pseudo-randomized order. Participants were asked to press a button with their 

right index finger when the auditory block’s direction or location was matching with 

the auditory cue (Figure 1B). The number of targets and the order (position 1-4) of 

the correct button press were balanced across conditions. This procedure was 

adopted to ensure that the participants gave their response using equal motor 

command for each condition and to ensure the response is produced after the end 

of the stimulation period for each condition. Each scan consisted of one block of 

each condition, resulting in a total of 8 blocks per run, with each run lasting 4 m 10 

s. Participants completed a total of 12 runs. The order of the blocks was pseudo-

randomized within each run, and across participants. 

Based on pilot experiments, we decided to not rely on a sparse-sampling 

design as sometimes done in the auditory literature in order to present the sounds 

without the scanner background noise (Hall et al., 1999). These pilot experiments 

showed that the increase in the signal to noise ratio potentially provided by sparse 

sampling did not compensate for the loss in the number of volume acquisitions. 

Indeed, pilot recordings on participants not included in the current sample showed 

that, given a similar acquisition time between sparse-sampling designs (several 

options tested) and continuous acquisition, the activity maps elicited by our spatial 

sounds contained higher and more reliable beta values using continuous 

acquisition. 

 

 

fMRI data acquisit ion and analyses 

Imaging parameters   

Functional and structural data were acquired with a 4T Bruker MedSpec 

Biospin MR scanner, equipped with an 8-channel head coil. Functional images were 

acquired with T2*-weighted gradient echo-planar sequence. Acquisition parameters 

were: repetition time of 2500 ms, echo time of 26 ms, flip angle of 73°, a field of 

view of 192 mm, a matrix size of 64 x 64, and voxel size of 3 x 3 x 3 mm3.  A total of 

39 slices were acquired in ascending feet-to-head interleaved order with no gap. 

The three initial scans of each acquisition run were discarded to allow for steady-
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state magnetization. Before every two EPI run, we performed an additional scan to 

measure the point-spread function (PSF) of the acquired sequence, including fat 

saturation, which served for distortion correction that is expected with high-field 

imaging (Zeng and Constable, 2002). 

High-resolution anatomical scan was acquired for each subject using a T1-

weighted 3D MP-RAGE sequence (176 sagittal slices, voxel size of 1×1×1 mm3; 

field of view 256 x 224 mm; repetition time = 2700 ms; TE = 4.18 ms; FA: 7°; 

inversion time: 1020 ms). Participants were blindfolded and instructed to lie still 

during acquisition and foam padding was used to minimize scanner noise and head 

movement.  

 

Univariate fMRI analysis 

Whole brain 

Raw functional images were pre-processed and analysed with SPM8 

(Welcome Trust Centre for Neuroimaging London, UK; 

http://www.fil.ion.ucl.ac.uk/spm/software/spm/) implemented in MATLAB R2014b 

(MathWorks). Before the statistical analysis, our preprocessing steps included slice 

time correction with reference to the middle temporal slice, realignment of 

functional time series, the coregistration of functional and anatomical data, spatial 

normalization to an echo planar imaging template conforming to the Montreal 

Neurological Institute space, and spatial smoothing (Gaussian kernel, 6 mm FWHM) 

were performed. 

To obtain blood oxygen level-dependent (BOLD) activity related to auditory 

spatial processing, we computed single subject statistical comparisons with fixed-

effect general linear model (GLM). In the GLM, we used eight regressors from each 

condition (four motion direction, four sound source location). The canonical double-

gamma hemodynamic response function implemented in SPM8 was convolved with 

a box-car function to model the above mentioned regressors. Motion parameters 

derived from realignment of the functional volumes (3 translational motion and 3 

rotational motion parameters), button press, and the four auditory response cue 

events were modeled as regressors of no interest. During the model estimation, the 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 17, 2018. ; https://doi.org/10.1101/302497doi: bioRxiv preprint 

https://doi.org/10.1101/302497


 

 

data were high-pass filtered with cut-off 128s to remove the slow drifts/ low-

frequency fluctuations from the time series. To account for serial correlation due to 

noise in fMRI signal, autoregressive (AR (1)) was used.  

In order to obtain activity related to auditory processing in the whole brain, 

the contrasts tested the main effect of each condition ([Left Motion], [Right Motion], 

[Up Motion], [Down Motion], [Left Static], [Right Static], [Up Static], [Down Static]). 

To find brain regions responding preferentially to the auditory motion and static, 

we combined all motion conditions [Motion] and all static conditions [Static]. The 

contrasts tested the main effect of each condition ([Motion], [Static]), and 

comparison between the conditions ([Motion > Static], and [Static > Motion]). These 

linear contrasts generated statistical parametric maps (SPM[T]) which were further 

spatially smoothed (Gaussian kernel 8 mm FWHM) and entered in a second-level 

analysis, corresponding to a random effects model, accounting for inter-subject 

variance. One-sample t-tests were run to characterize the main effect of each 

condition ([Motion], [Static]), and the main effect of motion processing ([Motion > 

Static]) and static location processing ([Static > Motion]). Statistical inferences were 

performed at a threshold of p<0.05 corrected for multiple comparisons (Family-

Wise Error corrected; FWE) either over the entire brain volume or after correction 

for multiple comparisons over small spherical volumes (12 mm radius) located in 

regions of interest (SVC). Significant clusters were anatomically labeled using the 

xjView Matlab toolbox (http://www.alivelearn.net/xjview) or structural 

neuroanatomy information provided in the Anatomy Toolbox (Eickhoff et al., 2007).  

 

Region of interest analysis 

ROI Definition 

Due to the hypothesis-driven nature of our study we defined hPT as an a priori 

region of interest for statistical comparisons and in order to define the volume in 

which we performed multivariate pattern classification analyses. 

To avoid any form of double dipping that may arise when defining the ROI based 

on our own data, we decided to independently define hPT, using a meta-analysis 

method of quantitative reverse inference, implemented via the online tool 
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Neurosynth (Yarkoni et al., 2011) using the term “Planum Temporale” query. Rather 

than showing which regions are disproportionately reported by studies where a 

certain term is dominant (forward inference; P (activation | term)), this method 

identifies regions whose report in a neuroimaging study is diagnostic of a certain 

term being dominant in the study (reverse inference; P (term | activation)). As such, 

the definition of this ROI was based on a set of 85 neuroimaging studies at the 

moment of the query (September 2017). This method provides an independent 

method to obtain masks for further region-of-interest analysis. The peak coordinate 

from the meta-analysis map was used to create a 6 mm spheres (117 voxels) around 

the peak z-values of hPT (peak MNI coordinates [-56 -28 8] and [60 -28 8]; lhPT and 

rhPT hereafter, respectively).  

 

ROI Analyses 

Univariate 

The beta parameter estimates of the 4 motion directions and 4 sound source 

locations were extracted from lhPT and rhPT regions (Fig 2C). In order to 

investigate the presence of motion directions/sound source locations selectivity and 

condition effect in hPT regions, we performed a 2 Conditions (motion, static) x 4 

Orientations (left, right, down, and up) repeated measures ANOVA in each 

hemisphere separately on these beta parameter estimates. Statistical results were 

then corrected for multiple comparisons (number of ROIs x number of tests) using 

the false discovery rate (FDR) method (Benjamini and Yekutieli, 2001). A 

Greenhouse–Geisser correction was applied to the degrees of freedom and 

significance levels whenever an assumption of sphericity was violated. 

 

ROI - Multivariate pattern analyses 

Within Condition Classification 

Four-class and binary classification analyses were conducted within the hPT region 

in order to investigate the presence of auditory motion direction and sound source 

location information in this area. To ensure that the number of voxels was identical 

across subjects an ANOVA-based feature selection was performed to select the 110 
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voxels within each ROI, which are most informative/discriminative across all motion 

and static conditions (Cox & Savoy 2003; Haxby et al., 2001; Norman et al., 2006). 

Multivariate pattern analyses (MVPA) were performed in the lhPT and rhPT. 

Preprocessing steps were identical to the steps performed for univariate analyses, 

except for functional time series that were smoothed with a Gaussian kernel of 2 

mm (FWHM). MVPA was performed in CoSMoMVPA (http://www.cosmomvpa.org/; 

(Oosterhof et al., 2016), which implements LIBSVM software 

(http://www.csie.ntu.edu.tw/~cjlin/libsvm). A general linear model was 

implemented in SPM8, where each block was defined as a regressor of interest. A 

beta map was calculated for each block separately. Two multi-class and six binary 

linear support vector machine (SVM) classifiers with a linear kernel with a fixed 

regularization parameter of C = 1 were trained and tested for each participant 

separately. The two multi-class classifiers were trained and tested to discriminate 

between the response patterns of the 4 auditory motion directions and locations, 

respectively. Four binary classifiers were used to discriminate brain activity patterns 

for motion and location within axes (left vs. right motion, left vs. right static, up vs. 

down motion, up vs. down static, hereafter within axis classification). We used 2 

additional classifiers to discriminate across axes (horizontal vs. vertical motion, 

horizontal vs. vertical static, hereafter across axes classification). For each 

participant, the classifier was trained using a cross-validation leave-one-out 

procedure where training was performed with n-1 runs and testing was then 

applied to the remaining one run. In each cross-validation fold, the beta maps in the 

training set were normalized (z-scored) across conditions, and the estimated 

parameters were applied to the test set.  To evaluate the performance of the 

classifier and its generalization across all the data, the previous step was repeated 

12 times where in each fold a different run was used as the testing data and the 

classifier was trained on the other 11 runs. For each region per subject, a single 

classification accuracy was obtained by averaging the accuracies of all cross-

validation folds. 

 

Cross-condition Classification 
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To test whether motion directions and sound source locations share a similar neural 

representation in hPT region, we performed cross-condition classification. We 

carried out the same steps as for the within-condition classification as described 

above but trained the classifier on sound source locations and tested on motion 

directions, and vice versa. The accuracies from the two cross-condition classification 

analyses were averaged. For interpretability reasons, cross-condition classification 

was only interpreted on the stimuli categories that the classifiers discriminated 

reliably (above chance level) for both motion and static conditions (e.g. if 

discrimination of left vs. right was not successful in one condition, either static or 

motion, then the left vs. right cross-condition classification analysis was not carried 

out). 

 

Across-condition Classification 

To further investigate the similarities/differences between the neural patterns 

evoked by motion directions and sound source locations in the hPT, we performed 

4 binary classifications: leftward motion vs. left static, rightward motion vs. right 

static, upward motion vs. up static, and downward motion vs. down static. The 

mean of the four binary classifications was computed to produce one accuracy 

score per ROI. Prior to performing the across-condition and cross-condition MVPA, 

each individual pattern was normalised separately across voxels so that any cross or 

across-condition classification could not be due to global univariate activation 

differences across the conditions.   

 

Statistical significance 

Statistical significance in the multivariate classification analyses was assessed using 

non-parametric tests permuting condition labels and bootstrapping (Stelzer et al., 

2013). Each permutation step included shuffling of the condition labels and re-

running the classification 100 times on the single-subject level. Next, we applied 

bootstrapping procedure in order to obtain a group-level null distribution that is 

representative of whole group. From each subject’s null distribution one value was 

randomly chosen and averaged across all the subjects. This step was repeated 
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100,000 times resulting in a group level null distribution of 100,000 values. The 

classification accuracies across subjects we considered as significant if the p<0.05 

after corrections for multiple comparisons using the FDR method (Benjamini and 

Yekutieli, 2001).  

To test the interaction between Conditions (motion, static) and Hemispheres 

(lhPT, rhPT) on classification accuracies, one for each within-condition classification, 

in total 4 separated 2 x 2 repeated measures ANOVA was performed. To 

investigate the characteristic tuning of the hPT region for separate direction or axis 

of motion/location, binary classification accuracies of across axes, horizontal axis 

and vertical axis were compared. To test the interaction between Axes (across axes, 

horizontal axis and vertical axis), Hemispheres (lhPT, rhPT), and Conditions (motion, 

static), the accuracy values were entered into 3 x 2 x 2 repeated measures of 

ANOVA. 

 

Representation Similarity analysis  

Neural Dissimilarity matrices 

We employed representation similarity analysis (RSA; Kriegeskorte et al., 2008) to 

characterize the degree of shared representation between motion directions and 

sound source locations in hPT region. The RSA was performed using CosmoMVPA 

toolbox (Oosterhof et al., 2016) implemented in MATLAB. To perform this analysis 

we first extracted in each subject the activity patterns associated with each 

condition (Edelman et al., 1998; Haxby et al., 2001). Then, we averaged individual 

subject statistical maps (i.e. activity patterns) in order to have a mean pattern of 

activity for each condition across runs. Finally, we used Pearson’s linear correlation 

as the similarity measure to compare each possible pair of the activity patterns 

evoked by the four different motion directions and four different sound source 

locations. This resulted in an 8 x 8 correlation matrix for each participant that was 

then converted into a representational dissimilarity matrix (RDMs) by computing 1 – 

correlation. Each square of the RDM contains the dissimilarity index between the 

patterns of activity generated by two conditions, in other words the RDM 

represents how different is the neural representation of each condition from the 
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neural representations of all the other condition in the selected ROI. The 16 neural 

RDMs (1 per subject) for each of the 2 ROIs were used as neural input for RSA. 

 

Computational models 

To investigate shared representations between auditory motion directions and 

sound source locations, we created multiple computational models ranging from a 

fully condition-distinct model to a fully condition-invariant model with intermediate 

gradients in between (Zabicki et al., 2016). 

 

Condition-Distinct model 

The condition-distinct models assume that dissimilarities between motion and static 

condition is 1 (i.e. highly dissimilar), meaning that neural responses/patterns 

generated by motion and static conditions are totally unrelated. For instance, there 

would be no similarity between any motion directions with any sound source 

location. The dissimilarity values in the diagonal were set to 0, simply reflecting that 

neural responses for the same direction/location are identical to themselves. 

 

Condition-Invariant model 

The condition-invariant models assume a fully shared representation for 

specific/corresponding static and motion conditions. For example, the models 

consider the neural representation for the left sound source location and the left 

motion direction highly similar. All within-condition (left, right, up and down) 

comparisons are set to 0 (i.e. highly similar) regardless of their auditory condition. 

The dissimilarities between different directions/locations are set to 1 meaning that 

each within condition sound (motion or static) is different from all the other within 

conditions. 

 

Intermediate models 

To detect the degree of similarity/shared representation between motion direction 

and sound source location patterns, we additionally tested 2 classes of 5 different 

intermediate models. The two classes were used to deepen the understanding of 
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characteristic tuning of hPT for separate direction/location or axis of 

motion/location. The two model classes represent 2 different possibilities. The first 

scenario was labeled as Within-Axis Distinct, and these models assume that each of 

the 4 directions/locations (i.e. left, right, up, down) would generate a distinctive 

neural representation different from all of the other within-condition sounds (e.g. 

the patterns of activity produced by the left conditions are highly different from the 

patterns produced by right, up and down conditions) (see Figure 4C, upper panel). 

To foreshadow our results, we observed preference for axis of motion in MVP-

classification, therefore we created another class of models to further investigate 

neural representations of within-axis and across-axes of auditory motion/space. The 

second scenario was labeled with Within-Axis Combined, and these models assume 

that opposite direction/locations within the same axis would generate similar 

patterns of activity (e.g. the pattern of activity of horizontal (left and right) 

conditions are different from the patterns of activity of vertical conditions (up and 

down) (see Figure 4C, lower panel). 

In all intermediate models, the values corresponding to the dissimilarity 

between same auditory spaces (e.g. left motion and left location) were gradually 

modified from 0.9 (motion and static conditions are mostly distinct) to 0.1 (motion 

and static conditions mostly similar). These models were labeled M9, 7, 5, 3, and 1 

respectively. 

In all condition-distinct and intermediate models, the dissimilarity of within-

condition sounds was fixed to 0.5 and dissimilarity of across-condition sounds was 

fixed to 1. Across all models, the diagonal values were set to 0. 

 

Performing RSA 

We computed Pearson’s correlation to compare neural RDMs and computational 

model RDMs. The resulting correlation captures which computational model better 

explains the neural dissimilarity patterns between motion direction and sound 

source location conditions. To visualize the distance between the patterns of the 

motion directions and sound source locations, we used multi-dimensional scaling 

(MDS) to project the high-dimensional RDM space onto 2 dimensions with the 
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neural RDMs that were obtained from both lhPT and rhPT. Additionally, the single-

subject 8 x 8 correlation matrices were used to calculate the reliability of the data 

considering the signal-to-noise ratio of the data (Kriegeskorte et al., 2007). For each 

participant and each ROI, the RDM was correlated with the averaged RDM of the 

rest of the group. The correlation values were then averaged across participants. 

This provided the maximum correlation that can be expected from the data. 

 

RESULTS 

Behavioral results 

During the experiment, we collected target direction/location discrimination 

responses (see Figure 1C). The overall accuracy scores were entered into 2 x 4 

(Condition, Orientation) repeated measures ANOVA. No main effect of Condition 

(F1,15 = 2.22; p = 0.157) was observed, indicating that the overall accuracy while 

detecting direction of motion or sound source location did not differ. There was a 

significant main effect of orientation (F1,15 = 11.688; p < 0.001), caused by greater 

accuracy in the horizontal orientations (left and right) as compared to the vertical 

orientations (up and down). No interaction between Condition x Orientation was 

observed, pointing out that differences between orientations in terms of 

performance expresses both for static and motion.  

 

fMRI results – whole-brain univariate analyses  

To identify brain regions that are preferentially recruited for auditory motion 

processing, we performed a univariate RFX- GLM contrast [Motion > Static] (Figure 

2A). Consistent with previous studies (Dormal et al., 2016; Getzmann and Lewald, 

2012; Pavani et al., 2002; Poirier et al., 2005; Warren et al., 2002), whole-brain 

univariate analysis revealed activation in the superior temporal gyri, bilateral hPT, 

precentral gyri, and anterior portion of middle temporal gyrus in both hemispheres 

(Figure 2A, Table 1). The most robust activation (resisting whole brain FWE 

correction, p<0.05) was observed in the bilateral hPT (peak MNI coordinates  [-46 -

32 10] and [60 -32 12]). We also observed significant activation in occipito-temporal 
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regions (in the vicinity of hMT+/V5) as suggested by previous studies (Dormal et al., 

2016; Poirier et al., 2005; Warren et al., 2002).     

 

fMRI results – ROI univariate analyses 

Beta parameter estimates were extracted from the pre-defined ROIs (see 

methods) for the four motion directions and four sound source locations from the 

auditory experiment (Figure 2C). We investigated the condition effect and the 

presence of direction/location selectivity in lhPT and rhPT regions separately by 

performing 2 x 4 (Conditions, Orientations) repeated measures of ANOVA with 

beta parameter estimates. In lhPT, main effect of Conditions was significant (F1,15 = 

37.28, p < 0.001), indicating that auditory motion evoked higher response 

compared to static sounds. There was no significant main effect of Orientations, 

and no interaction. Similarly, in rhPT, only main effect of Conditions was significant 

(F1,15 = 37.02, p < 0.001). No main effect of Orientation or interaction was 

observed. Overall, brain activity in the hPT as measured with beta parameter 

estimate extracted from univariate analysis did not provide evidence of motion 

direction or sound source location selectivity. 
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Figure 2. Univariate whole brain results. (A). Auditory motion processing [motion > static] at p 
<0.001 uncorrected. (B). Reverse inference map was obtained from the online tool Neurosynth using 
the term “Planum Temporale” (FDR corrected p <0.05). The black spheres are illustration of drawn 
mask (radius = 6mm, 117 voxels) around the peak coordinate from Neurosynth (search term “planum 
temporale”, meta-analysis of 85 studies). (C). Mean activity estimates (arbitrary units ± SEM) 
associated with the perception of auditory motion direction (red) and sound-source location (blue). 
ML: motion left, MR: motion right, MD: motion down, MU: motion up, SL: static left, SR: static right, 
SD: static down, and SU: static up.   
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Table 1. Results of the univariate analyses for the main effect of auditory motion processing [motion 
> static], and auditory localization processing [static > motion]. Coordinates reported in this table are 
significant (p < 0.05 FWE) after correction over small spherical volumes (SVC, 15 mm radius) of interest 
(#) or over the whole brain (*). Coordinates used for correction over small spherical volumes are as 
follows (x, y, z, in MNI space): left middle temporal gyrus (hMT+/V5) [-42 -64 4] (Dormal et al., 2016), 
right middle temporal gyrus (hMT +/V5) [42 − 60 4] (Dormal et al., 2016), right superior frontal sulcus 
[32 0 48] (Collignon et al., 2011), right middle occipital gyrus [48 -76 6] (Collignon et al., 2011). K 
represents the number of voxels when displayed at p(unc) < 0.001. L: left, R: right, G: gyrus, S: sulcus. 
 

Area k x y z Z p 
   (mm) (mm) (mm)   
MOTION > STATIC        
L planum temporale 10506 -46 -32 10 6.63 0.000* 
L Middle Temporal G  -56 -38 14 6.10 0.000* 
L Precentral G  -46 -4 52 5.25 0.004* 
L Putamen  -22 2 2 4.98 0.011* 
L Middle Temporal G 43 -50 -52 8 3.79 0.01# 
R Superior Temporal G 7074 66 -36 12 6.44 0.000* 
R Superior Temporal G  62 -2 -4 5.73 0.000* 
R Superior Temporal G  52 -14 0 5.56 0.001* 
R Precentral G  50 2 50 4.70 0.032* 
R Superior Frontal S 159 46 0 50 4.40 0.001# 
R Middle Temporal G 136 42 -60 6 4.31 0.001# 
R Middle Occipital G 24 44 -62 6 3.97 0.006# 

 
 
fMRI results – ROI multivariate pattern analyses 

To further investigate the presence of information about auditory motion direction 

and sound source location in hPT, we ran multi-class and binary multivariate pattern 

classification. Figure 3A-D shows the mean classification accuracy across categories 

in each ROI. 

MVPA – Within Condition 

Multi-class across four conditions classification accuracy in the hPT was significantly 

above chance (chance level = 25%) in both hemispheres for motion direction (lhPT: 

mean ± SD = 38.4 ±7, p<0.001; rhPT: mean ± SD = 37.1 ± 6.5, p<0.001), and 

sound source location (lhPT: mean ± SD = 32.4 ±6.7, p<0.001; rhPT: mean ± SD = 

31.2 ± 7.5, p<0.001). In addition, we assessed differences between classification 

accuracies for motion and static stimuli in a 2 x 2 (Conditions, Hemispheres) 

repeated measures ANOVA. This revealed a main effect of Conditions (F1,15 = 
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14.95, p = 0.003) indicating greater accuracies for classifying motion direction than 

sound-source location across all regions. There were no differences in accuracies for 

Hemisphere (F1,15 = 0.02, p = 0.89) and no significant interaction between 

Conditions x Hemispheres (F1,15 = 0.004, p = 0.95).  

In order to test whether neural patterns within hPT contain information 

about opposite directions within-axis, we performed two additional binary within-

axis classifications (see Supplemental Analysis). The classification accuracies were 

plotted in Figure 2C-D. 

Classifying “axis of motion” 

To investigate statistical difference between classification accuracies of across axes 

(horizontal vs. vertical), within horizontal axis (left vs. right), and within vertical axis 

(up versus down), we performed a 3 x 2 x 2 (Axes, Conditions, Hemispheres) 

repeated measures of ANOVA. This revealed a main effect of Axes (F1.4,21 = 12.05, p 

= 0.001), Conditions (F1,15 = 4.72, p = 0.046) and Hemispheres (F1,15 = 6.51, p = 

0.022). Post-hoc two-tailed t-tests showed that accuracy for the across axes 

classification was greater than both horizontal (t1,15 = 3.371, p = 0.006) and vertical 

(t1,15 = 4.776, p < 0.001) within-axis classification. The main effect of hemisphere was 

driven by higher classification accuracy in the lhPT compared to the rhPT. The 

condition main effect was due to higher classification accuracies in motion than 

static condition. There was a significant interaction between Axes and Conditions 

(F1.8,27.8 = 8.13, p = 0.002). Post-hoc two-tailed t-tests revealed that interaction was 

mainly driven by the fact that motion condition revealed higher accuracies in across-

axes classification compared to static condition. In contrast, accuracies of horizontal 

and vertical within-axis classification were not influenced by condition. Axes x 

Conditions x Hemispheres showed a significant interaction (F1.8,27.6 = 4.59, p = 0.021) 

due to effect of the hemisphere on the vertical within-axis classification accuracies 

(t1,15  = 2.784, p = 0.014). 

In MVP-classification, due to the differences between trial numbers of across 

axes classification (24 trials) and each of the within-axis classification (12 trials each), 

the classifier in across axes might have higher chance to be trained accurately 
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compared to within axis. To avoid such bias, we performed additional across-axes 

classification with half of the dataset. The classification accuracies were then 

entered into 3 x 2 x 2 (Axes, Conditions, Hemispheres) repeated measures of 

ANOVA (see Supplemental Fig. 1). Confirming previous results, even when the trial 

numbers were equalized we again observed a main effect of Axes (F1.9,29.8  = 7.98, p 

= 0.002), indicating stronger classification accuracies across axes than within axis 

(see Supplemental Fig. 1).   
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Figure 3. Within and cross-classif ication results. (A). Classification results for the 4 
conditions. (B). Classification results of across axes (Horizontal vs. Vertical). (C). Classification results 
of horizontal axis (left vs. right). (D). Classification results of vertical axis (up vs. down). Within-
condition and cross-condition classification results are shown in the same bar plots. Moving: four 
motion direction; Static: four sound source location; and Cross: cross-condition classification 
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accuracies. FDR corrected p-values: (*) p<0.05, (**) p<0.01, (***) p<0.001 testing differences against 
chance level (dotted lines; see methods). 

 
One may wonder whether the higher classification accuracy for across 

compared to within axes relates to the perceptual differences in discriminating 

sounds within the horizontal and vertical axes. Indeed, because we opted for an 

ecological design reflecting daily-life listening condition, we observed, as expected, 

that discriminating vertical directions was more difficult than discriminating 

horizontal ones (Middlebrooks and Green, 1991). In order to address this issue, we 

replicated our MVP-classification analyses after omitting the four subjects showing 

the lowest performance in discriminating the vertical motion direction (see 

Supplemental Fig. 2), leading to comparable performance (at the group level) 

within and across axes. We replicated our pattern of results by showing preserved 

higher classification accuracies across-axes than within-axis. Moreover, while 

accuracy differences between across- and within-axes classification was only 

observed in the motion condition, behavioral differences were observed in both 

static and motion conditions. These results strengthen the notion that the higher 

classification accuracies for axes of motion do not simply stem from behavioral 

performance differences.  

 

MVPA – Cross-condition 

To investigate if motion direction and sound source locations rely on shared 

representation in hPT, we trained the classifier to distinguish neural patterns from 

the motion directions (e.g. going to the left) and then tested on the patterns 

elicited by static conditions (e.g. being in the left), and vice versa.  

Cross-condition classification revealed significant results on across 4 

conditions (lhPT: mean ± SD = 27.8 ± 5.3, p = 0.008, rhPT: mean ± SD = 28.7 ± 3.8, 

p<0.001) and across axes (lhPT: mean ± SD = 57.6 ± 6.2, p < 0.001; mean ± SD = 

58.8 ± 6.2, p<0.001). Within- axis categories did not reveal any significant cross-

condition classification. These results suggest that a partial overlap between the 

neural patterns of moving and static stimuli in the hPT.  
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MVPA – Across-condition  

Cross-condition classification results indicated a shared representation between 

motion directions and sound source locations. Previous studies argued that 

successful cross-condition classification reflects an abstract representation of stimuli 

conditions (Fairhall and Caramazza, 2013; Higgins et al., 2017; Hong et al., 2012). 

To test this hypothesis, patterns of the same orientation of motion and static 

conditions (e.g. leftward motion and left location) were involved in across-condition 

MVPA. The rational was that if the hPT region carries fully abstract representation 

of space, across-condition classification would give results in favor of the null 

hypothesis (no differences across conditions). In the across-condition classification 

analysis, accuracies from the four across-condition classification analyses were 

averaged and survived FDR corrections in bilateral hPT (lhPT: mean ± SD = 65.6 ± 

5, p < 0.001, rhPT: mean ± SD = 61.9 ± 5.6, p<0.001), indicating that the neural 

patterns of motion direction can be reliably differentiated from sound-source 

location within hPT. 
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Figure 4. Pattern dissimilarity between motion directions and sound source locations. 
(A). Across-condition classification results of across 4 conditions are represented in each ROI (lhPT 
and rhPT). 4 binary classifications [leftward motion vs. left location], [rightward motion vs. right 
location], [upward motion vs. up location], and [downward motion vs. down location] were computed 
and averaged to produce one accuracy score per ROI. FDR corrected p-values: (***) p<0.001. Dotted 
lines represent chance level. (B). The embedded top panel shows neural RDMs extracted from left 
and right hPT, and multi-dimensional scaling (MDS) plot visualizes the similarities of the neural pattern 
elicited by 4 motion directions (arrows) and 4 sound source locations (dots). Color codes for 
arrow/dots are as follows: green indicates left direction/location, red indicates right direction/location, 
orange indicates up direction/location, and blue indicates down direction/location. ML: motion left, 
MR: motion right, MD: motion down, MU: motion up, SL: static left, SR: static right, SD: static down, 
and SU: static up.  (C-D). The results of representational similarity analysis (RSA) in hPT are 
represented. (C). RDMs of the computational models that assume different similarities of the neural 
pattern based on auditory motion and static conditions. (D). RSA results for every model and each 
ROI. For each ROI, the black line represents the reliability of the data considering the signal-to-noise 
ratio (see Materials and Methods), which provides an estimate of the highest correlation we can 
expect in a given ROI when correlating computational models and neural RDMs. Error bars indicate 
SEM. IM1: Intermediate models with within-axis conditions distinct, IM2: Intermediate model with 
within-axis conditions combined. 
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RSA  

Multi-dimensional Scaling 

Visualization of the representational distance between the neural patterns evoked 

by motion directions and sound source locations further supported that within-axis 

directions show similar geometry compared to the across-axes directions, therefore, 

it is more difficult to differentiate the neural patterns of opposite directions in MVP-

classification. MDS also showed that in both lhPT and rhPT, motion directions and 

sound source locations are separated into 2 clusters (Figure 4B).  

 

RSA with external models 

The correlation between model predictions and neural RDMs for the lhPT and rhPT 

is shown in Figure 4D. The cross-condition classification results indicated a shared 

representation within the neural patterns of hPT for motion and static sounds. We 

examined the correspondence between the response pattern dissimilarities elicited 

by our stimuli with 14 different model RDMs that included a fully condition distinct, 

fully condition-invariant models, and intermediate models with different degrees of 

shared representation.  

First set of computational RDMs were modeled with the assumption that the neural 

patterns of within-axis sounds are fully distinct. The analysis revealed a negative 

correlation with the fully condition-invariant model in the bilateral hPT (lhPT: mean r 

± SD = -0.12 ± 0.18, rhPT: mean r ± SD = -0.01 ± 0.2) that increased gradually as 

the models progressed in the condition-distinct direction. The model that best fit 

the data was the M9 model in the bilateral hPT (lhPT: mean r ± SD = 0.66± 0.3, 

rhPT: mean r ± SD = 0,65 ± 0.3). A similar trend was observed for the second set of 

models that have the assumption of within-axis sounds evoke similar neural 

patterns. Condition-invariant model provided the least explanation of the data 

(lhPT: mean r ± SD = 0.14 ± 0.25, rhPT: mean r ± SD = 0.2 ± 0.29), and correlations 

gradually increased as the models progressed in the condition-distinct direction. 

The winner models in this set were the models M9 in lhPT and M7 in the rhPT (lhPT: 

mean r ± SD = 0.67 ± 0.22, rhPT: mean r ± SD = 0.69 ± 0.15).  
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In addition, we assessed differences between correlation coefficients for 

computational models and sets using a 7 x 2 x 2 (Models, Classes, and 

Hemispheres) repeated measures ANOVA. This revealed a main effect of Models 

(F6,90 = 32.8, p < 0.001) indicating correlations gradually increased as the models 

progressed in the condition-distinct direction. The significant main effect of Classes 

was also observed (F1,15 = 7.66, p = 0.014) due to the higher correlation coefficients 

in Within-Axis Combined set. Within-Axis Combined models explained our stimuli 

space better than Within-Axis Distinct models supporting similar pattern 

representation within planes. There were no differences in correlations for 

Hemispheres (F1,15 = 0.587, p = 0.45) and no significant interaction between Models 

x Hemispheres (F6,90 = 0.25, p = 0.95), and between Classes x Hemispheres (F1,15 = 

0.749, p = 0.4). 

In the lhPT, M9 and M7 model predictions reached the noise ceiling, 

indicating the model performed as well as possible given the variability of the 

pattern across subjects. These results indicate that separate auditory spatial 

conditions (motion or static) elicit massively different neural patterns in hPT.  

 

DISCUSSION 
 

In line with several studies investigating auditory motion processing, our 

univariate results demonstrated a preference for moving over static sounds in the 

superior temporal gyri, bilateral hPT, precentral gyri, and anterior portion of middle 

temporal gyrus in both hemispheres (Baumgart and Gaschler-Markefski, 1999; 

Krumbholz et al., 2005; Pavani et al., 2002; Poirier et al., 2005; Warren et al., 2002). 

The most robust cluster of activity was observed in the bilateral hPT (Figure 2B, 

Table 1). Moreover, activity estimates extracted from independently defined hPT 

(from neurosynth meta-analysis) also revealed higher activity for moving relative to 

static sounds. Both whole-brain and ROI analyses therefore clearly indicated a 

functional preference (expressed here as higher activity level estimates) for motion 

processing over sound-source location in bilateral hPT regions (Figure 2).  

Does hPT contain information about specific motion directions and sound 
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source locations? At the univariate level, our four (left, right, up and down) motion 

directions and sound source locations did not evoke differential univariate activity in 

hPT region (see Fig. 2C). We then carried out multivariate pattern classification in 

order to investigate whether information related to motion directions and sound-

source locations could be retrieved from the distributed activity reliably elicited by 

each separate condition across voxels of the hPT.  

We observed that bilateral hPT contains reliable information about the four 

auditory motion directions (Figure 3). Our results therefore demonstrate that 

despite no univariate differences, area hPT contains reliable distributed information 

about separate directions of motions (Alink et al., 2012; Dormal et al., 2016; Jiang 

et al., 2014, 2016). Our results are therefore similar to the observations made with 

fMRI in the human visual motion area hMT+/V5 showing reliable direction-selective 

information despite comparable voxel-wise univariate activity levels across 

directions (Kamitani and Tong, 2006). To the best of our knowledge, this study is 

the first to investigate the differences between within- and across-axes of motion 

directions classification. Within-axis MVP-classification results revealed that both 

horizontal (left versus right), and vertical (up versus down) motion directions can be 

classified in the hPT region (see Fig. 3C-D). However, the results showed lack of 

consistency across hemispheres. The lhPT contained decodable information about 

up versus down directions but not between left versus right; the opposite results 

were observed in the rhPT. Importantly, across axes (horizontal versus vertical) 

direction classification revealed massively higher accuracies compared to within-axis 

classifications, indicating that classification motion direction information is much 

more reliable across axis of motion, rather than separate directions within horizontal 

(left versus right) or vertical (up versus down) axes. Such enhanced classification 

accuracy across axes versus within axis is reminiscent of observations made in 

MT+/V5 where the large-scale axis of motion selective organization was observed in 

non-human primates (Albright et al., 1984), and in human area MT+/V5 

(Zimmermann et al., 2011). Further examination with RSA provided additional 

evidence that within-axis combined models (aggregating the opposite 

directions/location) explain better the neural representational space of hPT by 
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showing higher correlations values compared to within-axis distinct models. These 

results strengthen the idea of representation of opposite directions/locations are 

similar in the neural patterns of hPT (see Figure 6B).  

The resemblance between our findings with the conclusions reached in the 

hMT+/V5 for visual motion (Zimmermann et al., 2011) suggests that the 

topographic organization principle of hMT+/V5 and hPT shows similarities in 

representing motion directions. The functional organization of the middle occipito-

temporal region hMT+/V5 is characterized by columns containing neurons that 

react specifically to a certain visual motion direction (Albright et al., 1984). Those 

columns vary smoothly for certain motion direction but are also found running side 

by side with their respective opposing motion direction counterparts (Albright et 

al., 1984; Born and Bradley, 2005; Diogo et al., 2003; Geesaman et al., 1997; 

Zimmermann et al., 2011). By aggregating opposing motion directions, larger axis 

of motion features can be constructed that are more easily detectable with fMRI 

than individual direction selective columns (Zimmermann et al., 2011). Moreover, 

neural responses to opposite directions were suggested to play a role in encoding 

visual motion direction by triggering excitatory/inhibitory mechanism within 

hMT+/V5 (Heeger et al., 1999). Due to this topographic organization principle of 

area hMT+/V5, and probably in combination with excitatory/inhibitory activity 

features of the opposing motion directions, it has been suggested that the 

representation of preferred axis of motion is more systematic from the pattern of 

fMRI activity when compared to the opposite direction of motion (Zimmermann et 

al., 2011; but see below for alternative accounts). The observed motion opponent 

mechanism in visual motion area could also exist in hPT region and influence the 

reliable axis of motion classification. A number of electrophysiological studies have 

indeed demonstrated the existence of motion direction sensitive neurons in the 

auditory cortex of mammals (Ahissar et al., 1992; Doan et al., 1999; Poirier et al., 

1997) and showed higher spatial selectivity (sharper spatial tuning) in the caudal 

fields (homologue to area hPT) (Woods et al., 2006; Zhou and Wang, 2012). Visual 

motion aftereffect (vMAE) is the most compelling psychophysical evidence that 

point towards the existence of direction specific mechanisms in vision. The effect 
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relies on prolonged exposure to a particular motion direction, followed by the 

viewing of a stationary object, elicits the illusion of motion in the opposite direction, 

demonstrating an adaptation of specialized direction detecting mechanisms (Barlow 

and Hill, 1963). The effect of adaptation to a specific motion direction has been 

commonly observed in hMT+/V5 (He et al., 1998; Hogendoorn and Verstraten, 

2013; Huk et al., 2001; Tootell et al., 1995; Van Wezel 2002). Similarly, behavioral 

studies have provided compelling evidence for motion selective (Deas et al., 2008; 

Guerreiro et al., 2016; Kitagawa and Ichihara, 2002; Reinhardt-Rutland and Anstis, 

1982) and direction-sensitive auditory motion aftereffects (aMAEs) (Dong et al., 

2000; Grantham, 1998; Grantham and Wightman, 1979; Neelon and Jenison, 2003). 

However, the existence of direction specific adaptation in the human auditory 

cortex remains controversial (Grzeschik et al., 2013; Magezi et al., 2013).  

Even if it has been proposed that successful classification may potentially 

stem from the spatial biases within each voxel that relates to the underlying cortical 

columnar organization or other types of direction selective signals (Bartels et al., 

2008; Haynes and Rees, 2006; Kamitani and Tong, 2005), alternative explanations 

have also been provided. Indeed, if fMRI signal within a voxel would exclusively 

reflect a sampling of cortical columns, smoothing of the data would substantially 

decrease the classification accuracies due to averaging out the random biases in the 

neighboring voxels (Kamitani and Sawahata, 2010). Contrary to that, evidence 

points to no influence of smoothing (Op de Beeck, 2010). Studies conducted on 

early visual cortex proposed that classifying orientation preference reflects much 

larger scale (e.g. retinotopy) rather than columnar organization (Op de Beeck, 2010; 

Freeman et al., 2011, 2013). Interestingly, high-field fMRI studies showed that the 

signal carries information related to both large- and fine-scale (columnar level) 

biases (Gardumi et al., 2016; Pratte et al., 2016; Sengupta et al., 2017). A study that 

investigated the effect of spatial resolution and smoothing on the classification 

accuracies on two different auditory tasks, concluded that the influence of large- 

and fine-scale spatial biases depends on the specific task of interest (Gardumi et al., 

2016). These studies support the notion that MVP-classification results could reflect 

the combination of both large- and fine-scale organization. The present study sheds 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 17, 2018. ; https://doi.org/10.1101/302497doi: bioRxiv preprint 

https://doi.org/10.1101/302497


 

 

important new lights on the coding mechanism of motion direction within the hPT 

and demonstrates that fMRI signal in the hPT contains direction specific information 

and point toward an “axis of motion” organization. However, further studies are 

needed to test the similarities between the coding mechanisms implemented in 

visual and auditory motion selective regions, and more particularly, to investigate 

whether directional information captured in fMRI emerges from columnar level or 

larger-scale spatiotopic organization. 

Supporting univariate motion selectivity results in bilateral hPT, MVPA 

revealed that multi-class and across-axes classifications are higher for moving than 

for static sounds (Fig. 3A-B). However, despite minimal univariate activity elicited by 

sound-source location in hPT, and the absence of reliable univariate differences in 

the activity elicited by each position (see Fig. 2C), MVP-classification results showed 

that beside the vertical axis (up versus down), sound source location information 

can be reliably decoded bilaterally in hPT (Figure 3). Our results are in line with 

previous studies showing that posterior regions in auditory cortex exhibit location 

sensitivity both in animals (Recanzone, 2000; Stecker et al., 2005; Tian et al., 2001) 

and humans (Ahveninen et al., 2006, 2013; Brunetti et al., 2005; Deouell et al., 

2007; Derey et al., 2016; Krumbholz et al., 2005; Warren and Griffiths, 2003; Zatorre 

et al., 2002).  

In contrast to what was observed for motion direction, classification did not 

reveal higher information in static conditions when opposite locations were 

aggregated and formed axis of location in hPT. This indicates that auditory sound 

source locations might not follow similar topographic representations to motion 

directions.  

The observed lack of axis of location preference in PT could be attributed to 

widespread/interspersed distribution of location selective neurons (Ahissar et al., 

1992). One recent study has demonstrated that sound locations in the azimuth can 

be modeled with opponent channel coding based on the BOLD responses in 

bilateral hPT (Derey et al., 2016). Opponent channel coding model, which stems 

from electrophysiological recordings of mammalian auditory pathway (Day and 

Delgutte, 2013; Miller and Recanzone, 2009; Stecker et al., 2005), proposes that 
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sound locations in the azimuth may be represented through the combined activity 

of two neuronal subpopulations that are broadly tuned with an overall preference 

for opposite auditory hemifields (McAlpine et al. 2001; Stecker et al. 2005), and 

recent data in both monkeys and humans suggest that these broadly tuned neurons  

are distributed more widely across auditory cortex (Derey et al., 2016; Magezi and 

Krumbholz, 2010; Ortiz-Rios et al., 2017; Salminen et al., 2009; Werner-Reiss and 

Groh, 2008). In the horizontal within-condition classification, our findings are in line 

with previous observations from monkey and human fMRI studies that in the 

posterior auditory cortex (including PT), fMRI signals contain representations of 

sound location (Derey et al., 2016; Lewis et al., 2008; Ortiz-Rios et al., 2017). The 

widespread and spatially contralateral bias might provide information to the 

classifier to detect the neural pattern differences between sounds on the horizontal 

axis (see Fig. 3C). In the vertical axis, MVP-classification was not significant for 

sound source locations (see Fig. 3D). A recent electroencephalographic (EEG) study 

also showed that while horizontal sound source (left versus right) revealed 

successful classification in the scalp, less consistent classification results was 

observed for vertical sounds (Bednar et al. 2017). It should be noted that the lack of 

significant classification could simply indicate that the neural patterns evoked by up 

and down sounds, at our brain sampling level, cannot be differentiated by the 

classifier, which does not mean that hPT do not contain any information related to 

up vs down vertical sounds. Our results however demonstrate that information 

about the position of sounds is more easily decodable in the horizontal plane when 

compare to the vertical plane, using the patterned activity recorded in hPT. 

To which extend the neural representation of motion directions and sound 

source locations overlaps has been debated extensively (Grantham, 1986; Kaas et 

al., 1999; Poirier et al., 2017; Romanski et al., 2000; Smith et al., 2004, 2007; 

Zatorre and Belin, 2001). Despite the fact that hPT preferentially represents 

directional motion (observed in our study by higher univariate responses and higher 

within-condition classification accuracies), the cross-condition classification results 

revealed that auditory motion (e.g. going to the left) and sound-source location 

(being on the left) share partial neural representations in hPT (Figure 3). The idea of 
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cross-condition classification between motion direction and sound-source location 

necessarily relies on whether there is a shared computation between sounds 

located on a given space and sounds directed towards this space. Low-level 

features of these two types of auditory stimuli vary in many ways and produce large 

difference at the univariate level in the cortex (see Figure 2B). However, perceiving, 

for instance, a sound going toward the left side or located on the left side evoke a 

sensation of location/direction in the external space that is common across 

conditions. Our significant cross-condition classification may therefore relate to the 

evoked sensation/perception of an object being/going to a common external 

spatial location. Electrophysiological studies in animals demonstrated that motion-

selective neurons in the auditory cortex displayed similar response profile to sounds 

located or moving toward the same position in external space, suggesting that the 

processing of sound-source locations may contribute to the perception of moving 

sounds (Ahissar et al., 1992; Doan et al., 1999;Poirier et al., 1997). Results from 

human psychophysiological and auditory evoked potential studies also strengthen 

the notion that sound source location contributes to motion perception (Getzmann 

and Lewald, 2011; Strybel and Neale, 1994). Our cross-condition MVPA results 

therefore extend the notion that motion directions and sound source locations 

might have common features that are shared for encoding spatial sounds.  

Significant cross-condition classification has typically been considered as a 

demonstration that the region implements a partly common and abstracted 

representation of the tested conditions (Fairhall and Caramazza, 2013; Higgins et 

al., 2017; Hong et al., 2012). For instance, a recent study elegantly demonstrated 

that the human auditory cortex at least partly integrates interaural time and level 

differences (ITD and ILD) into a higher-order representation of auditory space 

based on significant for cross-cue classification (training on ITD and classifying ILD, 

and reversely). In the present study, we argue that even if cross- condition MVP-

classification can provide useful hints about shared information across conditions in 

a given region; successful cross-MVPA results cannot be taken as evidence that the 

region implements abstract representation. Our successful across-condition 

classification (see Figure 4A) demonstrated that, even though there are shared 
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representations for moving and static sounds within hPT, classifiers are able to 

easily distinguish motion directions from sound source locations (e.g. leftward 

versus left location). RSA analyses further supported the idea that moving and static 

sounds elicit distinct patterns in hPT (see Figure 4B-D). Altogether, our results 

suggest that hPT contains both motion direction and sound-source location 

information but that the neural patterns related to these two conditions are only 

partially overlapping. Our observation of significant cross-condition classification 

based on highly distinct pattern of activity between static and moving sounds may 

support the notion that even if location information could serve as a substrate for 

movement detection, motion encoding does not solely rely on location information 

(Ducommun et al., 2002; Getzmann, 2011; Poirier et al., 2017). 	
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