1	
2	
3	
4	Fusion expression and anti-Aspergillus flavus activity of a novel inhibitory
5	protein DN-AflR
6	
7	Yuan Liang, Qing Kong, [#] Yao Yao, Shujing Xu, Xiang Xie
8	
9	School of Food Science and Engineering, Ocean University of China, Qingdao,
10	Shandong, China
11	
12	
13	
14	
15	
16	Running Title: Fusion expression of DN-AflR
17	
18	
19	#: Address correspondence to Qing Kong, kongqing@ouc.edu.cn.
20	
21	
22	

23

ABSTRACT The regulatory gene (aflR) of aflatoxin encodes AflR, a positive 24 25 regulator that activates transcriptional pathway of genes in aflatoxin biosynthesis. New L-Asp-L-Asn (DN) extracted from Bacillus megaterium inhibited the growth of 26 27 A. flavus had been elucidated in our laboratory. The genes encoding DN and binuclear 28 zinc finger cluster protein of AflR were fused, then fusion protein could compete with the AfIS-AfIR complex for the AfIR binding site and significantly improve anti-A. 29 flavus activity of DN. The fusion gene dn-aflR was cloned into pET32a and 30 31 recombinant plasmid was introduced into Escherichia coli BL21. The highest expression was observed after 10 h induction and purified by affinity chromatography 32 column. Compared with DN, the novel fusion protein DN-AflR significantly inhibited 33 34 the growth of A. *flavus* and biosynthesis of aflatoxin B_1 . This study promoted the use of competitive inhibition of fusion proteins to reduce the expression of regulatory 35 genes in the biosynthetic pathway of aflatoxin. Moreover, it provided more supports 36 for deep research and industrialization of such novel, anti-A. flavus bio-inhibitors. 37

IMPORTANCE Aflatoxin contamination has seriously influence on export of agricultural products, income of farmers and economic development. Biological methods, especially using antagonistic microorganisms to inhibit aflatoxin biosynthesis gradually become the hot spot in recent years. DN (L-Asp-L-Asn) from *Bacillus megaterium*, which could inhibit growth of *Aspergillus flavus* and synthesis of aflatoxin, has been identified. In this report, we fused the genes encoding inhibitory peptides (DN) and specific zinc finger cluster protein, and expressed the novel anti-*A*.

45	flavus protein in Escherichia coli. Compared with DN, the inhibitory ability of novel
46	protein has been improved significantly. This research showed fusion expression of
47	anti-fungal proteins, such as DN-AflR, is a promising method to economically
48	improve the inhibitory activity of bio-inhibitors for A. flavus.
49	

- 50 **KEYWORDS** AflR, *Aspergillus flavus*, *dn-aflR*, fusion expression
- 51

52 INTRODUCTION

53 Aflatoxin is one of the most potent naturally occurring toxic and carcinogenic compound, which is a mycotoxin that poses a serious threat to human health (1). 54 Aflatoxin contamination has seriously influence on export of agricultural products, 55 56 income of farmers and economic development (2, 3). Biological methods, especially using antagonistic microorganisms to inhibit aflatoxin biosynthesis gradually become 57 58 hot spot in recent years (4). Palumbo et al. isolated one strain of Bacillus from almonds, which could inhibit the growth of Aspergillus flavus (5). Early studies found 59 that Mycobacterium smegmatis and Rhodococcus erythropolis could produce F420 60 61 H2-dependent reductases to degrade aflatoxin (6, 7). Some studies isolated antifungal compounds from *Bacillus* and verified their inhibitory effects on the growth of A. 62 63 flavus (8, 9). Above all, antagonistic microorganisms could produce metabolites or enzymes to inhibit expression of regulatory genes, or degrade aflatoxin. 64

Aflatoxin biosynthetic pathway has been studied for years and is one of the best
 understood fungal secondary metabolic pathways. The whole-genome sequencing of

67	A. flavus has been accomplished, and we could better control aflatoxin contamination
68	through deep research of the regulatory genes and mechanisms. Up to now, at least 34
69	genes have been identified as members of the aflatoxin pathway gene cluster. On the
70	82-kb biosynthetic gene cluster of aflatoxin, aflR and aflS (formerly known as aflJ)
71	are genes involved in pathway regulation (10, 11). aflR is necessary for transcription
72	of some genes in Aspergillus gene cluster (12-14). This gene encodes a specific DNA
73	binding protein (AfIR) containing 444 amino acids, and the 29th to 56th amino acids
74	constitute a binuclear zinc finger cluster protein with sequence
75	Cys-Xaa2-Cys-Xaa6-Cys-Xaa6-Cys-Xaa2-Cys-Xaa6-Cys, which is the key region of
76	AflR to activate gene transcription and determines AflR-binding specificity (15). AflR,
77	which possesses DNA-binding and activation domains typical of the GAL4-type
78	family of positive regulatory proteins in yeast and fungi (16). A common feature of
79	fungal gene clusters, including those for secondary metabolites, is the presence of
80	specific regulatory genes, which have been found to encode members of the zinc
81	binuclear cluster protein family typified by GAL4 (17-19). AflS was found to be
82	involved in the regulation of transcription. Between aflR and aflS is intergenic region,
83	where promoter region is located. AfIS-AfIR complex binds to AfIR binding site and
84	activates aflatoxin biosynthesis. Studies suggested that failure to product aflatoxin due
85	possibly to alternation in the interaction between AfIS and AfIR (10, 20).
86	Bio-inhibitors inhibited expression of <i>aflR</i> or <i>aflS</i> mainly by acting on the intergenic
87	region, thereby prevented the formation of AfIS-AfIR complex, so that AfIS-AfIR
88	complex could not bind to AflR binding site and activate biosynthetic pathway of

89 aflatoxin.

90	Recently, we identified DN (L-Asp-L-Asn) from Bacillus megaterium, which
91	could inhibit growth of A. <i>flavus</i> and synthesis of aflatoxin. To improve the inhibitory
92	effect of DN, we transformed the genes encoding DN and GAL4-type zinc finger
93	cluster protein (specifically binds to the AflR binding site) by gene fusion. We
94	hypothesized the fusion protein could compete with AflS-AflR complex by acting on
95	AflR binding sites to inhibit the activation of AflS-AflR complex and improve anti-A.
96	flavus activity of DN.
97	
98	RESULTS
90	KESUL15
99	Effects of DN on mycelia morphology of A. flavus. (i) TEM. In control group,
100	the internal structure of cells grew normally and various organelles were clearly
101	visible (Fig. 2A and B). However, cell structures of mycelia treated by DN were
102	obviously abnormal: organelles were degenerated, and vacuole became significantly
103	larger, expanded and fractured (Fig. 2C and D).
104	(ii) SEM. Mycelia of control group were integrity, showing straight, neatly
105	arranged and smooth surface (Fig. 2E and F). While mycelia treated with DN grew
106	abnormally: mycelia were rough and had uneven thickness, and appeared to be
107	distorted and broken (Fig. 2G and H).
108	Expression and identification of fusion protein. The expected DNA and vector
109	fragments were seen in 1% agarose electrophoresis after digesting with EcoR I and

110	Hind III. Colony PCR and DNA sequencing showed that target fragment (<i>dn-aflR</i>)
111	was successful inserted into the vector. The molecular weight of empty plasmid
112	(Trx-His-pET32a) and fusion protein (Trx-His-DN-AflR) were predicted to be 19 kDa
113	and 22 kDa. Expression vector with fusion gene had a distinct protein band (24 kDa,
114	Fig. 3A, lanes 1 and 2). The empty plasmid did not express the band at the
115	corresponding position and had its own specific band (Fig. 3A, lane 3). Results
116	illustrated successful expression of the fusion protein DN-AFLR. The supernatant
117	after ultrasonic breaking (Fig. 3B, lane 1) and the precipitate after 8 mM urea
118	dissolved (Fig. 3B, lane 2) both showed obvious protein bands. The result was
119	consistent with predicted weight of expected protein before purification (Fig. 3A).
120	There were no obvious protein bands in wash buffer (Fig. 3B, lanes 3-5), and there
121	was only one obvious protein band in elution buffer (Fig. 3B, lanes 6 and 7), which
122	corresponded to the target protein. ImageJ software (https://imagej.nih.gov/ij/) was
123	used to compare the density of the bands on the gel, the fusion protein accounts for
124	approximately 57.4% of the total cellular protein, the relative content of fusion protein
125	was about 600 ug ml ⁻¹ .
126	Inhibitory effect of DN-AfIR on growth of A. flavus. Plate treated by DN had
127	only a small inhibition zone of 5.0 ± 0.2 mm (Fig. 4A, plate a). The control group (Fig.

128 4A, plate c) and 200 mM imidazole treated group (Fig. 4A, plate b) showed no

129 significant zone of inhibition. Diameter of inhibition zone treated with fusion protein

130 was as high as 21.3±0.2 mm (Fig. 4A, plates d-f). Inhibitory ability of DN-AflR was

131 much stronger than that of DN. The MICs of DN-AfIR and DN were 150 μ g ml⁻¹ and

132	400 μ g ml ⁻¹ , respectively. MFC of DN-AflR was 400 μ g ml ⁻¹ . Results of two repeated
133	experiments were consistent (Table 1). The MIC and MFC of fusion protein were
134	lower than that of DN, indicating that the fusion protein had stronger inhibitory effect
135	on growth of A. <i>flavus</i> at a lower concentration.
136	Inhibitory effect of fusion protein on aflatoxin B_1 biosynthesis. Two groups of
137	experiments were performed using DN-AflR and DN with final concentrations of 30,
138	60, and 90 μ g ml ⁻¹ . The residual rate of aflatoxin B ₁ after fusion protein treatment was
139	24.37%, 14.21% and 6.74%, respectively, and the residual rate of aflatoxin B_1 after
140	DN treatment was 44.39%, 22.19% and 10.99%, respectively (Fig. 4B). Compared
141	with DN, fusion protein had stronger inhibitory effect on biosynthesis of aflatoxin B_1
142	(P <0.05). At 30 µg ml ⁻¹ of DN-AflR, more than 75% aflatoxin B ₁ was degraded.
143	Physical properties and molecular structure of DN-AfIR. Amino acid
144	sequence, isoelectric point and other basic informations were analyzed by ExPASy
145	(http://web.expasy.org/protparam/; Table 2). Secondary structure of protein was
146	predicted by SPLIT (http://splitbioinf.pmfst.hr/split/4/; Fig. 5A). Spatial structure was
147	predict by SWISS-MODEL. The fusion protein DN-AflR carries a positive charge,
148	has a relative strong hydrophobic effect, and contains the characteristic secondary
149	structure of the protein. By analyzing the predicted structures of DN-AflR (Fig. 5B)
150	and GAL4 (Fig. 5C), DN-AflR has the zinc finger DNA-binding functional structure
151	(specifically binds to AflR binding site) (Fig. 5D).
152	

DISCUSSION

154	At present, more and more microorganisms and their metabolites were reported to
155	inhibit the growth of Aspergillus flavus and degrade aflatoxins (5, 26). Albert et al.
156	transformed the laccase gene of T. versicolor into recombinant A. niger by gene
157	cloning, and the inhibition rate on aflatoxin of laccase (118 U L^{-1}) after recombinant
158	expression as high as 55% (27). Douillard et al. demonstrate that novel L. lactis fusion
159	partner expression vectors allow high-level expression of soluble heterologous
160	proteins (28). Study showed that Fh8 tag fusion expression could significantly
161	improve the ability of <i>E. coli</i> to express soluble exogenous proteins (29). Genetic
162	engineering could highly express the active proteins and other metabolites in
163	prokaryotic or eukaryotic hosts, which is the great way to cut down costs.
164	However, there was few report on the inhibition of growth of A. flavus by
165	molecular modification of positive regulatory genes in aflatoxin biosynthesis. Fusion
166	expression has been continuously applied to the process of expressing recombinant
167	protein in order to improve functions of the active protein (30, 31). TEM and SEM are
168	effective applications to analyze the characteristics and morphologies of samples.
169	SEM showed that DN caused changes in mycelial morphology of A. flavus. TEM
170	showed the ruptured vacuoles accounted for most of cell space and destroyed the
171	function and balance of other organelles, which affected normal growth of the whole
172	cell (Fig. 2). So that DN had the ability of inhibiting the growth of A. flavus.
173	In order to improve the anti-A. <i>flavus</i> effect of DN, we fused the genes encoding
174	DN and sequences of zinc finger cluster protein (specifically binds to the AflR
175	binding site), then successfully constructed a recombinant plasmid dn-aflR-pET32a

176 (Fig. 1). In the process of *E. coli* expression, when expressed in the host system at a high level, the recombinant protein was easy to form inclusion bodies (32). This may 177 178 be due to the fact that during the expression, the protein folded too fast, while insufficient supply of enzymes or co-factors made it cannot form the correct 179 180 secondary bond. According to the reports (33), we used 16°C, 160 rpm as the 181 conditions for inducing expression. In general, target proteins with a molecular weight of less than 5 kDa or more than 100 kDa could not be expressed easily. The smaller 182 molecular weight of protein, the easier it was to be degraded. In order to avoid 183 184 degradation of target protein due to its low molecular weight, we used the pET32a vector to express the active protein, and its Trx and His tag significantly improved the 185 stability of expression, and enhanced purification of protein, respectively. Because 186 187 target protein contained the His tag, result of SDS-PAGE showed that molecular weight of fusion protein was 24 kDa (Fig 3), which was a little more than the 188 189 predicted molecular weight by the theoretical calculations (20 kDa). Compared with 190 DN, the fusion protein DN-AflR had stronger inhibitory effect on growth of A. *flavus* (Fig. 4A). Simultaneously, it also had significant advantages in inhibiting aflatoxin B₁ 191 biosynthesis (Fig. 4B), especially, under 30 µg mL⁻¹ concentration of DN-AflR, more 192 193 than 75% aflatoxin B₁ was inhibited. To get a deeper comprehension of DN-AflR, its physical properties and molecular structures were predicted. Outer membrane of most 194 cells is negatively charged, while most anti-fungal proteins are positively charged and 195 196 they can bind to the cells surface through electrostatic attraction (34). The α -helical peptides with higher hydrophobic properties have a higher ability to lyse membranes, 197

198	and the inhibitory activity of some peptides would even disappear with reduced
199	hydrophobicity (35). Through the predicted results, the fusion protein DN-AfIR
200	carries positive charge and has a relative strong hydrophobic effect, and contains the
201	secondary structure of helix. Especially, DN-AfIR contains the zinc finger cluster
202	protein structure (compare with GAL4), which make it could compete with AflS-AflR
203	complex by acting on AflR binding sites to inhibit the activation of aflatoxin. These
204	properties confirmed that DN-AflR had high inhibitory ability on growth of A. flavus
205	and biosynthesis of aflatoxin.
206	To the best of our knowledge, this is the first report about fusing the genes
207	encoding inhibitory peptides and specific zinc finger cluster protein, and fusion
208	expressed the novel anti-A. flavus protein. Results showed the modified novel protein
209	reduced aflatoxin biosynthesis and growth of A. flavus, which could control aflatoxin
210	contamination. Compared with DN, the inhibitory ability of novel protein has been
211	improved significantly.
212	This work promoted deep researches for fusion expression of anti-fungal proteins.
213	Furthermore, this study also provided more theoretical basis and technical support for
214	the further biocontrol of A. flavus and a new idea about enhancing the anti-A. flavus
215	ability of inhibitory substances.
216	

217 MATERIALS AND METHODS

218 Materials, strains, and culture conditions. A. flavus NRRL3357, preserved in

219	School of Food Science and Engineering, Ocean University of China, was maintained
220	at 4°C on potato dextrose agar (PDA; Bio-way technology, Shanghai, China). For
221	liquid culture, A. flavus was transferred into a 250 ml Erlenmeyer flask containing
222	100 ml of MM medium at 28°C. Escherichia coli DH5α and E. coli BL21 (Ruibio
223	Biotech, Beijing, China) were used as hosts for plasmid amplification and genes
224	expression, respectively. E. coli was grown in LB medium (10 g l^{-1} Tryoton, 5 g l^{-1}
225	Yeast Extract, 10 g l^{-1} NaCl) containing 50 μ l ml ⁻¹ ampicillin (Solarbio, Beijing,
226	China) at 37°C with shaking at 180 rpm.

Effects of DN on mycelia morphology of *A. flavus*. (i) Preparation of spores suspension. Spores of *A. flavus* were washed off with sterile distilled water containing 0.1% Tween-80 from PDA medium and filtered with a cotton slag to prepare spores suspension. The number of spores was counted by haemacytometer and diluted to the desired concentration.

(ii) TEM and SEM. 0.8 mg ml⁻¹ DN (synthesized in GL Biochem, Shanghai,
China) and 10⁵ spores ml⁻¹ were added in 50 ml MM medium and cultivated at 28°C
with 180 rpm for 48 h. Control group didn't contain DN. Then the mycelia were fixed
with 2.5% glutaraldehyde, dehydrated in ethanol and embedded in an epoxy resin to
be observed by Transmission Electron Microscope (TEM; JEOL, Tokyo, Japan) (21),
and the mycelia were also observed with Scanning Electron Microscope (SEM; JEOL,
Tokyo, Japan) after dispersion by ultrasonic wave (22).

239 Expression and identification of fusion protein. (i) Expression vector and its

240 construction and transformation into E. coli BL21. The fusion gene dn-aflR containing encoding DN binuclear 241 genes and zinc cluster protein (Cys-Xaa2-Cys-Xaa6-Cys-Xaa6-Cys-Xaa6-Cys, based on AAM03003.1, 242 NCBI) was synthesized by Hongxun Biotech (Suzhou, China), and amplified with 243 244 PCR (forward primer 5'-GAATTCGACAACGACAACT-3', reverse primer 5'-245 AAGCTTACAGGCAAGACCA-3'). Sequences for restriction site EcoR I were sequentially incorporated at the 5'-end and Hind III restriction site was in order added 246 to the 3'-end, and extracted gene by Plasmid Mini Kit (OMEGA, Omega bio-tek, 247 248 Shanghai, China). Restriction enzymes Hind III and EcoR I were used to digest the *dn-aflR* and pET32a (+), then the digested fragments were separated and identified on 249 1% agarose gel and recovered from gel using Agarose DNA Extraction Kit (OMEGA, 250 251 Omega bio-tek, Shanghai, China). The digested fragments were ligated at 4°C with T4 DNA ligase (Thermo Fisher Scientific, New York, USA) (Fig. 1). Then recombinant 252 plasmid dn-aflR-pET32a was transformed into E. coli DH5a and single colony was 253 picked for colony PCR. The recombinant plasmid extracted from suspension and 254 empty plasmid were both transformed into E. coli BL21 by heat shock, and cultivated 255 on solid LB medium containing 50 µg ml⁻¹ ampicillin (23). After 16 h, single colony 256 was inoculated into LB liquid medium and sent it to Ruibio Biotech (Beijing, China) 257 for DNA sequencing. 258

(ii) Protein expression and analysis. A single colony (containing
dn-aflR-pET32a) was inoculated into 10 ml LB medium and cultured at 37°C. Then
overnight culture was inoculated into fresh 300 ml LB media in 1:5 ratio. When

optical density (OD600) reached 0.6, the final concentration of 0.8 mM IPTG was added to induce the expression. After 10 h induction at 16°C under 160 rpm, the cells were washed with buffer (20 mM Tris, 30 mM NaCl, 10 mM imidazole, pH=7.5) and then lysed by sonication (JY92-IIN, Ningbo Scientz Biotech, Ningbo, China; ultrasonic power 300 w, ultrasound work 4 s, stop 6 s, 60 times). Supernatant was collected and identified by SDS-PAGE.

(iii) Protein purification. The presence of a His tag in the recombinant protein
meant that the purification was performed with Ni²⁺-NTA affinity chromatography.
Briefly, samples were passed through a column and extensively washed with the
elution buffer (100 mM Tris base, 500 mM NaCl, and 200 mM Imidazole, pH=8).
Purified fusion protein was demonstrated by SDS-PAGE and relative quantity was
determined by Braford protein assay in wave length of 595 nm by standard protein
BSA (bovine serum albumin) (Solarbio, Beijing, China).

275 Effects of DN and DN-AfIR on growth of A. *flavus*. (i) Anti-A. *flavus* activity.

Fusion protein was evaluated by agar disk diffusion experiment. The diameter of inhibition zone indicated the anti-*A. flavus* activity. 0.1 ml spores suspension (10^5 spores ml⁻¹) was coated on PDA plate, and Oxford Cups filled with 100 µl DN (600 µg ml⁻¹) and DN-AflR (600 µg ml⁻¹) were put on it, respectively. The Oxford Cup on control plate was filled with 100 µl sterile water.

(ii) MIC and MFC. A series of solutions containing DN-AfIR or DN at the concentrations of 30, 50, 100, 150, 400, 600 and 900 μ g ml⁻¹ were prepared by serial dilution. 200 μ l of above solutions was added into each well of 96-well plates

284	containing PDA medium, respectively. Pure PDA without DN-AflR and DN was the						
285	control. Then 5 μ l suspension (10 ⁵ spores ml ⁻¹) was added to each well and placed at						
286	28°C for 48 h (24). By definition, the minimum concentration of compound that						
287	completely inhibited growth of A. flavus was the minimum inhibitory concentration						
288	(MIC) (non-visible Aspergillus hyphae); the culture was continued for 8 days to get						
289	the MFC, while the lowest fungicidal concentration (MFC) was the lowest						
290	concentration which no spore could germinate at.						
291	Effects of DN and DN-AflR on AFB ₁ biosynthesis. DN or DN-AflR (final						
292	concentrations of 30, 60 and 90 ug ml ⁻¹) were added into 30 ml MM medium,						
293	respectively, and 100 μ l of suspension (10 ⁵ spores ml ⁻¹) was inoculated to each group						
294	and incubated at 28°C with 200 rpm. Each experiment was repeated 3 times. After						
295	culturing for 48 hours, samples were centrifuged at 8000 g for 20 min at room						
296	temperature. Five milliliters of supernatant were diluted with 5 ml ultrapure water.						
297	Next, 5 ml of the diluted sample was extracted in immune affinity columns (Huaan						
298	Magnech BioTech Co., Ltd., Beijing, China) and then eluted with 1 ml of methanol at						
299	a flow rate of 1 drop per second. The eluent was evaporated under a gentle stream of						
300	nitrogen at 45° C up to dryness condition, and then derivatized with 200 L hexane and						
301	100 L trifluoroacetic acid (TFA) for 15 min. After being evaporated to dryness again,						
302	the eluent was redissolved in 200 L water–acetonitrile (85:15, v/v).						
303	AFB ₁ was analyzed according to retention time in HPLC system equipped with a						
304	ZORBAX Eclipse XDB-C18 column (4.6×150 mm, 5um, Agilent, Palo Alto, CA,						
305	USA) and a 470 fluorescent detector (G1321A, Agilent, USA) (λ exc 360 nm; λ em						

306	440 nm) using	a mobile phase	solvent of 10%	acetonitrile,	40% methanol,	and 50%
-----	---------------	----------------	----------------	---------------	---------------	---------

- 307 water. The flow rate was 0.8 ml min⁻¹ and injection volume was 20 μ l (25).
- 308 **Statistical analysis.** All data were presented as mean \pm S.D. One-way analysis of
- 309 variance (ANOVA) and Duncan's multiple comparison test were used and carried out
- 310 with SPSS software (SPSS Inc., Chicago, IL, USA). P<0.05 was considered
- 311 statistically significant.
- 312

313 ACKNOWLEDGEMENTS

We thank National Natural Science Foundation of China (31471657) and the research grant from Qingdao Municipal Science and Technology Project (16-6-2-39-nsh) for supporting this research.

317

318 **REFERENCES**

- 1. Cleveland TE, Yu JJ, Bhatngar D, Chen ZY, Brown RL, Chang KP, Cary GW.
- 320 2004. Progress in elucidating the molecular basis of the host plant–*Aspergillus*
- *flavus* interaction: a basis for devising strategies to reduce aflatoxin
- 322 contamination in crops. J Toxicol-Toxin Rev 23:345-380.
- 323 2. Wu F, Guclu H. 2012. Aflatoxin regulations in a network of global maize trade.
- 324 PLoS One 7:e45151.
- 325 3. Atehnkeng J, Donner M, Ojiambo PS, Ikotun B, Augusto J, Cotty PJ, 326 Bandyopadhyay R. 2016. Environmental distribution and genetic diversity of 327 vegetative compatibility groups determine biocontrol strategies to mitigate 328 aflatoxin contamination of maize by *Aspergillus flavus*. Microb Biotechnol

- *9:75-88.* 9:75-88.
- 4. Mishra HN, Das C. 2010. A review on biological control and metabolism of
 aflatoxin. Crit Rev Food Sci 43:245-264.
- 5. Palumbo JD, Baker JL, Mahoney NE. 2006. Isolation of bacterial antagonists of
- 333 *Aspergillus flavus* from almonds. Microb Ecol 52:45-52.
- 6. Taylor MC, Jackson CJ, Tattersall DB, French N, Peat TS, Newman J, Briggs LJ,
- 335 Lapalikar GV, Campbell PM, Scott C, Russell RJ, Oakeshott JG. 2010.
- 336 Identification and characterization of two families of F420 H2-dependent
- reductases from Mycobacteria that catalyse aflatoxin degradation. Mol Microbiol
 78:561-575.
- 339 7. Lapalikar GV, Taylor MC, Warden AC, Scott C, Russell RJ, Oakeshott JG. 2012.
- 340 F420 H2-dependent degradation of aflatoxin and other furanocoumarins is

341 widespread throughout the Actinomycetales. PLoS One 7:e30114.

- 342 8. Zhang T, Shi ZQ, Hu LB, Cheng LG, Wang F. 2008. Antifungal compounds from
- 343 *Bacillus* subtilis B-FS06 inhibiting the growth of *Aspergillus flavus*. World J
 344 Microb Biot 24:783-788.
- Bottone EJ, Peluso RW. 2003. Production by *Bacillus pumilus* (MSH) of an
 antifungal compound that is active against *Mucoraceae* and *Aspergillus* species:
- 347 preliminary report. J Med Microbiol 52:69-74.
- 10. Cleveland TE, Yu JJ, Fedorova N, Bhatnagar D, Payne GA, Nierman WC,
- 349 Bennett JW. 2009. Potential of *Aspergillus flavus* genomics for applications in
- biotechnology. Trends Biotechnol 27:151-157.

351	11.	Yu JJ.	Chang PK.	Ehrlich KC.	Crav JW.	Bhatnagar D.	Cleveland TE,	Pavne GA.
		,		,	,			

- Linz JE, Woloshuk CP, Bennett JW. 2001. Clustered pathway genes in aflatoxin
- biosynthesis. Appl Environ Microbiol 70:1253–1262.
- 12. Chang, PK, Ehrlich KC, Yu JJ, Bhatnagar D, Cleveland TE. 1995. Increased
- 355 expression of *Aspergillus parasiticus aflR*, encoding a sequence-specific
- 356 DNA-binding protein, relieves nitrate inhibition of aflatoxin biosynthesis. Appl
- 357 Environ Microbiol 61: 2372–2377.
- 13. Woloshuk CP, Foutz KR, Brewer JF, Bhatnagar D, Cleveland TE, Payne GA.
- 359 1994. Molecular characterization of *aflR*, a regulatory locus for aflatoxin
- biosynthesis. Appl Environ Microbiol 60:2408–2414.
- 14. Matsushima K, Chang PK, Yu J, Abe K, Bhatnagar D, Cleveland TE. 2001.
- 362 Pre-termination in *aflR* of *Aspergillus sojae* inhibits aflatoxin biosynthesis. Appl
- 363 Microbiol Biot 55:585-589.
- 15. Burger G, Strauss J, Scazzocchio C, Lang BF. 1991. The pathway specific
- 365 regulatory gene of nitrate assimilation in *Aspergillus nidulans*, encodes a putative
- 366 GAL4-type zinc finger protein and contains four introns in highly conserved
- 367 regions. Mol Cell Biol 11:5746–5755.
- 368 16. Ehrlich KC, Montalbano BG, Cary JW. 1999. Binding of the C6-zinc cluster
- protein, AFLR, to the promoters of aflatoxin pathway biosynthesis genes in *Aspergillus parasiticus*. Gene 230:249-257.
- 17. Marmorstein R, Carey M, Ptashne M, Harrison SC. 1992. DNA recognition by
- GAL4: structure of a protein-DNA complex. Nature 356:408-414.

373	18.	Giniger E, Varnum SM, Ptashne M. 1985. Specific DNA binding of GAL4, a
374		positive regulatory protein of yeast. Cell 40:767-774.
375	19.	Todd RB, Andranopoulos A. 1997. Evolution of a fungal regulatory gene family:
376		the Zn(II)2Cys6 binuclear cluster DNA binding motif. Fungal Genet 21:388-450.
377	20.	Chang, PK. 2003. The Aspergillus parasiticus protein AFLJ interacts with the
378		aflatoxin pathway-specific regulator AFLR. Molecul Genet Genomics
379		268:711-719.
380	21.	Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM,
381		Balasubramanya RH. 2007. Biological synthesis of silver nanoparticles using the
382		fungus Aspergillus flavus. Mater Lett 61:1413-1418.
383	22.	Theis T, Marx F, Salvenmoser W, Stahl V, Meyer V. 2005. New insights into the
384		target site and mode of action of the antifungal protein of Aspergillus giganteus.
385		Res Microbiol 156:47-56.
386	23.	Sambrook J, Russell DW. 2001. Molecular Cloning: A Laboratory Manual. third
387		ed. Vols. 1, 2 and 3. Cold Spring Harbor Laboratory Press, New York (2100 p.,
388		soft cover. SDS. ISBN-10 Cold Spring Harbor).
389	24.	Wiegand I, Hilpert K, Hancock RE. 2008. Agar and broth dilution methods to
390		determine the minimal inhibitory concentration (MIC) of antimicrobial
391		substances. Nat Protoc 3:163–175.
392	25.	Zhou GH, Chen YJ, Kong Q, Ma YX, Liu Y. 2017. Detoxification of Aflatoxin
393		B1 by Zygosaccharomyces rouxii with Solid State Fermentation in Peanut Meal.
394		Toxins 9:42-51.

395	26.	Kong Q, Chi C, Yu JJ, Shan SH, Li QY, Li QT, Guan B, Nierman WC, Bennett
396		JW. 2014. The inhibitory effect of Bacillus megaterium on aflatoxin and
397		cyclopiazonic acid biosynthetic pathway gene expression in Aspergillus flavus.
398		Appl Microbiol Biot 98:5161-5172.
399	27.	Alberts JF, Gelderblom WCA, Botha A, Vanzyl WH. 2009. Degradation of
400		aflatoxin B_1 by fungal laccase enzymes. Int J Food Microbiol 135:47-52.
401	28.	Costa SJ, Almeida A, Castro A, Domingues L, Besir H. 2013. The novel Fh8 and
402		H fusion partners for soluble protein expression in <i>Escherichia coli</i> : a comparison
403		with the traditional gene fusion technology. Appl Microbiol Biot 97:6779-6791.
404	29.	Douillard FP, O'Connell-Motherway M, Cambillau C, van Sinderen D. 2011.
405		Expanding the molecular toolbox for Lactococcuslactis: construction of an
406		inducible thioredoxin gene fusion expression system. Microb Cell Fact 10:66.
407	30.	Schückel J, Rylott EL, Grogan G, Bruce NC. 2012. A gene-fusion approach to
408		enabling plant cytochromes p450 for biocatalysis. Chembiochem 13:2758-2763.
409	31.	Terpe K. 2003. Overview of tag protein fusions: from molecular and biochemical
410		fundamentals to commercial systems. Appl Microbiol Biot 60:523–533.
411	32.	Lilie H, Schwarz E, Rudolph R. 1998. Advances in refolding of proteins
412		produced in E. coli. Curr Opin Biotech 9:497-501.
413	33.	Pal G, Srivastava S. 2014. Cloning and heterologous expression of p1nE, -F, -J
414		and -K genes derived from soil metagenome and purification of active plantaricin
415		peptides. Appl Microbiol Biot 98:1441-1447.
416	34.	Carvalho AO, Gomes VM. 2009. Plant defensins-prospects for the biological

417		functions and biotechnological properties. Peptides 30:1007-1020.
418	35.	Saberwal G, Nagaraj R. 1994. Cell-lytic and antibacterial peptides that act by
419		perturbing the barrier function of membranes: facets of their conformational
420		features, structure-function correlations and membrane-perturbing abilities.
421		BBA-Rev Biomembranes 1197:109-131.
422		
423		
424		
425		
426		
427		
428		
429		
430		
431		
432		
433		
434		
435		
436		
437		
438		

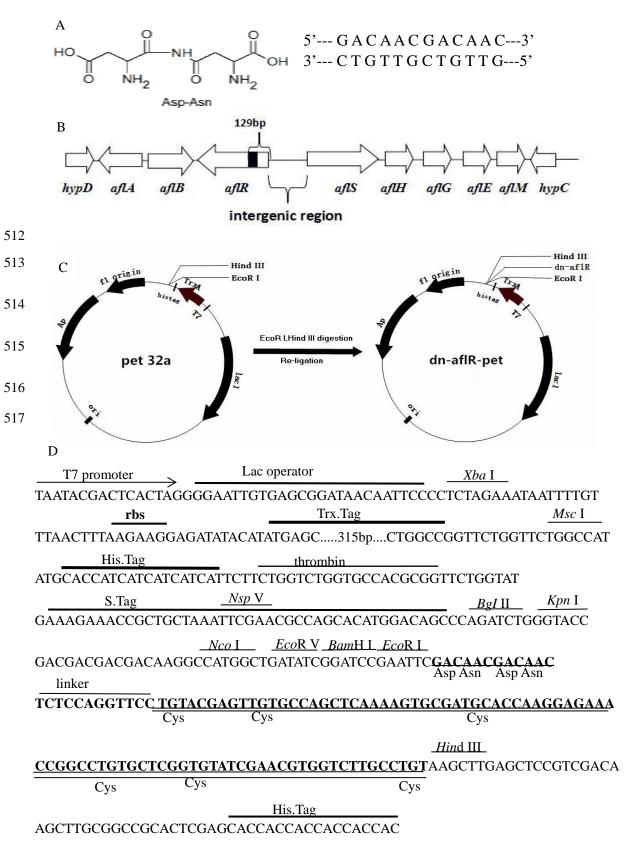
TABLE 1 The MICs and MBCs of fusion protein DN-AflR and DN

		(Concent	rations	(µg ml⁻	¹)		MIC	MBC
								(µg/ml)	(µg/ml)
	30	50	100	150	400	600	900		
DN-AflR	+	+	+	-	-	-	-	150	400
DN	+	+	+	+	+	-	-	600	>900
Negative	+	+	+	+	+	+	+	/	/
control									

- 443 Negative control: no inhibitory protein.
- 444 +: observed fungal growth.
- \neg : no fungal growth observed.
- 446 / : no inhibition.

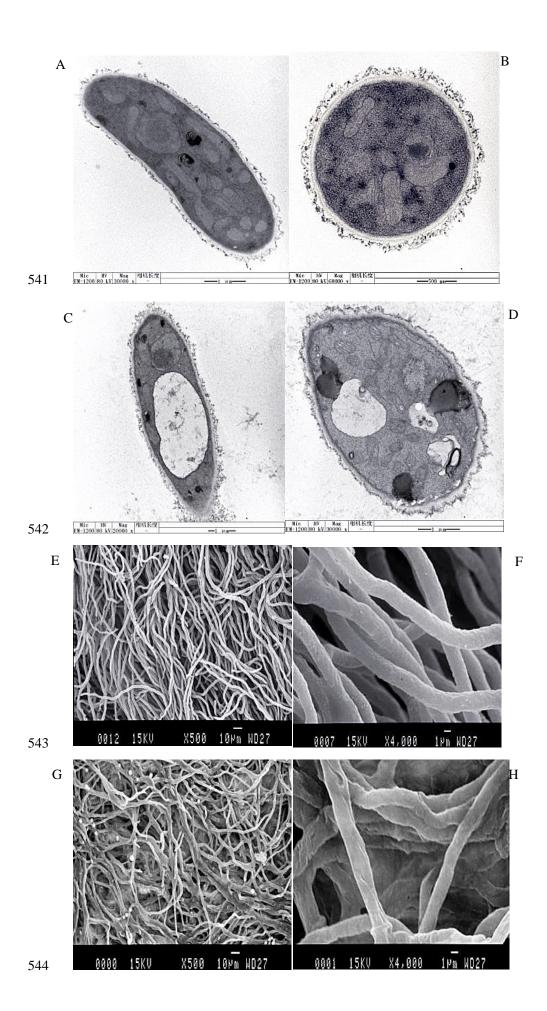
TABLE 2 The basic properties prediction of DN-AflR

Number of amino acids	36
Theoretical pI	8.33
Formula	$C_{146}H_{250}N_{50}O_{54}S_6$
Total number of atoms:	506
Aliphatic index	40.83
Total number of negatively charged residues (Asp+Glu)	4
Total number of positively charged residues (Arg+Lys)	6
Grand average of hydropathicity (GRAVY)	-0.581

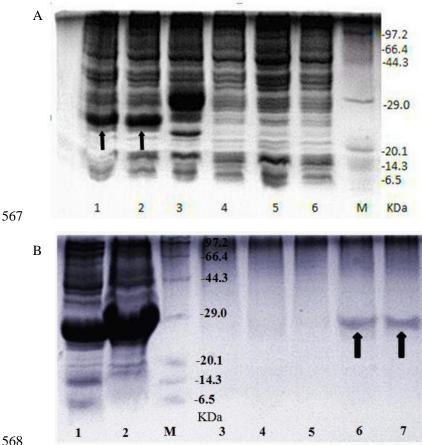

Basic informations were analyzed by ExPASy (http://web.expasy.org/protparam/).
Basic informations were analyzed by ExPASy (http://web.expasy.org/protparam/).
459
460
461
465
466

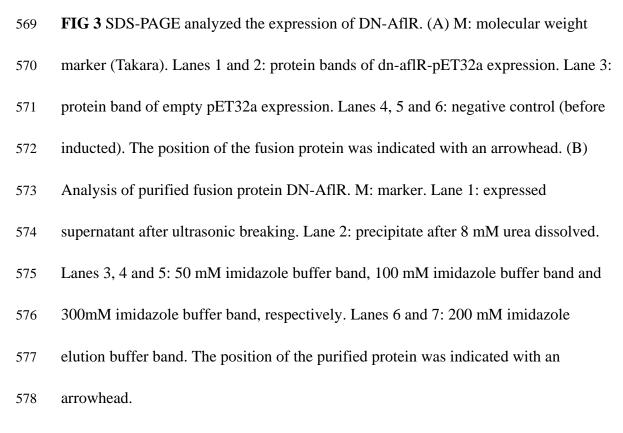
467

469	Figure legends	:
TU)	I Iguie legenus	•


- 470 FIG 1 Molecular modified fragments and characteristics of E. coli expression plasmid
- 471 dn-aflR-pet32a. (A) The chemical formula and base sequences of DN. (B) The
- 472 aflatoxin biosynthetic pathway and clustered genes, AflR binding site (black area) and
- 473 intergenic region. (C) Construction of expression plasmid. DNA fragment was
- 474 digested with Hind III and EcoR I, and inserted into downstream of the thioredoxin
- 475 (Trx) and then ligated with T4 DNA ligase. DN-AflR was expressed as a fusion
- 476 protein with Trx and 6His. Ar, an ampicillin resistance gene. (D) Base composition of
- 477 the inserted fusion gene (thick base) containing genes encoding DN (under line) and
- 478 zinc finger cluster protein (double line). 6His tag, Trx tag and unique restriction sites
- 479 (over line) were also indicated.
- 480 **FIG 2** Effects of DN on mycelia morphology of *A. flavus.* (A), (B), (C), (D): TEM;
- 481 (E), (F), (G), (H): SEM; (A), (B), (E), (F): Control groups; (C), (D), (G), (H): DN
 482 treatment groups.
- 483 **FIG 3** SDS-PAGE analyzed the expression of DN-AflR. (A) M: molecular weight
- 484 marker (Takara). Lanes 1 and 2: protein bands of *dn-aflR*-pET32a expression. Lane 3:
- 485 protein band of empty pET32a expression. Lanes 4, 5 and 6: negative control (before
- 486 inducted). The position of the fusion protein was indicated with an arrowhead. (B)
- 487 Analysis of purified fusion protein DN-AflR. M: marker. Lane 1: expressed
- 488 supernatant after ultrasonic breaking. Lane 2: precipitate after 8mM urea dissolved.

489	Lanes 3, 4 and 5: 50 mM imidazole buffer band, 100 mM imidazole buffer band and
490	300mM imidazole buffer band, respectively. Lanes 6 and 7: 200mM imidazole elution
491	buffer band. The position of the purified protein was indicated with an arrowhead.
492	FIG 4 Anti- A. <i>flavus</i> activity and degradation of AFB ₁ . (A) Plate a: treated with DN.
493	Plate b: treated with 200 mM imidazole. Plate c: control group with no treatment.
494	Plates d, e and f: treated with DN-AfIR, the circle diameters of them were around 24,
495	19 and 21mm, respectively. (B) The abscissa represented the final concentration of
496	DN (solid line) and DN-AflR (dotted line), the ordinate (content of AFB1 without any
497	treatment as 100%. The residual rates of the final concentrations of inhibitory proteins
498	in the three experimental groups, they were 30, 60 and 90 ug mL ⁻¹ , respectively.
499	FIG 5 Predicted structure of DN-AflR. (A) Secondary structure. Line 1:
500	Transmembrane helix preference (THM index). Line 2: Beta preference (BET index).
501	Line 3: Modified hydrophobic moment index (INDA index). (B) Spatial structure of
502	DN-AflR. Marked position in circle: zinc finger structure. (C) Structure of GAL4.
503	Marked position in circle: zinc finger structure. (D) Zinc finger structure.
504	
505	
506	
507	
508	
509	
510	




FIG 1 Molecular modified fragments and characteristics of *E. coli* expression plasmid

519	dn-aflR-pet32a. (A) The chemical formula and base sequences of DN. (B) The
520	aflatoxin biosynthetic pathway and clustered genes, AflR binding site (black area) and
521	intergenic region. (C) Construction of expression plasmid. DNA fragment was
522	digested with Hind III and EcoR I, and inserted into downstream of the thioredoxin
523	(Trx) and then ligated with T4 DNA ligase. DN-AflR was expressed as a fusion
524	protein with Trx and 6His. Ar, an ampicillin resistance gene. (D) Base composition of
525	inserted fusion gene (thick base) containing genes encoding DN (under line) and zinc
526	finger cluster protein (double line). 6His tag, Trx tag and unique restriction sites (over
527	line) were also indicated.
528	
529	
530	
531	
532	
533	
534	
535	
536	
537	
538	
539	
540	

545	FIG 2 Effects of DN on mycelia morphology of A. flavus. (A), (B), (C), (D): TEM;
546	(E), (F), (G), (H): SEM; (A), (B), (E), (F): Control groups; (C), (D), (G), (H): DN
547	treatment.
548	
549	
550	
551	
552	
553	
554	
555	
556	
557	
558	
559	
560	
561	
562	
563	
564	
565	
566	

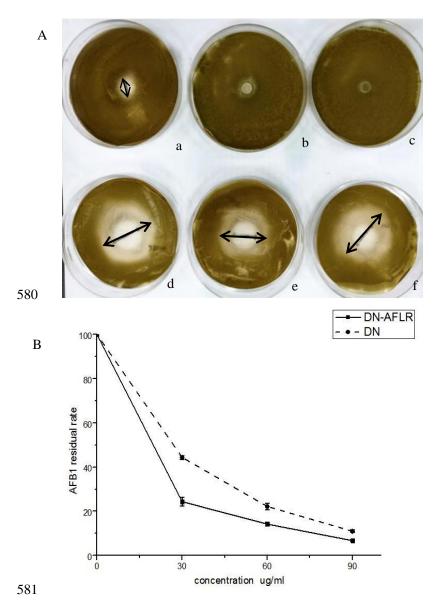
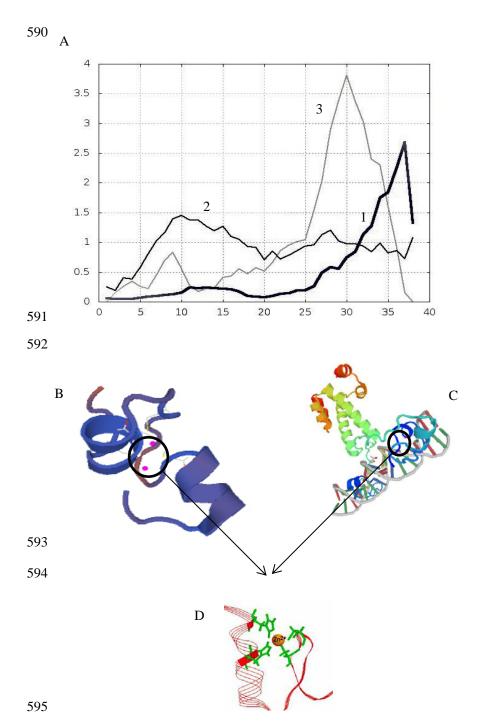
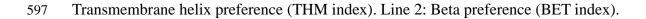




FIG 4 Anti-A. flavus activity and degradation of AFB₁. (A) Plate a: treated with DN. 582 Plate b: treated with 200 mM imidazole. Plate c: control group with no treatment. 583 Plates d, e and f: treated with purified fusion protein DN-AflR, the circle diameter of 584 them was around 24, 19 and 21mm, respectively. (B) The abscissa represented the 585 final concentration of DN (solid line) and DN-AflR (dotted line), the ordinate (content 586 of AFB₁ without any treatment as 100%. The residual rates of the final concentrations 587 of inhibitory proteins in the three experimental groups, they were 30, 60 and 90 ug 588 mL^{-1} , respectively. 589

596 **FIG 5** Predicted structure of DN-AflR. (A) Secondary structure. Line 1:

- 598 Line 3: Modified hydrophobic moment index (INDA index). (B) Spatial structure of
- 599 DN-AflR. Marked position in circle: zinc finger structure. (C) Structure of GAL4.
- 600 Marked position in circle: zinc finger structure. (D) Zinc finger structure.