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Abstract 

Background: The integration of high-quality, genome-wide analyses offers a robust approach to 

elucidating genetic factors involved in complex human diseases. Even though several methods 

exist to integrate heterogeneous omics data, most biologists still manually select candidate genes 

by examining the intersection of lists of candidates stemming from analyses of different types of 

omics data that have been generated by imposing hard (strict) thresholds on quantitative 

variables, such as P-values and fold changes, increasing the chance of missing potentially 

important candidates.  

 

Methods: To better facilitate the unbiased integration of heterogeneous omics data collected 

from diverse platforms and samples, we propose a desirability function framework for 

identifying candidate genes with strong evidence across data types as targets for follow-up 

functional analysis. Our approach is targeted towards disease systems with sparse, heterogeneous 

omics data, so we tested it on one such pathology: spontaneous preterm birth (sPTB). 

 

Results: We developed the software integRATE, which uses desirability functions to rank genes 

both within and across studies, identifying well-supported candidate genes according to the 

cumulative weight of biological evidence rather than based on imposition of hard thresholds of 

key variables. Integrating 10 sPTB omics studies identified both genes in pathways previously 

suspected to be involved in sPTB as well as novel genes never before linked to this syndrome. 

integRATE is available as an R package on GitHub (https://github.com/haleyeidem/integRATE). 
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Conclusions: Desirability-based data integration is a solution most applicable in biological 

research areas where omics data is especially heterogeneous and sparse, allowing for the 

prioritization of candidate genes that can be used to inform more targeted downstream functional 

analyses.
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Background 

Biological processes underlying disease pathogenesis typically involve a complex, dynamic, and 

interconnected system of molecular and environmental factors [1]. Advances in high-throughput 

omics technologies have allowed for the collection of data corresponding to the genomic, 

transcriptomic, epigenomic, proteomic, and metabolomic elements that contribute to variation in 

these biological processes [2]. However, each of these omics approaches, when employed in 

isolation, can only capture variation within a single layer of a much more complicated biological 

system [3,4]. For example, even though the thousands of single nucleotide polymorphisms 

(SNPs) that have been linked to complex diseases or traits via genome-wide association studies 

(GWAS) have greatly contributed to our understanding of complex disease, we still lack in depth 

knowledge of the molecular mechanisms underlying the vast majority of these associations [5]. 

Similarly, transcriptomics studies routinely identify hundreds to thousands of differentially 

expressed genes between diseased and healthy tissue samples, but disentangling the disease-

causing changes in gene expression from its byproducts can be far more challenging [6]. Given 

the limitations of each omics approach and their focuses on different layers of the biological 

system, integration of different types of omics data to identify the key biological pathways 

involved in disease has emerged as a promising avenue for research [4]. 

 

One integrative study design is to obtain diverse types of omics data from the same tissue 

samples or patient cohorts. The resulting data can then be vertically integrated (Fig. 1A, top left) 

to identify candidate genes and pathways involved in complex disease. Alternatively, a single 

type of omics data can be collected from a variety of tissue samples or patient cohorts, 

facilitating their horizontal integration across many samples, which can substantially increase the 
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experiment’s power (Fig. 1A, top right). In both vertical and horizontal integration study designs, 

the availability of diverse types of omics data from the same samples enables the use of a variety 

of statistical integration approaches (Fig. 1A, bottom) [7]. For example, multi-staged integration 

uses multiple steps to first identify associations between different data types and then identify 

associations between data types and the phenotype of interest [8], whereas meta-dimensional 

integration combines data simultaneously based on concatenation, transformation, or model 

building [9]. 

 

Although multi-omics data sets generated using vertical and horizontal study designs are 

becoming increasingly common, such data sets are lacking for many complex diseases [10-14]. 

Often, heterogeneous omics data are collected study by study, for a limited set of tissue samples 

and across only one or two omics data types at a time (Fig. 1B, top). For each study, a long list of 

genes or genomic regions with associated data is produced and sorted based on effect size (e.g., 

fold change), significance (e.g., P-value), or some other criterion. Hard thresholds can then be 

imposed on P-values, for example, to bin the genes or genomic regions and identify significant 

candidates for further analysis; this type of approach can then be applied across multiple, 

heterogeneous omics studies. 

 

Several problems exist with the imposition of hard thresholds, however. Including (or excluding) 

genes or genomic regions as candidates based on P-value, fold change, expression level, and/or 

odds ratio cutoffs introduces biases and removes information, especially when combining 

multiple cutoffs from several criteria [15-17]. These cutoffs can sometimes even be arbitrary, 

like selecting the top n or n% from each data set. Additionally, statistical significance is not 
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always equivalent to biological significance, meaning that non-statistically significant genes may 

still be involved in disease pathogenesis, or vice versa. Moreover, while selecting the top n genes 

might limit the scope of further functional analysis, the alternative approach of selecting all 

significant hits could mean that thousands of genes are identified as candidates. A final 

consideration in analyzing heterogeneous omics data is that we sometimes do not know any 

genes, pathways, or networks that have already been shown to be involved in complex disease. 

Some integration methods, especially those based on prediction (e.g., machine learning, network 

analysis), depend on the availability of such knowledge for algorithm training and cannot be 

performed in their absence [7,8,18-21].  

 

Desirability functions provide a way to integrate heterogeneous omics data in systems where 

gold standards (i.e., genes known to be involved in the complex disease under investigation) are 

not yet known (Fig. 1B, bottom). Originally developed for industrial quality control, desirability 

functions have been successfully used in chemoinformatics to rank compounds for drug 

discovery and have been proposed as a way to integrate multiple selection criteria in functional 

genomics experiments [22-26]. In the context of integrating diverse but heterogeneous omics 

data, desirability functions allow for the ranking and prioritizing of candidate genes based on 

cumulative evidence across data types and their variables, rather than within-study separation of 

significant and non-significant genes based on single variables in single studies. For example, a 

2015 study initially proposed the use of desirability functions to integrate multiple selection 

criteria for ranking, selecting, and prioritizing genes across heterogeneous biological analyses 

and demonstrated its use by analyzing a set of microarray-generated gene expression data [22]. 
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To facilitate data integration in the presence of heterogeneous multi-omics data and when prior 

biological knowledge is limited, we propose a desirability-based framework to prioritize 

candidate genes for functional analysis. To facilitate application of our framework, we built a 

user-friendly software package called integRATE, which takes as input data sets from any omics 

experiment and generates a single desirability score based on all available information. This 

approach is targeted towards biological processes or diseases with particularly sparse or 

heterogeneous data, so we test integRATE on a set of 10 omics data sets related to spontaneous 

preterm birth (sPTB), a complex disease where heterogeneous multi-omics data are the only 

omics data currently available. 

 

Design 

 

Variable Transformation 

First, relevant studies need to be identified for integration; this selection can be based on any 

number of characteristics including tissue(s) sampled, disease subtype, or experimental designs 

(Fig. 2, step 1). The data in each of these studies (e.g., gene expression data, proteomic data, 

GWAS data, etc.) are typically specific to or can be mapped to individual genetic elements (e.g., 

genes) in the genome. Furthermore, each study’s data contain genetic element-specific values for 

many different variables (e.g., P-value, odds ratio, fold change, etc.). Then desirability functions 

are fit to the observations for each variable within a study (e.g., P-value, odds ratio, fold change, 

etc.) according to whether low values are most desirable (dlow, e.g., P-value), high values are 

most desirable (dhigh, e.g., odds ratio), or extreme values are most desirable (dextreme, e.g., fold 
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change) (Fig. 2, step 2). The desirability score for each genetic element can be calculated by 

applying one of the following equations to a given variable: 
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In these equations, Y is the variable value and s is the scale coefficient affecting the function’s 

rate of change that can be customized according to user preference. Alternatively, the equations 

could be used without any scaling by setting the scale coefficient to 1. For dlow and dhigh, A is the 

low cut point and B is the high cut point where the function changes. For dextreme, A is the low cut 

point, C is the intermediate cut point, and B is the high cut point where the function changes. The 

user can customize these cut points based on numerical values (e.g., P-value < 0.05) or percentile 

values (e.g., top 10%). The resulting values, ranging from 0 to 1 (or the minimum and maximum 

values specified) are transformed desirability scores based on information from each variable. 
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Variable Integration 

Next, desirability scores for each of the N variables within a study (e.g., P-value, odds ratio, fold 

change, etc.) are combined using an arithmetic mean so that genetic elements (e.g., genes) with 

desirability scores of zero for any given variable remain in the analysis (Fig. 2, step 3). 

Desirability for genetic elements within a study can be calculated by: 

 

𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  �
𝑤𝑤𝑖𝑖𝑑𝑑𝑖𝑖
𝑁𝑁

𝑁𝑁

𝑖𝑖=1

(4) 

 

In this equation, wi is the weight parameter (assigned to each variable), di is desirability score for 

each genetic element based on the values of each variable derived from equations (1), (2) or (3), 

and N is the total number of transformed variables. This step produces a single desirability score 

(dstudy) for each genetic element in the study containing information from all transformed 

variables. Here, the user is also able to include variable weights (wi) when integrating their 

desirability scores, which can be useful in cases where certain variables are considered more 

informative or accurate than others. 

 

Study Integration 

Finally, the dstudy values can be integrated using the arithmetic mean to produce a single 

desirability score (doverall) for each genetic element, representing its desirability as a candidate 

according to the weight of evidence from all variables in all K studies that were integrated (Fig. 

2, step 4). The overall score used to prioritize candidates can be calculated by: 
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𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 =  �
𝑤𝑤𝑗𝑗𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑗𝑗

𝐾𝐾(𝑛𝑛𝑛𝑛. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 1)

𝐾𝐾

𝑗𝑗=1

(5) 

 

In this equation, wj is the weight parameter (assigned to each study), dstudy j is the desirability 

score for each study, and K is the total number of studies integrated. Importantly, the overall 

desirability score doverall is normalized by the number of studies missing data for each genetic 

element to account for the number of values contributing to each overall desirability score. This 

normalization factor can be used to calculate a soft cutoff for the most desirable candidates that 

is equivalent or higher than the desirability score that would be achieved by a genetic element 

with a perfect desirability score of 1 in a single study but missing from all other studies. We call 

genetic elements achieving desirability scores equal to or above this cutoff ‘desirable.’ 

 

Software 

The methodology described above is implemented in our software, integRATE, available on 

GitHub as an R package (https://github.com/haleyeidem/integRATE). Although we focus on 

using desirability functions to integrate heterogeneous omics data corresponding to complex 

human diseases, integRATE can be applied to data sets from any phenotype, species, and data 

type (provided that the units can all be mapped to a common set of elements, such as genes). 

Functionality is provided for the application of customizable desirability functions as well as 

data visualization. 

 

Implementation 
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One human complex genetic disease where the omics data available are heterogeneous is preterm 

birth (PTB). Defined as birth before 37 weeks of completed gestation, PTB is the leading cause 

of newborn death worldwide [27]. Although 30% of preterm births are medically indicated due 

to complications including preeclampsia (PE) or intrauterine growth restriction (IUGR), the 

remaining 70% occur spontaneously either due to the preterm premature rupture of membranes 

(PPROM) or idiopathically (sPTB). Further complicating factors are that multiple maternal and 

fetal tissues are involved (e.g., placenta, fetal membranes, umbilical cord, myometrium, decidua, 

etc.) as well as multiple genomes (maternal, paternal, and fetal) [28]. Evidence from family, 

twin, and case-control studies suggests that genetics plays a role in determining birth timing and 

a recent GWAS identified a handful of genes linked to prematurity [29]. Nevertheless, the 

pathogenesis of PTB and its many subtypes remains poorly understood [30-32]. 

 

The publicly available data for sPTB consist of several different independently conducted omics 

analyses that would be challenging to analyze with statistical approaches developed for vertical 

and horizontal integration [29,33,34]. Although these omics data have been analyzed in isolation, 

integration of their information using the desirability-based platform implemented in integRATE 

may provide unique insights into the complex mechanisms involved in regulating birth timing 

and, thus, allow for the identification and prioritization of novel candidate genes for further 

functional and targeted analyses. 

 

Study Identification 

Studies were initially identified based on the following PubMed search strategy (10/19/2017): 
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“Pregnancy”[mh] AND “Humans”[mh] AND “Preterm birth”[mh] AND (“Gene 

Expression Profiling”[mh] OR “Gene Expression Regulation”[mh]) AND 

(“Placenta”[mh] OR “Decidua”[mh] OR “Myometrium”[mh] OR “Cervix Uteri”[mh] OR 

“Extraembryonic Membranes”[mh] OR “Blood”[mh] OR “Plasma”[mh] OR “Umbilical 

Cord”[mh])  

 

Studies that reported conducting a genome-wide omics analysis of sPTB from a preliminary scan 

of the abstract were downloaded for full-text assessment. Furthermore, a thorough investigation 

was conducted of their associated reference lists to identify studies not captured via PubMed. 

 

Additionally, each study had to meet the following inclusion criteria: 

 

1) Experimental group consisted of sPTB cases only and was not confounded by other 

pregnancy phenotypes (e.g., preeclampsia), 

2) Analysis was genome-wide and not targeted to any specific subset of genes or pathways, 

and 

3) Full data set was publicly available (not just top n%). 

 

We identified 54 studies through the first phase of our literature search, but only 10 data sets that 

met all inclusion criteria. All excluded studies are listed in Additional File 1 with reasons for 

exclusion and the 10 data sets used in our pilot analysis are outlined in Table 1 [33-46]. 

 

Table 1. The 10 sPTB omics data sets identified for desirability-based integration. 
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First Author Year Experiment Control Tissue omics Type 

Zhang 2017 sPTB term maternal blood genomics (GWAS) 

Ackerman 2015 sPTB term placenta transcriptomics (RNA-seq) 

Heng 2014 sPTB term maternal blood transcriptomics (microarray) 

Chim 2012 sPTB term maternal blood transcriptomics (microarray) 

Mayor-Lynn 2011 sPTB term placenta transcriptomics (microarray) 

de Goede 2017 sPTB term cord blood epigenomics (microarray) 

Fernando 2015 sPTB term cord blood epigenomics (microarray) 

Parets 2015 sPTB term maternal blood epigenomics (microarray) 

Cruickshank 2013 sPTB term fetal blood epigenomics (microarray) 

Heng 2015 sPTB term maternal blood proteomics (mass spec) 

 

Data Transformation 

Each of the 10 data sets was mapped to a gene-based format. This step was necessary because 

integRATE applies desirability functions both within and across studies and, in order for that 

integration to be possible, the genetic elements of each study have to match. 

 

Genomics. SNP-based data containing P-values and effect sizes were mapped to genes with 

MAGMA, as outlined in the Zhang et al. supplementary methods 

(http://ctg.cncr.nl/software/magma) [35,47,48]. 

 

Transcriptomics. Gene expression data from microarray experiments were accessed via GEO 

(https://www.ncbi.nlm.nih.gov/geo/) and re-analyzed using the GEO2R plugin 
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(https://www.ncbi.nlm.nih.gov/geo/info/geo2r.html) [36-39]. Raw RNA-seq data from 

Ackerman et al. were analyzed in-house with custom scripts [33].  

 

Epigenomics. Methylation data were accessed via GEO (https://www.ncbi.nlm.nih.gov/geo/) 

and re-analyzed using the GEO2R plugin (https://www.ncbi.nlm.nih.gov/geo/info/geo2r.html) 

[40-44]. 

 

Proteomics. Protein expression data were downloaded from supplementary files associated with 

each publication and the protein IDs were mapped to genes using Ensemble’s BioMart tool 

(https://www.ensembl.org/info/data/biomart/index.html) [34,45]. 

 

Application of integRATE 

After mapping results from all 10 omics studies to genes, we used integRATE to calculate 

desirabilities for all genes across all variables within studies. We ran four different sPTB 

analyses: 

 

1) In the first analysis (iR-none), we ran integRATE with no added customizations (e.g., no 

cut points, no scales (i.e., scale coefficient = 1), no minimum or maximum desirabilities, 

etc.) (Fig. 3-5, Additional File 2). 

2) In the second analysis (iR-num), we ran integRATE using numerical cut points (P = 

0.0001, 0.1 and fold change = 1.5, 0.5, -0.5, -1.5) and no scales (Additional File 4-7). 

3) In the third analysis (iR-per), we ran integRATE using percentile cut points (P = 5%, 

95%, and fold change = 5%, 50%, 95%) and no scales (Additional File 8-11). 
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4) In the fourth analysis (HardThresh), we considered statistically significant genes from 

each study to represent the results that would have been obtained if the typical approach 

based on hard thresholds and intersection of significant genes across studies outlined 

earlier was applied (Additional File 12-13). All genes with adjusted P-values < 0.1 or 

unadjusted P-values < 0.05 were deemed significant in each study and intersected to 

compare with the results from integRATE [49]. 

 

To test whether the analyses described above produced results different from what might occur at 

random, we performed a permutation test shuffling desirabilities for all 26,868 genes 1,000 

times. 

 

Results 

In total, our sPTB analyses integrated gene-based results from 10 omics studies (1 genomics, 4 

transcriptomics, 4 epigenomics, and 1 proteomics; Table 1) and included data sets ranging from 

422 genes [34] to 20,841 genes [38]. The null distribution generated by our random permutation 

test had mean desirability range from 0.056 to 0.062, with an average of 0.059 (95% CI [0.058, 

0.061]) (Fig. 3). 

 

iR-none. First, the software was run without any added cuts, weights, or scales, resulting in a list 

of 26,868 genes with data from one or more of the 10 omics studies (Additional File 2). 

Normalized desirabilities for these 26,868 genes ranged from 8.04E-16 to 0.46 (mean = 

0.08±0.05) (Fig. 3). Furthermore, 7,977 genes (29.7%) had desirabilities ≥ 0.1 corresponding to 

values equal to or higher than what would be achieved if a given gene achieved maximal 
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desirability in one study but was absent from all others. These top 7,977 genes were enriched for 

70 unique GO-Slim Biological Process categories, including pathways involved in metabolic 

processes, immunity, and signal transduction (Additional File 3) [50]. Additionally, 

15,285/26,868 (56.9%) genes achieved desirabilities greater than the permutation mean of 0.059. 

The top 10 genes (Fig. 4 and 5) had desirabilities ranging from 0.46 (CAPZB) to 0.38 (ACTN1) 

and were all represented in each of the 10 omics data sets analyzed. This analysis applied 

integRATE without cut points, allowing for a straightforward, linear transformation of data 

across all variables and studies. 

 

iR-num. We next applied cut points based on numerical values (Additional File 4). P-values 

such that values smaller than 0.0001 received the maximum desirability score of 1 and values 

larger than 0.1 received the minimum desirability score of 0. All P-values between 0.0001 and 

0.1 were transformed according to the dlow function. For dextreme functions, 4 cut points were 

assigned and we chose commonly used values of 0.5 and 1.5 (or their equivalents if the values 

were log transformed). Therefore, fold changes below -1.5 or above -1.5 (or below log2(1/3) or 

above log2(3)) received the maximum desirability score of 1 and fold changes between -0.5 and 

0.5 (or between log2(1/1.5) and log2(1.5)) received the minimum desirability score of 0. 

Intermediate values were transformed according to the dextreme function. This approach mirrors 

what was applied in a previous implementation of the desirability framework for omics data, and 

takes into account prior knowledge of typical P-value and fold change distributions [22]. While 

the top most desirable genes in iR-num appeared to be better candidates in each individual study 

(Additional File 7), using these cut points corresponding to standard significant P-value and fold 

change cut offs greatly reduced the number of desirable genes identified (Additional File 4). 
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Specifically, only 1,386/26,868 (5.1%) genes achieved desirabilities greater than the permutation 

mean of 0.059 and the top 10 most desirable genes were analyzed by only 4 or 5 studies instead 

of all 10 (Additional File 6). 

 

iR-per. Finally, we applied cut points based on percentiles (Additional File 8). P-values were cut 

such that those in the top 5% received the maximum desirability score of 1 and those in the 

bottom 5% received the minimum desirability score of 0, with all values in between transformed 

according to the dlow function. Fold changes were cut such that those in the top 5% and bottom 

5% received the maximum desirability score of 1 and those in the middle 50% received the 

minimum desirability score of 0, with all other values transformed according to the dextreme 

function. In this analysis, 16,604/26,868 (61.8%) genes achieved desirabilities greater than the 

permutation mean of 0.059. 

 

HardThresh. For comparison, we also manually selected candidate genes by imposing a hard 

threshold on P-value (P-value < 0.05 if unadjusted and P-value < 0.1 if adjusted) (Additional File 

12). After binning data into ‘significant’ gene lists, we intersected these lists to pull out genes 

that would have been identified simply by selecting the intersection of all significant genes. 

Although 18,727 genes were considered ‘significant’ in at least one study, no genes were 

identified as significant in all 10 studies. The top candidate gene (KIAA0040) was significant in 

6/10 studies and 15 other genes were identified in 5/10 studies (Additional File 13). Interestingly, 

none of these 16 genes appear in the top 10 of our most desirable candidates after integration 

and, even more generally, none are specifically discussed in any of the studies, either. 
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Using integRATE to identify the most desirable sPTB genes. In our sPTB pilot analyses, 

members of the annexin family (ANXA3, ANXA4 and ANXA9) appear in the top 10 most 

desirable candidate gene sets regardless of analysis approach (e.g., without cut points as well as 

with numerical and percentile cut points). This family is involved in calcium-dependent 

phospholipid binding and membrane-related exocytotic and endocytotic events, including 

endosome aggregation mediation (ANXA6). In a previous proteomic analysis, ANXA3 was found 

to be differentially expressed in cervicovaginal fluid 26-30 days before the eventual onset of 

sPTB as compared to before healthy, term deliveries [51]. Furthermore, members of the annexin 

family are known to be involved in coagulation (ANXA3, ANXA4). Coagulation has been 

previously suggested to be involved in PTB and, even though the mechanism of such 

involvement is still a mystery, it is interesting that several genes involved in coagulation or blood 

disorders appear in our top candidate lists [52]. In addition to ANXA3 and ANXA4, VWF (or Von 

Willebrand Factor) is a gene encoding a glycoprotein involved in homeostasis that has been 

found to be expressed significantly more in preterm infant serum as compared to term [53,54]. 

Finally, another highly desirable candidate, STOM, encodes an integral membrane protein that 

localizes to red blood cells, the loss of which has been linked to anemia [55]. These results 

suggest that the development of sPTB may be linked to homeostasis pathways. 

 

In addition to homeostasis and coagulation, another biological process represented across our 

results is actin regulation and muscle activity. The most notable gene associated with this 

biological process is CAPZB, which encodes part of an actin binding protein that regulates actin 

filament dynamics and stabilization and is present in the top 10 most desirable candidate gene 

list in all three analyses. Although CAPZB has never been linked to sPTB or other pregnancy 
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pathologies, its role in muscle function could be linked to myometrial and uterine contractions 

that, when they occur prematurely, might be directly involved in the development of sPTB 

[56,57]. Another one of our top candidates, ACTN1, is also involved in actin regulation and, even 

more interestingly, has also been linked to blood and bleeding disorders [58,59]. Finally, several 

other highly desirable genes identified in one or more of our integrative analyses include 

GPSM3, WDR1, and DYSF, are all involved in the development and regulation of muscle or in 

the pathogenesis of muscle-related diseases [60-62]. 

 

Even outside the top 10 most desirable genes across our integrative analyses, we found genes 

both previously identified as being involved in pregnancy or sPTB pathology as well as involved 

in pathways potentially relevant to sPTB (Additional File 2). For example, one gene falling just 

outside the top 10 most desirable candidates in all analyses is MMP9, a matrix metalloproteinase. 

Interestingly, MMP9 has been linked not only to sPTB, but also to PPROM and PE across a 

number of fetal and maternal tissues and at a variety of time points during pregnancy [63-67]. 

MMP9 gene expression has been observed as significantly higher during preterm labor than 

during term labor in maternal serum, placenta, and fetal membranes [68-70]. Even in the first 

trimester, levels of MMP9 in maternal serum were higher in PE cases than in healthy controls, 

suggesting that increased MMP9 protein expression is linked to the underlying inflammatory 

processes governing PE pathogenesis [66]. Finally, fetal plasma MMP9 concentration has been 

found to be significantly higher in fetuses with PPROM than in early and term deliveries with 

intact membranes, implicating MMP9 in the membrane rupture mechanism controlling early 

delivery due to membrane rupture [67]. We see similar evidence of MMP9 as a desirable sPTB 

candidate maintained across omics and tissue types in our integRATE analyses, raising the 
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hypothesis that its role in inflammation and extracellular matrix organization relates to sPTB 

even in the absence of PPROM or PE. 

 

Discussion 

By using desirability functions to rank genes within studies and combine results across studies, 

integRATE allows for the identification of candidate genes supported across experimental 

conditions and omics data types. This is especially important when heterogeneous sets of omics 

data, like those available for sPTB, where the statistical approaches developed for vertical or 

horizontal integration are challenging to apply. We have shown that integRATE can map any 

omics data to a common [0, 1] scale for linear integration and produce a list of the most desirable 

candidates according to their weight of evidence across available studies. These candidates then 

become promising targets for follow-up functional testing depending on where in the data their 

desirability signals come from. Analysis of 10 heterogeneous omics data sets on sPTB showed 

that the gene candidates identified using desirability functions appear to be much more broadly 

supported than those identified by the intersection of all significant genes across all studies and 

contain both genes that have been previously associated with sPTB as well as novel ones (Fig. 4 

and 5, Additional File 13).  

 

integRATE identifies both known and novel candidate genes associated with a complex disease, 

including ones that are not be among the top candidates in any single omics study but are 

consistently (i.e., across studies) recovered as significantly (or nearly significantly) associated. 

For example, genes that are significantly differentially expressed at an intermediate to high level 

across many studies will have high desirability scores. Furthermore, integRATE can identify 
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such genes across omics types, tissues, patient groups, and any other variable condition. 

Although integRATE allows for this kind of synergistic, desirability-based analysis, it is 

important to note that integRATE is not a statistical tool nor is it intended to be the end point of 

any analysis. Rather, it is a straightforward framework for the identification of well-supported 

candidate genes in any phenotype where true multi-omics data are unavailable and can also serve 

as a springboard for future functional analysis, an essential next-step in testing whether the 

candidates are actually involved in the biology of the disease or phenotype at hand. 

 

Importantly, there is no single principled strategy for the selection of cut points. In our sPTB 

analyses (iR-none, iR-num, and iR-per), we observed that the imposition of cut points 

corresponding to generally agreed upon values (e.g., P-value < 0.0001) has the potential to 

greatly affect the resulting gene prioritization. On this basis, we propose that desirability 

functions are best used to integrate highly heterogeneous omics data without imposed numerical 

cut points for P-values, fold changes, and other variables. Implemented this way, one can 

maximize the information from the analysis of each omics data set used in prioritizing candidate 

genes. But users may also have reasons to want to put more weight on data sets that are of higher 

quality or on data types that may be more informative. In such instances, the weight parameter 

can be used to reflect study quality instead of imposing cut points (e.g., studies that fail to 

achieve P-values as low as others in the integrative analysis can be weighted less to reflect 

potentially lower experimental quality). 

 

A recent GWAS analysis, the largest of its kind across pregnancy research, identified several 

candidate genes with SNPs linked to PTB [29]. This study linked EBF1, EEFSEC, and AGTR2 to 
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preterm birth and EBF1, EEFSEC, AGTR2, and WNT4 to gestational duration (with ADCY5 and 

RAP2C linked suggestively). By analyzing 43,568 women of European ancestry, this large study 

is the first to identify variants and genes that are statistically associated with sPTB. Interestingly, 

our integrative analysis identified EBF1 as a desirable candidate (doverall = 0.15 [top 3%] in iR-

none and doverall = 0.23 [top 1%] in iR-per), suggesting that this gene, in addition to GWAS, 

might also be functionally linked to sPTB pathogenesis across transcriptomics, epigenomics, and 

proteomics studies. Even when analyzing the 9 other omics studies without this GWAS data set, 

EBF1 still achieved a doverall score of 0.17, placing it in the top 2% of all genes (Additional File 

14). While our integrative analysis supports the identification of EBF1 as an interesting 

candidate gene for follow up, the lack of signal for any of the other GWAS-identified hits also 

reinforces the need to approach complex phenotypes like sPTB from a variety of omics 

perspectives, since sequenced-based changes may impact the phenotype in indirect and 

complicated functional ways. 

 

Conclusions 

Desirability-based data integration (and our integRATE software) is a solution most applicable in 

biological research areas where omics data is especially heterogeneous and sparse. Our approach 

combines information from all variables across all related studies to calculate the total weight of 

evidence for any given gene as a candidate involved in disease pathogenesis, for example. 

Although not a statistical approach, this method of data integration allows for the prioritization 

of candidate genes based on information from heterogeneous omics data even without known 

‘gold standard’ genes to test against and can be used to inform more targeted downstream 

functional analyses. 
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Abbreviations 

GWAS: genome-wide association study IUGR: intrauterine growth restriction PE: 

preeclampsia PPROM: premature rupture of membranes PTB: preterm birth sPTB: 

spontaneous preterm birth SNP: single nucleotide polymorphism 
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Supporting information 

 

Additional File 1. Results of meta-analysis to identify studies for integration. We outline the 

10 studies meeting all inclusion criteria for integrative analysis. Furthermore, we list the other 44 

studies that we identified through our literature search but we excluded from the data analysis as 

well as reasons for their exclusion. 

 

Additional File 2. All results from iR-none. All desirability scores across all variables in all 

studies as well as overall desirabilities and normalized overall desirabilities are presented. 

 

Additional File 3. GO-Slim gene set enrichment results. The PANTHER output for gene set 

functional enrichment is provided, including 37 statistically enriched biological pathways. 

 

Additional File 4. All results from iR-num. All desirability scores across all variables in all 

studies as well as overall desirabilities and normalized overall desirabilities are presented. 

 

Additional File 5. Results from iR-num. All genes in the analysis including numerical cut 

points were sorted from most desirable (rank = 1) to least desirable (rank = 26,869) and plotted 

according to their overall desirability scores. 

 

Additional File 6. Top 10 genes from iR-num by data type. Desirability scores for the top 10 

most desirable genes are plotted according to the type of omics analysis. 
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Additional File 7. Top 10 genes from iR-num by study. Desirability scores for the top 10 most 

desirable genes are plotted according to individual study. 

 

Additional File 8. All results from iR-per. All desirability scores across all variables in all 

studies as well as overall desirabilities and normalized overall desirabilities are presented. 

 

Additional File 9. Results from iR-per. All genes in the iR-per analysis were sorted from most 

desirable (rank = 1) to least desirable (rank = 26,869) and plotted according to their overall 

desirability scores. 

 

Additional File 10. Top 10 genes from iR-per by data type. Desirability scores for the top 10 

most desirable genes are plotted according to the type of omics analysis. 

 

Additional File 11. Top 10 genes from iR-per by study. Desirability scores for the top 10 most 

desirable genes are plotted according to individual study. 

 

Additional File 12. Raw data for manual overlap based on significance dichotomization. All 

18,727 genes identified as significant in at least 1 study and overlap across the entire data set. 

 

Additional File 13. Genes binned as significant in 4 or more omics studies. Upset plot 

showing intersections of significant genes across all 10 omics studies. 
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Additional File 14. All results without Zhang 2017. All desirability scores across all variables 

in all studies as well as overall desirabilities and normalized overall desirabilities are presented.  
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Figure legends 

 

Fig. 1. Selecting a data integration strategy depends on the structure of accessible multi-

omics data. (A, left) If multiple types of omics data (‘multi-omics’) are available for the same 

cohort of patients, vertical integrative analysis can be performed to combine information across 

data types. This integration can be achieved using a variety of multi-staged and meta-

dimensional statistical approaches that identify disease subtypes, regulatory networks, and driver 

genes. (A, right) If the opposite is true and a specific type of omics data is available across a 

number of different patient cohorts, horizontal meta-analysis can be performed to increase 

statistical power and identify disease-associated perturbations. (B) In some cases, however, 

experimental data are only available for different omics data types from different cohorts of 

patients and neither vertical nor horizontal data integration can be performed. In these situations, 

integration relies on mapping data to common units (e.g., genes or pathways) and then either 

integrating transformed data or simply overlapping candidate sets. The software approach 

presented here (integRATE) utilizes desirability functions to transform and integrate 

heterogeneous data allowing for the prioritization of candidate genes for functional analysis. 

 

Fig. 2. integRATE relies on three main steps to identify studies, integrate data, and rank 

candidate genes. (1) Relevant studies must first be identified for integration based on any 

number of features including, but not limited to: phenotype, experimental design, and data 

availability. (2) Data corresponding to all variables in each study are then transformed according 

to the appropriate desirability function. In this step, the user assigns a function based on whether 

low values are most desirable (dlow), high values are most desirable (dhigh), or extreme values are 
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most desirable (dextreme) and can customize the shape of the function with other variables like cut 

points (A, B, C), scales (s), and weights (w) to better reflect the data distributions or to align with 

user opinion regarding data quality and relevance. (3) These variable-based scores are integrated 

(dstudy) with a straightforward arithmetic mean (where weights can also be applied) to produce a 

single desirability score for each gene in each study containing information from all variables 

simultaneously. (4) Finally, study-based desirability scores are integrated to produce a single 

desirability score for each gene (doverall) that includes information from all variables in all studies 

and reflects its cumulative weight of evidence from each data set identified in step 1. These 

scores are normalized by the number of studies containing data for each gene and can be used to 

rank and prioritize candidate genes for follow up computational and, most importantly, 

functional analyses. 

 

Fig. 3. After integration, 7,977/26,868 genes were identified as highly desirable. All genes in 

the iR-none analysis were sorted from most desirable (rank = 1) to least desirable (rank = 

26,868) and plotted according to their overall desirability scores, ranging from 8.04E-16 to 0.46. 

Because this analysis included 10 omics studies, the normalized lower bound for our set of 

‘desirable’ candidate genes is 0.1 (blue line) and 7,977 genes achieved scores greater than or 

equal to that value. Furthermore, the results of our permutation test are plotted in pink, with a 

mean of 0.059 (95% CI [0.058, 0.061]). All desirability scores for the entire data set are available 

in Additional File 2 (and in Additional File 4 and 8 for iR-num and iR-per, respectively). 

 

Fig. 4. The top 10 most desirable genes have a wide range of desirabilities across data types. 

The top 10 genes in our analysis have overall desirabilities ranging from 0.38 (ACTN1) to 0.46 
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(CAPZB), but the dstudy values range, even when organized by data type. Some genes, like 

STOM, appear to be highly ranked not because of any extremely high dstudy value, but rather due 

to a lack of low dstudy values in any data type. In other words, this gene is likely not identified as 

particularly important in any individual study but shows a consensus of relatively strong 

evidence across all 10 studies. Contrastingly, other genes, like CAPZB, appear to be highly 

ranked due to one very high desirability score in a single data type (GWAS) that overpowers 

underwhelming evidence in other studies. 

 

Fig. 5. The top 10 most desirable genes also show a large discrepancy in their percentile 

ranks across studies. After ranking the genes in each study by desirability and calculating their 

percentiles based on the number of unique ranks, the top 10 most desirable genes appear to show 

even greater variability in relative ranking across not just data type, but individual studies. All 10 

genes are in the top 25% of the (smaller) proteomics study, but their relative rankings vary 

significantly in all other studies. Furthermore, while none of the genes are in the top 25% of the 

GWAS study (Zhang 2017), other studies, like one of the transcriptomics analyses (Mayor-Lynn 

2011), show a large range in relative rankings, with certain highly desirable genes ranked very 

high and others ranked very low. 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 17, 2018. ; https://doi.org/10.1101/302612doi: bioRxiv preprint 

https://doi.org/10.1101/302612
http://creativecommons.org/licenses/by-nc/4.0/


integration methods
multi-staged

genomic variation analysis
domain knowledge-guided analysis

meta-dimensional
concatenation-based integration
transformation-based integration

model-based integration

HORIZONTAL

experiments samples

genomics

genomics

genomics

genomics

genomics

A. VERTICAL

experiments samples

genomics

transcriptomics

proteomics

metabolomics

epigenomics

B.

integration methods
alternative

candidate gene overlap
pathway analysis

bayesian network analysis
machine learning
rank aggregation

desirability

NEITHER

experiments samples

genomics

transcriptomics

proteomics

metabolomics

epigenomics

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 17, 2018. ; https://doi.org/10.1101/302612doi: bioRxiv preprint 

https://doi.org/10.1101/302612
http://creativecommons.org/licenses/by-nc/4.0/


dstudy =

{low = 

1 Y < A

Y > B

A ≤ Y ≤ B
sY - B

A - B[ [

0

p-value
de

sir
ab

ilit
y

0
1

0 1

{high = 

1 Y > B

Y < A

A ≤ Y ≤ B
sY - A

B - A[ [

0

mean expression

de
sir

ab
ilit

y
0

1

0 100

{extremes = 

0 else

A ≤ Y ≤ C

C ≤ Y ≤ B

Y - A
C - A

s[ [
sY - B

C - B[ [

fold change

de
sir

ab
ilit

y
0

1

-10 10

dvariable1

dvariable2

dvariable3

study 1

study n

study 2

study 3

...

1

2

4

∑    w di

N

N

doverall =
no. studies

missing data

3

i=1

i ∑    w dstudy j

K

K

j=1

j

+1

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 17, 2018. ; https://doi.org/10.1101/302612doi: bioRxiv preprint 

https://doi.org/10.1101/302612
http://creativecommons.org/licenses/by-nc/4.0/


.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 17, 2018. ; https://doi.org/10.1101/302612doi: bioRxiv preprint 

https://doi.org/10.1101/302612
http://creativecommons.org/licenses/by-nc/4.0/


0.00

0.25

0.50

0.75

1.00

1
 CAPZB

2
 GPSM3

3
 VWF

4
 GNAI2

5
 STOM

6
 DYSF

7
 ANXA3

8
 ANXA4

9
 WDR1

10
 ACTN1

Gene Rank and Identity

D
es

ira
bi

lit
y 

Sc
or

e

Genomics

Transcriptomics

Epigenomics

Proteomics

Overall

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 17, 2018. ; https://doi.org/10.1101/302612doi: bioRxiv preprint 

https://doi.org/10.1101/302612
http://creativecommons.org/licenses/by-nc/4.0/


0%

20%

40%

60%

1
 CAPZB

2
 GPSM3

3
 VWF

4
 GNAI2

5
 STOM

6
 DYSF

7
 ANXA3

8
 ANXA4

9
 WDR1

10
 ACTN1

Gene Rank and Identity

R
el

at
ive

 R
an

k 
(P

er
ce

nt
ile

)

Zhang2017 (Genomics)

Ackerman2015 (Transcriptomics)

Heng2014 (Transcriptomics)

Chim2012 (Transcriptomics)

MayorLynn2011 (Transcriptomics)

deGoede2017 (Epigenomics)

Fernando2015 (Epigenomics)

Parets2015 (Epigenomics)

Cruickshank2013 (Epigenomics)

Heng2015 (Proteomics)

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 17, 2018. ; https://doi.org/10.1101/302612doi: bioRxiv preprint 

https://doi.org/10.1101/302612
http://creativecommons.org/licenses/by-nc/4.0/

	P1PDepartment of Biological Sciences, Vanderbilt University, Nashville, TN, USA
	P2PDepartment of Biochemistry, Purdue University, West Lafayette, IN, USA
	P3PDepartment of Biomedical Informatics, Vanderbilt University, Nashville, TN, USA
	P4PVanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
	Running head: Desirability-based data integration for heterogeneous omics
	Abstract
	Design
	Variable Transformation
	Variable Integration
	Study Integration
	Software
	Implementation
	Study Identification
	Table 1. The 10 sPTB omics data sets identified for desirability-based integration.
	Data Transformation
	Application of integRATE
	Results
	Discussion
	Declarations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	References
	Supporting information
	Additional File 14. All results without Zhang 2017. All desirability scores across all variables in all studies as well as overall desirabilities and normalized overall desirabilities are presented.
	Figure legends

