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Abstract 

Transcription factors bind complex regulatory DNA sequence patterns in a combinatorial manner to modulate 

gene expression. Deep neural networks (DNNs) can learn these cis-regulatory grammars encoded in regulatory 

DNA sequences associated with transcription factor binding and chromatin accessibility. Several feature 

attribution methods have been developed for estimating the predictive importance of individual features 

(nucleotides or motifs) in any input DNA sequence to its associated output prediction from a DNN model. 

However, these methods do not reveal higher-order, epistatic feature interactions encoded by the models. We 

present a new method called Deep Feature Interaction Maps (DFIM) to efficiently estimate interactions between 

all pairs of features in any input DNA sequence. DFIM accurately identifies ground truth motif interactions 

embedded in simulated regulatory DNA sequences. DFIM identifies synergistic interactions between GATA1 

and TAL1 motifs from in vivo TF binding models. DFIM reveals epistatic interactions involving nucleotides 

flanking the core motif of the Cbf1 TF in yeast from in vitro TF binding models. We also apply DFIM to 

regulatory sequence models of in vivo chromatin accessibility to reveal interactions between regulatory genetic 

variants and proximal motifs of target TFs as validated by TF binding quantitative trait loci. Our approach 

makes significant strides in improving the interpretability of deep learning models for genomics. 
  

1. Introduction 

 

Genome-wide biochemical profiling experiments have revealed millions of putative regulatory elements in 

diverse cell states. These massive datasets have spurred the development of deep neural network (DNN) models 

to predict cell-type specific or context-specific molecular phenotypes such as TF binding, chromatin 

accessibility and gene expression from DNA sequence1–3. Beyond high prediction accuracy, the primary appeal 

of DNNs is that they are capable of learning predictive sequence features and modeling non-linear feature 

interactions directly from raw DNA sequence without any prior assumptions. Hence, interpreting these 

purported black box models could reveal novel insights into the combinatorial regulatory code. 

 

Advances in feature attribution methods for DNNs have enabled the identification of predictive cis-regulatory 

patterns in DNA sequences used as input to the models. Feature attribution methods estimate the contribution 

(or importance) of features, such as individual nucleotides or contiguous subsequences (e.g. motifs), in an input 

DNA sequence to a model’s output prediction. A perturbation-based, forward-propagation approach known as 

in-silico mutagenesis (ISM) quantifies the importance of a nucleotide in an input DNA sequence as the maximal 

change in the output prediction from the DNN model when the observed nucleotide (e.g. a G) at that position is 

mutated to any of the alternative bases (e.g. A, C or T). ISM has been used to score the effects of genetic 

variants in regulatory DNA sequences1–3. However, ISM is computationally inefficient since each perturbation 

at every position in an input sequence requires a separate forward propagation to the output through the 

network. ISM also fails to highlight important features masked by saturation due to buffering interactions with 

other features (e.g. multiple motif instances in a sequence that buffer each other) 4. SHAP is a perturbation-

based feature attribution method that borrows from game theory5. Max-Ent is a feature attribution method that 

uses a Markov chain Monte Carlo algorithm to find the maximum-entropy distribution of inputs that produced a 

similar hidden representation to the chosen input6. While SHAP and Max-Ent show improved sensitivity and 

specificity relative to ISM, they do not scale efficiently to comprehensively characterize feature importance 

across millions of regulatory sequences. An alternative family of computationally efficient backpropagation 

approaches decompose the output prediction corresponding to an input sequence by recursively propagating 

contribution scores through the layers of the DNN from the output to the input. One single backpropagation 

pass provides the contribution of all nucleotides in an input DNA sequence to the output prediction. The 

gradient of the output with respect to each nucleotide in the input DNA sequence – known as a saliency map 7 – 
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is one such estimate of importance and has been used to identify predictive nucleotides in regulatory DNA 

sequences. Other related approaches such as DeepLIFT 4 and integrated gradients 8 differ in the definition of the 

importance score that is backpropagated and provide improved sensitivity in the presence of saturation effects. 

DeepLIFT 4 has also been shown to be an efficient approximation of SHAP scores 5.  

 

Current feature attribution methods only provide the importance of individual features. They do not highlight 

predictive, higher-order feature interactions that are encoded in the DNN model. Perturbation-based approaches 

such as ISM cannot scale to comprehensively score all pairwise and higher-order interactions between 

nucleotides or subsequence features. Recently, an efficient algorithm was proposed to calculate SHAP-based 

pairwise feature interaction scores9 specifically from tree-based ensemble models. However, computing SHAP 

interactions from neural network models between all pairs of features in regulatory DNA sequences is 

computationally inefficient (Section 2.6) and cannot scale to reveal comprehensive interaction maps across 

millions of regulatory sequences.  

 

Here, we present an efficient approach called Deep Feature Interaction Maps (DFIM) to estimate pairwise 

interactions between features (nucleotides or subsequences) in an input DNA sequence mapped to an associated 

regulatory phenotype by a neural network. We define a novel Feature Interaction Score (FIS) between any pair 

of features (source feature and target feature) in an input DNA sequence as the change in the importance score 

of the target feature when the source feature is perturbed, while keeping all the other features in the sequence 

intact. By leveraging efficient backpropagation-based feature attribution methods, we can efficiently compute 

FIS between all pairs of nucleotides or predictive motifs across large sets of input DNA sequence. Aggregate 

summary statistics of the pairwise Feature Interaction Score across multiple sequences provide insights into 

common, shared patterns of feature interactions. We benchmark DFIM in controlled simulations that explicitly 

encode motif interactions. We use DFIM to reveal synergistic interactions between GATA1 and TAL1 motifs 

from in vivo TF binding models. We apply DFIM to reveal epistatic interactions involving nucleotides flanking 

the core motif of the Cbf1 TF in yeast from in vitro TF binding models. We also apply DFIM to regulatory 

sequence models of in vivo chromatin accessibility to reveal interactions between regulatory genetic variants 

and proximal motifs of target TFs as validated by TF binding quantitative trait loci. 

 

 
Figure 1. Deep Feature Interaction Maps: The DFIM, illustrated in 6 steps, quantifies the maximal Feature Interaction Score (FIS) of 

every position in a sequence with all other positions. 
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2. Methods 

 

We assume that we have trained a deep neural network to accurately map one-hot encoded DNA sequences 𝑋 of 

length 𝐿 to a categorical (binary or multiclass classification) or continuous (regression) output 𝑂. Let 𝑌 refer to 

the scalar predicted output 𝑂 from the neural network for regression tasks. For classification tasks, let 𝑌 refer to 

the scalar input to the final output sigmoid of the neural network. 

 

2.1 Nucleotide-resolution Feature Interaction Score (FIS): We are given a one-hot encoded input DNA 

sequence 𝑋0 ∈ {0,1}{4 x L} i.e. a matrix of size [4, 𝐿] such that 𝑋0[𝑏, 𝑝] = 1 for the observed nucleotide 𝑏 ∈
{𝐴, 𝐶, 𝐺, 𝑇} at position 𝑝 ∈ [1, 𝐿] (Fig. 1). 

 

First, we compute 𝐶𝑋0
 a matrix of size [4, 𝐿] that contains the importance (or contribution) of every nucleotide 

(rows) at each position in the sequence (Fig. 1(Step 1)). While our approach extends to any other efficient 

feature attribution method, for the analyses in this paper, we show results using both DeepLIFT 4 and gradient 

saliency maps as importance scores7. In gradient-based saliency maps, for a specific input sequence 𝑋0, the 

output 𝑌0 can be approximated by a first-order Taylor expansion 𝑌0 ≈  ∑ 𝑤0[𝑏, 𝑝]𝑝,𝑏 . 𝑋0[𝑏, 𝑝] where 𝑤0 is the 

partial derivative (gradient) of 𝑌 with respect to the input sequence variable 𝑋 evaluated at 𝑋0 i.e. 𝑤0 =

 
𝜕𝑌

𝜕𝑋
 | 𝑋0. It is worth noting that the entire gradient matrix 𝑤0 can be computed efficiently in one 

backpropagation pass. We then perform a point-wise multiplication of the gradient matrix 𝑤𝑜 with the one-hot 

encoded observed input sequence 𝑋0 to obtain the importance scores for the observed nucleotides 𝑏 at each 

position 𝑝 i.e. 𝐶𝑋0
[𝑏, 𝑝] =  𝑤0[𝑏, 𝑝]. 𝑋0[𝑏, 𝑝]. Only the observed nucleotides at each position can have non-zero 

values. DeepLIFT contribution scores quantify the sensitivity of the output to finite changes in the input4. 

This is in contrast to gradients, which measure the sensitivity of the output to infinitesimal changes in the input. 

Specifically, the DeepLIFT algorithm backpropagates a score (analogous to gradients) which is based on 

comparing the activations of all the neurons in the network for the actual input sequence 𝑋0 to those obtained 

when using neutral ‘reference’ sequences4. We use dinucleotide-shuffled versions of 𝑋0 as reference sequences 

unless otherwise specified.  

 

Our goal is to query the neural network to estimate the interaction between the observed nucleotide at one 

position in the sequence (source feature) and the observed nucleotide at some other position (target feature) in 

the sequence. Let (𝜶, 𝒔) represent the source feature i.e. the observed source nucleotide 𝛼 ∈ {𝐴, 𝐶, 𝐺, 𝑇} at a 

source position 𝑠 such that 𝑋0(𝛼, 𝑠) = 1. Let (𝜷, 𝒕) represent the target feature i.e. observed target nucleotide 

𝛽 ∈ {𝐴, 𝐶, 𝐺, 𝑇} at some target position 𝑡 such that 𝑋0(𝛽, 𝑡) = 1.  

 

Intuitively, we define the Feature Interaction Score 𝐹𝐼𝑆𝑋0
( (𝛽, 𝑡) | (𝛼, 𝛾, 𝑠) ) of the target feature on the 

source feature as the change in the importance score of the target feature (𝛽, 𝑡) when the source feature (𝛼, 𝑠) is 

mutated to a different nucleotide (𝛾, 𝑠). To compute FIS, we create a new mutated sequence 𝑿𝟎
′  from 𝑋0 where 

we switch the observed nucleotide 𝛼 at source position 𝑠 to a different mutant nucleotide 𝛾 ∈ {𝐴, 𝐶, 𝐺, 𝑇} − {𝛼}, 

while keeping the nucleotides at all other positions as they were in 𝑋0 (Fig. 1(Step 2)). We then compute the 

importance matrix 𝐶𝑋
0′

 for 𝑋0
′  as we did for 𝑋0 (Fig. 1(Step 3)]. The 𝐹𝐼𝑆 of the target feature with the source 

feature is defined as  

 

𝐹𝐼𝑆𝑋0
( (𝛽, 𝑡) | (𝛼, 𝛾, 𝑠) ) = 𝐶𝑋0

[𝛽, 𝑡] − 𝐶𝑋0
′ [𝛽, 𝑡] 

 

Since, only two backpropagation passes are required to compute 𝐶𝑋0
[, 𝑡] and 𝐶𝑋0

′ [, 𝑡] for all 𝑡 ∈ [1, 𝐿], we can 

efficiently compute the 𝐹𝐼𝑆 of all target features 𝐹𝐼𝑆𝑋0
( ∗ | (𝛼, 𝛾, 𝑠) ) in a sequence with a specific source 

feature mutation (Fig. 1(Step 4)). Note that the 𝐹𝐼𝑆 is a directional interaction score of the target with the 

source. In some cases, we may only be interested in the magnitude of the score rather than its sign. In such 

cases, we use the absolute value of the 𝑭𝑰𝑺.  
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We define the maximal Feature Interaction Score (𝒎𝒂𝒙𝑭𝑰𝑺) of the target feature with the source feature as 

the maximal 𝐹𝐼𝑆 marginalized over all possible values of the mutant nucleotide 𝛾 at the source feature (𝛼, 𝑠) i.e 

𝑚𝑎𝑥𝐹𝐼𝑆𝑋0
( (𝛽, 𝑡) | (𝛼, 𝑠) ) = 𝑚𝑎𝑥𝛾(𝐹𝐼𝑆𝑋0

( (𝛽, 𝑡) | (𝛼, 𝛾, 𝑠) ) (Fig. 1(Step 5)). 

 

A nucleotide-resolution Deep Feature Interaction Map (DFIM) summarizes the 𝑚𝑎𝑥𝐹𝐼𝑆 scores for all pairs 

of source and target features in an input DNA sequence (Fig. 1(Step 6)). 

 

2.2 Aggregate statistics of nucleotide-resolution FIS over multiple input sequences: In order to analyze the 

prevalence of the 𝐹𝐼𝑆 between a source position 𝑠 and target position 𝑡 across a collection of input sequences 

𝑋𝑖, we first identify the subset of sequences 𝑆 = {𝑋𝑖} that have identical source nucleotides at the source 

position and identical target nucleotides at the target position i.e ∀ 𝑋𝑖,𝑋𝑗 ∈ 𝑆,   𝑋𝑖[𝛼, 𝑠]  = 𝑋𝑗[𝛼, 𝑠] =

1 𝐴𝑁𝐷  𝑋𝑖[𝛽, 𝑡]  = 𝑋𝑗[𝛽, 𝑡] = 1. We then compute aggregate statistics such as the mean of the FIS or absolute 

FIS corresponding to each ( (𝛽, 𝑡) | (𝛼, 𝛾, 𝑠) ) over all sequences in the subset 𝑆. (See Fig. 8 as an example). 

 

2.3 Motif-resolution Feature Interaction Score: We are often interested in the FIS of a specific target motif 

{ ( 𝛽𝑝,𝑡𝑝), … , (𝛽𝑞, 𝑡𝑞) } i.e. a specific subsequence of nucleotides {𝛽𝑝 … 𝛽𝑞} at a specific subset of contiguous 

target positions {𝑡𝑝 … 𝑡𝑞} with a source nucleotide-resolution feature (𝛼, 𝑠) (i.e. specific source nucleotide at 

specific source position) such as a regulatory single nucleotide variant (SNV). In such a case, we compute the 

𝐹𝐼𝑆 of a target motif with a source nucleotide feature as the difference of the sum of importance scores across 

all target nucleotides { ( 𝛽𝑝,𝑡𝑝), … , (𝛽𝑞, 𝑡𝑞) } in the target motif in the original sequence 𝑋0 and the mutated 

sequence 𝑋0
′  (obtained by mutating (𝛼, 𝑠) in 𝑋0 to {𝛾, 𝑠)). 

 

𝐹𝐼𝑆𝑋0
( ( {𝛽𝑝 … 𝛽𝑞}, {𝑡𝑝 … 𝑡𝑞} ) | (𝛼, 𝛾, 𝑠) ) =  ∑ 𝐶𝑋0

[𝛽, 𝑡]

(𝛽,𝑡) ∈ { ( 𝛽𝑝,𝑡𝑝),…,(𝛽𝑞,𝑡𝑞) }

− ∑ 𝐶𝑋0
′ [𝛽, 𝑡]

(𝛽,𝑡) ∈ { ( 𝛽𝑝,𝑡𝑝),…,(𝛽𝑞,𝑡𝑞) }

  

 

To compute the 𝐹𝐼𝑆 of a target motif { ( 𝛽𝑝,𝑡𝑝), … , (𝛽𝑞 , 𝑡𝑞) } with a source motif { ( 𝛼𝑘,𝑠𝑘), … , (𝛼𝑙, 𝑠𝑙) }  (See 

Fig. 3 as an example), we use a different source mutation method. One option would be use the maximal 𝐹𝐼𝑆 of 

the target motif over all possible single nucleotide mutations of each position in the source motif. However, this 

procedure is computationally infeasible for long motifs. We instead, generate one mutant sequence, where we 

mutate the one-hot encoding (where rows 1-4 correspond to A,C,G,T) of all positions {𝑠𝑘 … 𝑠𝑙} in the source 

motif to the expected background GC nucleotide frequency 𝑓𝐺𝐶  i.e. the mutant sequence 𝑋0
′  has 𝑋0

′ [(2,3), 𝑠] =
𝑓𝐺𝐶

2
 , 𝑋0

′ [(1,4), 𝑠] =
1−𝑓𝐺𝐶

2
 ∀ 𝑠 ∈ {𝑠𝑘 … 𝑠𝑙}. The 𝐹𝐼𝑆 of the target motif with the source motif is once again the 

difference of the sum of importance scores across all target nucleotides { ( 𝛽𝑝,𝑡𝑝), … , (𝛽𝑞, 𝑡𝑞) } in the target 

motif feature between the original sequence 𝑋0 and the mutated sequence 𝑋0
′   

 

𝐹𝐼𝑆𝑋0
( ( {𝛽𝑝 … 𝛽𝑞}, {𝑡𝑝 … 𝑡𝑞} ) |  ({𝛼𝑘 … 𝛼𝑙}, 𝑓𝐺𝐶 , {𝑠𝑘 … 𝑠𝑙})   

=  ∑ 𝐶𝑋0
[𝛽, 𝑡]

(𝛽,𝑡) ∈ { ( 𝛽𝑝,𝑡𝑝),…,(𝛽𝑞,𝑡𝑞) }

− ∑ 𝐶𝑋0
′ [𝛽, 𝑡]

(𝛽,𝑡) ∈ { ( 𝛽𝑝,𝑡𝑝),…,(𝛽𝑞,𝑡𝑞) }

 

 

2.4 Statistical significance of FIS: Given a continuous distribution of 𝐹𝐼𝑆, across a collection of input 

sequences, we define statistically significant interactions based on an empirical null distribution of scores from 

dinucleotide shuffled versions of the input sequences. For each dinucleotide shuffled input sequence, we 

compute 𝐹𝐼𝑆 for all nucleotide pairs. We fit a Gaussian distribution to this null empirical distribution of 𝐹𝐼𝑆 

scores. 𝐹𝐼𝑆 values passing a p-value of 0.05 with respect to this null distribution are considered statistically 

significant. We use the Benjamini-Hochberg procedure for multiple hypothesis correction. SFig. 1 (bottom 

row) demonstrates how the null model can be used to identify responding motifs in the context of a longer 

sequence. 
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2.5 Comparison of DFIM to SHAP Interaction Scores and pairwise ISM interaction scores: For an input 

sequence with 𝐹  features (nucleotides/motifs), SHAP interaction scores scale quadratically to compute all 

pairwise interactions giving a complexity of 𝑂(𝐹2)9. A pairwise ISM-based interaction score (Supp. Methods), 

defined as the difference between the ISM score obtained by jointly mutating two features and the sum of the 

ISM scores of individual features, also has a complexity of 𝑂(𝐹2). For DFIM, we require one backpropagation 

pass to obtain importance scores for the original sequence. Then for each of the 𝐹 source features, we need one 

more backpropagation pass to obtain 𝐹𝐼𝑆 of that source with ALL target features. Thus, DFIM exhibits a 

complexity of 𝑂(𝐹) scaling linearly in the number of features. Our proposed FIS is essentially an efficient 

approximation of SHAP interaction scores. Further, in contrast to SHAP interaction scores and pairwise ISM 

interaction scores which are necessarily symmetric over the source and target, FIS is directional and can produce 

asymmetric interaction scores.   

 

3. Results 
 

3.1 Benchmarking FIS on ground-truth motif interactions embedded in simulated data 

 

 

Figure 2A: The simulation set up where positives must detect an 

interaction and find both ELF1 and SIX5 present in the sequence. 

 

Figure 2B: ELF1 and SIX5 motifs, required together for a 

positive prediction, are the only pair of motifs with significant 

Feature Interaction Score as expected. 

 

To benchmark 𝐹𝐼𝑆, we simulated 60K random DNA sequences (0.46 G/C frequency) of length 200 bp. We 

divided these into 3 sets of 20K sequences. We randomly embedded 1 or 2 instances of the ELF1 motif (using 

the highest affinity sequence from Position Weight Matrix 10) in the sequences in Set 1, 1 or 2 instances of the 

SIX5 motif 10 in Set 2 and 1 or 2 instances of both ELF1 and SIX5 motifs in Set 3. We further independently 

embedded 0 or 1 instances of the AP1 and TAL1 motifs in a random subset of sequences across all 3 sets10 

(Supp. Methods). We then set up a binary classification task where all sequences in Set 3 (ELF1 and SIX5) 

were labeled as positive and all other sequences from Sets 1 and 2 were labeled as negatives (Fig. 2A). We 

trained a Convolutional Neural Network (CNN) with one convolutional and one dense layer (Supp. Methods.). 

We achieved 100% classification accuracy on held out validation set of sequences indicating the model had 

learned the necessary interaction between ELF1 and SIX5. We computed motif-resolution 𝐹𝐼𝑆 (Section 2.3) for 

all pairs of embedded motif instances (SIX5, ELF1, AP1 and TAL1) for all sequences in the positive class (i.e. 

Set 3). We used DeepLIFT with a fixed GC reference for computing importance scores since the underlying 

sequences were generated using a fixed GC background. Only pairs of SIX5 and ELF1 motifs (positive control) 

showed strong 𝐹𝐼𝑆 (Fig. 2B, green distribution), compared to all other pairs of motifs (negative controls) 

demonstrating that 𝐹𝐼𝑆 can effectively discriminate ground truth interactions learned by a neural network. We 

further assessed the significance of these interactions using a empirical null distribution from dinucleotide 

shuffled sequences (Section 2.4) and found that the vast majority of true ELF1-SIX5 interactions have 

significant (p < 0.05) p-values, even after multiple hypothesis correction. None of the other motif pairs show 

statistically significant interactions (SFig. 2A,B). The results are replicated using gradient saliency maps as 

importance scores (SFig. 2C,D). 
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3.2 Uncovering epistatic motif interactions of co-binding TFs from CNN models of in vivo TF binding 

 

 

 
Figure 3A: The source GATA motif is mutated and the target TAL1 motif responds 

with a strong reduction in importance (high FIS). TAL1 is not predictive without 

GATA present, indicating an interaction between the two features. 

Figure 3B: GATA1 mutations primarily affect TAL1 

summits within 20bp compared to all greater distances, 

which is corroborated by a known interaction between the 

two factors in K562 cells. 

 

We analyzed CNN models of in vivo TF binding to investigate epistatic interactions between motifs of co-

binding TFs. We trained a multi-task CNN model to classify 1 kbp sequences centered at GATA1, GATA2 and 

TAL1 ENCODE ChIP-seq peaks (positive class) in erythroid K562 cells from all other chromatin accessible 

DNase-seq peaks in K562 (negative class) 11. The CNN model with 5 convolutional layers (25 convolutions, 

size 10), a max pooling layer (size 25) and a sigmoid activation (Supp. Methods), achieved mean auROC of 

0.953 and mean auPRC of 0.459 across all three tasks on held-out test set. Next, we identified all matches to the 

known motifs of GATA1 and TAL1 in all ChIP-seq peak sequences (Supp. Methods). We then computed motif-

resolution 𝐹𝐼𝑆 (using DeepLIFT with shuffled reference as importance scores) for all pairs of GATA1, TAL1 

motif instances across all sequences using GATA1 as the source motif. We observed several instances with 

strong 𝐹𝐼𝑆 between proximal GATA1 and TAL1 motifs which corroborates their experimentally validated co-

binding interactions12 (Fig. 3A). To understand the relationship between the distance between motif instances 

and their interaction scores, we binned GATA1 and TAL1 motif pairs into 4 distance bins - within 20bp 

(n=13,004), 20-50bp (n=18,898), 50-100bp (n=28,684), and 100-200bp (n=21,1154). We compared the 

distribution of 𝐹𝐼𝑆 for the motif pairs across the bins. As expected, TAL1 and GATA1 motifs in close 

proximity (<20 bp) showed statistically significant higher interaction scores than all three other bins (p<1e-16, 

Mann Whitney test for all 3 comparisons) (Fig. 3B). However, interestingly, we observed some strong long-

range interactions between motifs as far as 70 bp apart (Fig. 3B), an observation corroborated by a recent 

analysis of SNP effects on TAL1 ChIP-seq signal in erythroid cells that found that GATA1 motif mutations 

impact TAL1 binding at distances as great as 75 bp13. The interactions were also symmetric, such that mutating 

TAL1 demonstrated a distribution of 𝐹𝐼𝑆 on GATA1 (SFig. 4).    
 

3.3 Discovering interactions between regulatory variants and their target TF motifs from CNN models of 

in vivo chromatin accessibility  

 

DNNs mapping regulatory DNA sequences to TF binding and chromatin accessibility have been previously 

used to score the predicted in-silico allelic effects of putative regulatory genetic variants based on ISM1–3. Here, 

we instead use 𝐹𝐼𝑆 to investigate an orthogonal question – What proximal sequence features are affected by 

(interact with) regulatory genetic variants? Tehranchi et al. developed a pooling-based approach to identify 

thousands of SNVs that have allelic effects on TF binding (as measured by ChIP-seq) across a large collection 

of genotyped lymphoblastoid human cell-lines14. They provide coordinates, effect sizes, reference/alternative 

alleles and the allele with stronger binding for statistically significant binding QTLs (bQTLs) and non-
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significant background SNVs in ChIP-seq peaks for JUND, NFKB, SPI1, STAT1 and POU2F1. This dataset 

provides an excellent resource to investigate the feature interactions of bQTLs. Further, we wondered if we 

could discover bQTL feature interactions for different TFs from a single DNN model trained to predict 

chromatin accessibility (instead of TF binding) from sequence. 

 

Figure 4: Many bQTLs fall directly in important features, visibly disrupting known binding domains and demonstrating strong Feature Interaction 

Score with surrounding sequence. We observe bQTLs both create and disrupt predictive motifs. For both bQTLs shown, the G allele is found in 

the stronger feature and also the measured stronger binding allele in Tehranchi et al. 

 

Hence, we trained a multi-task (18 tasks) CNN model to map 1kbp length DNA sequences to binary chromatin 

accessibility profiles across 16 primary hematopoietic cell types (with ATAC-seq data) and 2 ENCODE cell-

lines (with DNase-seq data) including the GM12878 lymphoblastoid cell-line (LCL) (Supp. Methods). The 

model achieved high performance on the test set (average auPRC = 0.69, auROC=0.91). We used the LCL task 

to investigate bQTL feature interactions using 𝐹𝐼𝑆 (DeepLIFT with shuffled reference as importance score). We 

restricted our analysis to the statistically significant (allelic binding p<5e-05 as recommended by Tehranchi et 

al.) bQTLs that overlapped the DNase-seq peaks in GM12878. 

 

 
 

Figure 5A: Many binding QTLs fall directly in the canonical binding 

site of the transcription factor as determined through importance scores 

in our model. This JUND bQTL (p=1.71e-140) on chromosome 22 has 

a visible effect on the importance of the surrounding motif. Top: 

Sequence importance scores before mutation, after mutation, FIS and 

significant FIS only. Bottom: DFIM showing dependency structure of 

sequence with bQTL at position 15. 

Figure 5B: Many binding QTLs fall directly in the canonical binding 

site of the transcription factor as determined through importance scores 

in our model. This SPI1 bQTL (p=3.13e-12) on chromosome 1 falls in 

the flank of a weak affinity site with a poor match to the canonical SPI1 

motif. Top: Sequence importance scores before mutation, after 

mutation, FIS and significant FIS only. Bottom: DFIM showing 

dependency structure of sequence with bQTL at position 15. 
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To understand proximal interactions, for each bQTL, we used 𝐹𝐼𝑆 to estimate the effect of mutating the 

reference allele to all alternate alleles at the source QTL on every target nucleotide +/- 15 bp around the QTL. 

First, we observed strong positive (Fig. 4-left) and negative (Fig. 4-right) interactions of bQTLs with 

nucleotides of overlapping target TF motifs. The direction of the allelic effect (stronger or weaker ChIP-seq 

signal) of the reference and alternate bQTL alleles on TF binding also matched the predicted direction of 

change (stronger or weaker motif score) E.g. A significant JUND bQTL at chr22:42925130 falls in a high 

affinity JUND binding motif (Fig. 5A). The reference A allele has higher binding than the alternative G allele 

with p-value 1.71e-140 in the Tehranchi et al. study. 𝐹𝐼𝑆 predicts that the G allele (weaker allelic binding) but 

not the A allele (stronger allelic binding) will destroy the importance of the entire JUND motif. 

  

 
 

Figure 6A: Maximum absolute FIS (y-axis) as a 

function of distance between SPI1 bQTL and 

maximally interacting nucleotide within 1 kbp of the 

bQTL.  

Figure 6B: We observe features at longer distances can also be affected by binding 

QTLs. We see RUNX1 and SPI1 interact and a mutation disrupting the canonical SPI1 

binding site results in a significantly decreased importance score for the RUNX motif 

40bp away. 

 

Next, we also found several TF-bQTLs in the flanking nucleotides of weak affinity motif matches of the target 

TF having significant interaction effects with the entire motif. E.g. a significant SPI1 bQTL at chr1:94169843 

has reference allele T (with stronger binding) and alternate allele C. The bQTL is in the flanking nucleotides of 

a low affinity SPI1 site where only the core “GGAA” matches the canonical motif. 𝐹𝐼𝑆 predicts that the C allele 

(weaker binding) destroys the importance scores of the core GGAA element (Fig. 5B, Top). Tehranchi et al. 

and several other studies have reported that a large fraction (70-90%) of QTLs do not overlap high affinity 

instances of canonical TF motifs. We hypothesize that several of QTLs may be affecting flanking nucleotides of 

weak affinity matches of TF motifs. Finally, while most bQTLs with statistically significant 𝐹𝐼𝑆 exhibit the 

maximal absolute interaction with other nucleotides within 10 bp of the bQTL, we also observe strong and 

significant longer-range interactions at distances ranging from 20-200 bp (Fig. 6A). E.g. An SPI1 bQTL has a 

significant interaction with a proximal SP1 motif but also a strong interaction with a RUNX1 motif 20 bp away 

(Fig. 6B). SPI1 QTLs were also found to affect motifs 100s of base pairs away (SFig. 5). 
 

As a negative control, for each TF, we also evaluated the 𝐹𝐼𝑆 of a matched number of conservative control 

SNVs from the Tehranchi et al. study that overlap the TF’s ChIP-seq peaks and LCL DNase-peaks with least 

significant allelic effects on binding (allelic binding 𝑝 ≈ 1). For each bQTL and control SNV, we recorded its 

maximal absolute 𝐹𝐼𝑆 (maxAbsFIS) over all target nucleotides +/-15 bp around the SNV. For all the TFs, we 

found that the bQTLs exhibit significantly (Mann Whitney test) stronger maxAbsFIS than control SNVs (Fig. 

7), indicating that 𝐹𝐼𝑆 may be an alternative approach to ISM to identify putative regulatory variants. 
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Figure 7: For all 5 reported transcription factors, we observe a statistically significant increase in Feature Interaction Score in the surrounding 

sequence for known binding QTLs as compared to non-significant bQTLs. 

 

3.4 Discovering interactions between nucleotides flanking the core sequence motif of the Cbf1 TF in yeast 

from in vitro binding DNN models 

 

Paralogous TFs have been recently shown to have distinct sequence affinity preferences to nucleotides flanking 

the core canonical binding motifs. Le and Shimko et al. recently developed a microfluidics based in vitro TF 

binding assay called BET-seq to investigate this question15. They used the BET-seq assay to measure high-

resolution in vitro binding affinity landscapes of the yeast TFs Cbf1 and Pho4 to a high complexity library of > 

1 million DNA sequences with a fixed central core E-box sequence (CACGTG) and 5 variable flanking 

nucleotides on either side. They trained a feed forward neural network to predict relative binding affinity (ΔΔ𝐺) 

for each of the TFs from the 10bp flanking sequences (using a flattened one-hot encoding) in the library15 (Fig. 

8A). The model architecture consisted of 3 dense layers of sizes 500, 500 and 250 with ReLU activation 

followed by batch normalization and dropout (p=0.25) with a final dense classification layer having a linear 

activation. They used a distillation approach to interpret the NN model by fitting a linear model with all 

mononucleotide features across all positions and all dinucleotide features across all pairs of positions to the 

output predictions of the NN. They found that dinucleotide features were critical for the linear model to have a 

good fit (𝑟2 > 0.95) especially for Cbf115. They then estimated the contributions of all pairwise interaction 

terms by comparing the mononucleotide+dinucleotide linear model to a mononucleotide-only linear model. 

Cbf1 was found to exhibit significant interactions between several pairs of flanking nucleotides15.  

 

We instead used DFIM to directly query the Cbf1 neural network model and estimate pairwise nucleotide-

resolution 𝐹𝐼𝑆 between all pairs of nucleotides at all positions for all sequences in the library (Fig. 8B). We 

compute aggregate statistics (mean) of the absolute nucleotide-resolution FIS (Section 2.2) for all pairs of 

nucleotide features across the 5,000 sequences with strongest binding affinity (lowest measured ΔΔG). We 

obtain four (40 x 40) DFIMs where each map corresponds to one of the 4 bases {A,C,G,T} as the observed 

source nucleotide. The rows in each 40 x 40 map correspond to 4 mutant bases x 10 source positions, while the 

columns correspond to 4 target bases x 10 target positions. To ease interpretation, we compute a marginalized 

40 x 40 DFIM that records the maximal average 𝐹𝐼𝑆 score over all mutant bases for each source base, source 
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position, target base and target position (Fig. 8C), marginalized over the 3 potential mutations for a given 

source base. We observe that the marginalized aggregate DFIM for the high binding affinity sequences exhibit 

several strong interactions between flanking nucleotides (Fig. 8C). The map corroborates several of the 

strongest interactions identified by Le and Shimko using the distillation approach such as the strong interaction 

between a T at the -1 position and an A at the +1 position. Our maps also identify novel interactions such as a 

strong interaction between T at -1 and T at +2. In contrast, the aggregate DFIMs across 5,000 sequences with 

weakest binding affinity (highest measured ΔΔG) exhibit uniformly weak interaction scores (SFig. 6). 

 

 
Figure 8: A) A feed forward neural network mapping 10 bp flanking sequences to binding affinities. B) Pairwise feature interaction scores for all 

pairs of nucleotides in an example sequence for Cbf1 shows strong interaction between source (-1, T mutated to G) with target (+1, A). C) We 

observe several strong pairwise interactions between positions in the marginalized aggregate DFIM for Cbf1 across the top 5K highest binding 

affinity sequences. The rows correspond to (source position, source base, argmax mutant base). The columns correspond to (target position, target 

base). 

 

Discussion 

 

We present an efficient method called Deep Feature Interaction Maps (DFIM) to identify epistatic interactions 

between all pairs of nucleotides or motif features in any DNA sequence input to a deep learning model for 

regulatory genomics. Our method accurately recovers ground truth interacting motifs in simulated regulatory 

DNA sequences. When applied to deep learning models of in vivo TF binding, we recover known proximal 

interactions between motifs of interacting co-factors while also discovering long-range interactions between 

motifs as far as 75 bp apart. We interpret deep learning models trained on in vitro TF binding to discover 

extensive interactions between pairs of nucleotides in sequences flanking core TF binding motifs. Finally, we 

interpret deep learning models of in vivo chromatin accessibility to generate nucleotide-resolution interaction 

maps for non-coding regulatory sequences surrounding SNVs (bQTLs) that affect binding of transcription 

factors. Our maps link binding QTLs to nearby sequence features including high and low affinity matches to the 
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canonical binding site of the TF whose binding is disrupted. We also find bQTLs interacting with motifs of 

multiple co-binding TFs. These epistatic interactions seem to capture both cooperation and competition. While 

our primary focus in this manuscript is on interpreting feature interactions in DNA sequence inputs, DFIM can 

easily be generalized to other data modalities. 

 

Partial dependence plots are commonly used to understand the sensitivity of a prediction to a one or more 

features 16. DFIM serves as complementary approach to understand the predictive higher-order, non-linear 

interactions between features. DFIM is most efficient to estimate all pairwise interactions between pre-

determined features such as known binding sites or SNVs or a sparse set of de-novo discovered predictive 

features with significant importance scores. However, DFIM also scales well to estimate interactions between 

all nucleotides in large sets of sequences because it leverages efficient backpropagation-based feature 

attribution methods. While DFIM is generally compatible with any efficient feature attribution method, we have 

not evaluated our approach on all such methods. However, we have found overall strong replication of DFIM 

results and associated conclusions by using two separate importance scores namely DeepLIFT and gradient 

saliency maps (SFig. 2, SFig. 3). This suggests that DFIM could generalize to other importance scoring 

approaches. 

 

There are several potential caveats to using DFIM including some that are independent of the methodology 

itself. For example, DFIM will only work well with a high performance deep learning model that has been 

appropriately trained, with a suitable architecture, and if the importance scoring methods appropriately capture 

salient features. DFIM depends on these two cornerstones and so will only perform as well as the model and the 

importance scores. Changes in model architecture can also change the interactions encoded by the model and 

thus the interactions learned with DFIM. In addition, DFIM is limited to detecting interactions within the same 

input sequence (i.e. for a model with a 1 kbp input, the interactions must be within that 1kbp). Despite these 

mentioned caveats, the case studies we present here showcase the utility of DFIM to provide a nuanced view 

into the combinatorial code of regulatory DNA sequences through the lens of predictive neural network models. 

 

Code 

We have made code for this project publicly available at: https://github.com/kundajelab/dfim. We include 

Jupyter Notebooks to demonstrate several use cases. 
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