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Abstract

Background: Intracellular phase separation and aggregation of proteins with
extended poly-glutamine (polyQ) stretches are hallmarks of various
age-associated neurodegenerative diseases. Progress in our understanding of such
processes heavily relies on quantitative fluorescence imaging of suitably tagged
proteins. Fluorescence loss in photobleaching (FLIP) is particularly well-suited to
study the dynamics of protein aggregation in cellular models of Chorea
Huntington and other polyQ diseases, as FLIP gives access to the full
spatio-temporal profile of intensity changes in the cell geometry. In contrast to
other methods, also dim aggregates become visible during time evolution of
fluorescence loss in cellular compartments. However, methods for computational
analysis of FLIP data are sparse, and transport models for estimation of transport
and diffusion parameters from experimental FLIP sequences are missing.

Results: In this paper, we present a computational method for analysis of FLIP
imaging experiments of intracellular polyglutamine protein aggregates also called
inclusion bodies (IBs). By this method, we are able to determine the diffusion
constant and nuclear membrane permeability coefficients of polyQ proteins as
well as the exchange rates between aggregates and the cytoplasm. Our method is
based on a reaction-diffusion multi-compartment model defined on a mesh
obtained by segmentation of the cell images from the FLIP sequence. The
discontinuous Galerkin (DG) method is used for numerical implementation of our
model in FEniCS, which greatly reduces the computing time. The method is
applied to representative experimental FLIP sequences, and consistent estimates
of all transport parameters are obtained.

Conclusions: By directly estimating the transport parameters from live-cell
image sequences using our new computational FLIP approach surprisingly fast
exchange dynamics of mutant Huntingtin between cytoplasm and dim IBs could
be revealed. This is likely relevant also for other polyQ diseases. Thus, our
method allows for quantifying protein dynamics at different stages of the protein
aggregation process in cellular models of neurodegeneration.

Keywords: Discontinuous Galerkin; FLIP; Protein aggregation; Rate coefficient;
Multi-compartment; Computational method; Calibration

Background
Our understanding of protein transport and aggregation has been revolutionalized

by the development of genetically encoded fluorescent protein tags combined with

technical innovations in high-resolution live cell fluorescence imaging. In particular,

various advanced imaging methods have been used to study aggregation and phase

partitioning of proteins in the nucleus and cytosol. Such protein segregation and

aggregation is a hallmark of various age-associated neurodegenerative diseases, such
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as Alzheimer’s disease, Chorea Huntington, Ataxia or Parkinson disease. In several

inherited neurodegenerative diseases, like ataxia and Huntington disease, certain

proteins bearing a CAG triplet expansion coding for an extended poly-glutamine

(polyQ) stretch causes the affected proteins to show the tendency to self-associate

and form small and large aggregates, the latter also called inclusion bodies (IBs).

Formation of IBs has been associated with disease progression, but it remains un-

clear, whether such large aggregates are cytoprotective or cytotoxic [1, 2, 3]. In

Huntington disease, the polyQ protein is mutated huntingtin (mtHtt) containing

more than 30 glutamine repeats typically, while in ataxia, one finds one out of

various ataxin proteins mutated containing a polyQ stretch.

The aggregation process in Huntington disease and related polyQ diseases has

been studied extensively. Typically, suitable model cells are transfected with fluo-

rescent protein tagged derivatives of the studied polyQ protein, and the aggregation

process is studied by a variety of methods including photobleaching techniques like

fluorescence recovery after photobleaching (FRAP) and fluoprescence loss in pho-

tobleaching (FLIP) [4, 5, 6, 7], number and brightness (N & B) analysis of intensity

fluctuations [8], fluorescence complementation assays with split GFP [9], Förster

resonance energy transfer (FRET) [6, 4, 10], fluorescence correlation spectroscopy

[10], fluorescence lifetime microscopy [4, 11], fluorescence anisotropy imaging [12],

stimulated emission depletion (STED) microscopy [13] or single molecule tracking

(SMT) [14, 15, 13]. Using such techniques, different aspects of the aggregation pro-

cess have been revealed. In particular, it has been suggested that diffusive oligomers

and small fibrillary aggregates co-exist with IBs, which accumulate after some delay

as clearly discernable micron-sized structures [16, 17, 8, 13, 18]. The oligomers or

protein fibrils are sometimes difficult to detect, first due to their small size com-

pared to IBs and second due to their low brightness which makes that they are

often overshined by the much brighter IBs [8, 15, 13]. However, also the micron-

sized IBs formed of green fluorescent protein–tagged mtHtt (GFP-mtHtt) come in

strongly varying brightness levels and are eventually preceded by similarly sized

but much more dynamic and eventually less bright intermediate structures in the

aggregation process [15, 13]. Indeed, protein aggregates detected in cellular models

of polyQ diseases are dynamic entities, often recruiting other proteins and thereby

sequestering enzymes and signaling proteins which strongly affect the functional-

ity of cells [5, 9, 6, 7]. In detailed FRAP and FLIP studies, both fast- and slow

exchanging components have been described for various ataxins and mtHtt with

half-times for exchange of tagged protein between cytoplasm and IBs in the range of

less than 10-20 sec for various ataxins [19, 20] over 1-2 min for larger IBs of mtHtt6

[4, 20]. This strongly suggests that different populations of inclusions with differ-

ent physico-chemical properties coexist in affected cells. Supporting that notion,

both fibrillary and globular IBs have been detected upon expression of fluorescent

protein–tagged mtHtt in the same cells, and this structural heterogeneity was re-

flected in differing exchange dynamics [4]. An additional level of complexity comes

from the complex architecture of the cytoplasm, which generates sub-compartments

of varying composition not only via membrane-bound organelles but also in the form

of membrane-less liquid phases into which proteins can partition differently [21]. It
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has been suggested that such variety of physico-chemical phases in the cyto- and

nucleoplasm can be a driving force for protein segregation, and in case of mutated

polyQ proteins, trigger protein aggregation [22].

Aggregates of polyQ proteins can form in both, the cytoplasm and nucleus, and

some polyQ proteins, such as mtHtt or ataxins have been shown to bear nuclear

localization and export signals, suggesting active transport across the nuclear mem-

brane [23, 24, 25, 26]. On the other hand for mtHtt, a Ran-GTPase independent

transport across the nuclear membrane has been described [27]. How the nucleo-

cytoplasmic transport of polyQ proteins is kinetically coupled to their intracellular

diffusion and binding to IBs is not known. FLIP is in principle an ideal method to

answer this question, as fluorescence loss in different cellular areas can be quanti-

fied for repeated localized bleaching far from IBs. However, most studies applying

FLIP in this context do not attempt to develop a physical model underlying the

observed fluorescence loss kinetics [19, 5, 6]. In a previous study, we presented the

first attempt at developing a quantitative FLIP model to estimate exchange rate

constants for GFP-mtHtt from FLIP image sequences [7]. We tracked individual

IBs and determined exchange rate constants relative to the overall fluorescence

loss kinetics based on a multi-compartment model. However, this method lacked

a proper description of intracellular diffusion and nucleo-cytoplasmic exchange of

GFP-mtHtt not associated with the IBs [7].

Here, we present what we believe is a new computational method to directly infer

the diffusion constants and nuclear membrane permeability coefficients of polyQ

proteins as well as their binding dynamics to IBs in concert with bleaching co-

efficients for the intended laser bleach in the FLIP experiment directly from ex-

perimental confocal FLIP images. For that, we made use of a reaction-diffusion

multi-compartment model implemented into FEniCS and solved that on a meshed

surface geometry directly obtained from the cell images in the FLIP sequence. We

used a discontinuous Galerkin (DG) model for improved boundary description and

numerical integration of the underlying partial differential equation (PDE) system

after transforming that into the weak form.

Methods
A reaction–diffusion model on real cell geometry.

In [28] we present a reaction–diffusion model with semipermeable nuclear membrane

and hindrance for spatial heterogeneity. As described in [28] there is currently put

a lot of research effort on understanding the architectures and molecular crowding

in living cells. Therefor the computational FLIP model also allows this by a space

dependent first order reaction kinetic given by:

u
kon−−⇀↽−−
koff

ub , (1)

where u and ub is the intensities of the free and hindered molecules, respectively.
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Letting the observed fluorescence intensity from the FLIP images be described

by:

c = u+ ub. (2)

For areas with high intensity we would find a higher population of the hindered

ub proteins. Then given the first order reaction kinetic (1), the space dependent

reaction rate kon will be high in high-intensity areas and zero in the areas with lowest

intensities. Thus letting c0 be the observed intensity from the first FLIP image, u0 be

the intensity of the free molecules and u0
b be the intensity of the hindered molecules

such that (2) is fulfilled. Letting γ be the proportionality constant then by [28] the

reaction rates are set to:

kon(x) = γu0
b(x) = γ(c0(x)− u0) , (3)

where γ is a proportionality constant. Consequently, koff is constant

koff =
kon(x)

u0
b(x)

u0 = γu0 . (4)

Letting eGFP diffusion be expressed in the terms of Fick’s law and α being the

diffusion constant for the free eGFP molecules, our time-dependent PDE model

reads:

ut = ∇ · (α∇u) + koffub − konu− θb
q

1 + q
u

∣∣∣∣
ΩB

,

(ub)t = konu− koffub − θb
q

1 + q
ub

∣∣∣∣
ΩB

, x ∈ Ω , t > 0 , (5)

where θ is the time dependent indicator function simulating the high intensity laser

bleaches, b is the intrinsic bleaching rate constant and q is the equilibrium constant

for the reaction between the ground and excited state for a fluorophore [29]. For

mass conservation the Neumann boundary condition along ∂Ω is used,

n · ∇u = n · ∇ub = 0 , x ∈ ∂Ω , (6)

where n is the outward unit normal. With initial conditions:

u(0,x) = u0(x) , ub(0,x) = (ub)0(x) , x ∈ Ω . (7)

The cytoplasm and nucleus are separated by the nuclear membrane ΓM with

diffusive transport for eGFP through the nuclear pore complex leading to the com-

partment model presented in [28], where the diffusive flux is expressed as interface

condition

J · n− = −α∂u
−

∂n− = pJuKn− x ∈ ΓM . (8)
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Multi-compartment modeling of eGFP-mtHtt exchange

As the aggregates cannot always be seen on the first FLIP image, the structure

creative reaction mechanism from (1) do not form the aggregates. In [7] a multi-

compartment model of eGFP-mtHtt exchange between cytoplasm and aggregates

where presented. The multi-compartment approach is here transferred into a multi-

compartment model with a transport process as an internal interface conditions,

with the first order transport kinetics described as:

uC
k1−−⇀↽−−
k2

uA , (9)

where uC is the intensity in the cytoplasm and uA is the intensity in the respec-

tive aggregate. Expressed as a differential equation the mass preserving transport

process becomes:

(uC)t = k2uA − k1uC ,

(uA)t = k1uC − k2uA . (10)

Applied as an interface condition, uC and uA becomes the intensities in each of the

illustrated neighboring triangles in Figure 1, which are located at the cytoplasmic

and aggregate side of the aggregates boundary ΓA, respectively.

Therefore this reaction only happens between two adjacent triangles where their

common edge is a part of the line that separates the cytoplasm and aggregates.

Figure 1 Transport kinetics between the aggregates and cytoplasm.

Real cell geometry

The cell geometry (see Figure 2) is conveyed from the FLIP images by use of an

extended implementation of [30] which uses the ”Active Contours Without Edges”

method by Chan and Vese[31]. The Chan-Vese model does not depend on the image

gradients, and is therefore able to accomplish a segmentation on more blurred im-

ages. This Chan-Vese model uses the level set function to iteratively minimize the
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Chan-Vese energy function that considers the length of the contour and the diver-

gence in the pixel values inside and outside the contour, respectively. As bleaching

of the FLIP images occurs in the nucleus, it is hard to segment it automatically

from the FLIP sequence. Thus the geometry of the nucleus is here set by hand.

However, the cell geometry is segmented from the first image and the aggregates

are all segmented from the last FLIP image. The mesh is generated on the geometry

in Figure 2 with Gmsh and then converted to XML-file.

Figure 2 Mesh with 1825 triangles on the real cell geometry. The green triangles constitute the
cytoplasm, in red is the aggregates, the dark blue triangles form the nucleus and inside nucleus
the round bleaching area with a diameter of 25 µm can be found.

A discontinuous Galerkin method with internal interface condition

In [28], the interface condition along the nuclear membrane (8) was implemented

into the IPDG method based on [32, 33]. Additionally, in this paper, the internal

interface condition along the aggregates boundaries are implemented. For the imple-

mentation, the weak form for the aggregate interface conditions is here considered.

First let the discretization of Ω be denoted by Th consisting of disjoint open

elements K ∈ Th. While integrating along ΓA, u− and u+ are considered as the

values of two different but adjacent elements K+ and K− with a common edge on

ΓA. To rewrite (10) into integral form with the u− and u+ notation, (10) is split

up in two cases, one if u− is in the cytoplasm and one if u− is in the aggregate. An

indicator function IC is therefore introduced as:

IC(u) =

1 if Ku ∈ ΩC

0 else.
(11)

Thus the weak form reads:

∫
Ω

ut dx = M(u, v) , (12)
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where

M(u, v) :=

∫
ΓA

IC(u−)
(
(k2u

− − k1u
+)v+ + (k1u

+ − k2u
−)v−

)
dS

+

∫
ΓA

IC(u+)
(
(k1u

− − k2u
+)v+ + (k2u

+ − k1u
−)v−

)
dS (13)

and v as the usual test function.

For notation, now let Γ denote the union of the boundaries of all the disjoint

open elements K. Furthermore, let Γ consist of four disjoint subsets, such that

Γ = ∂Ω∪Γint∪ΓM ∪ΓA. Thus Γint holds all internal edges. Then usual average and

jump term for DG-methods are defined as {u} = (u+ +u−)/2, JuK = u+n+ +u−n−.

For vector valued functions q the average and jump term are defined as: {q} =

(q+ + q−)/2, JqK = q+ · n+ + q− · n−. where n± is the outward unit vectors on

∂K±.

Reusing the notation from [28] we let

D(u, v, α) :=

∫
Ω

α∇u · ∇v dx−
∫

Γint

{α∇v} · JuK ds

−
∫

Γint

{α∇u} · JvK ds+

∫
Γint

σ

h
JuK · JvK ds , (14)

R(u, ub, v) :=

∫
Ω

(koffub − konu)v dx , (15)

B(u, v) :=

∫
ΩB

θb
q

1 + q
uv dx . (16)

Thus our weak formulation reads:

∫
Ω

utv dx+D(u, v, α) = R(u, ub, v)−B(u, v) +M(u, v)− p
∫

ΓM

JuK · JvK ds ,∫
Ω

(ub)tw dx = −R(u, ub, w)−B(ub, w) , (17)

where v and w are the usual test functions.

Any L-stable method can be used for discretizing the time derivative. Here the

backward Euler is used for the implementation using the automated Finite Element

package FEniCS [34]. Pre–assemble the system matrix will improve the compu-

tational time in FEniCS. However, as the bleaching term is time dependent the

system is here pre–assembled into two system matrices. One with and one without

the bleaching term. Inside the python script, the weak formulation is therefore ex-

pressed twice in the UFL form language.

For simplicity the bleaching term b q
1+q from (16) is replaced by β in the imple-

mentation and calibration. An example of the weak formulation with the bleaching

term is presented here:

# F1 and F2 with bleaching
F1b = (1/dt)*(u-u0)*v *dx \

+ alpha*dot(grad(v), grad(u))*dx \
+ p*dot(jump(u,n),jump(v,n))*dSm \
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- dot(avg(alpha*grad(v)), jump(u, n))*dSS \
- dot(jump(v, n), avg(alpha*grad(u)))*dSS \
+ sigma/h_avg*dot(jump(v, n), jump(u, n))*dSS \
+ k_on*u*v*dx - k_off*ub*v*dx \
+ beta*u*v*dxb \
- (Ic(’-’)*((k2*u(’-’)-k1*u(’+’))*v(’+’) +

(k1*u(’+’)-k2*u(’-’))*v(’-’)))*dSa \
- (Ic(’+’)*((k1*u(’-’)-k2*u(’+’))*v(’+’) +

(k2*u(’+’)-k1*u(’-’))*v(’-’)))*dSa

F2b = (1/dt)*(ub-ub0)*w *dx \
- dot(avg(grad(w)), jump(ub, n))*dSS \
- dot(jump(w, n), avg(grad(ub)))*dSS \
+ sigma/h_avg*dot(jump(w, n), jump(ub , n))*dSS \
+ k_off*ub*w*dx - k_on*u*w*dx \
+ beta*ub*w*dxb

# preassembly
Fb = F1b + F2b
ab = lhs(Fb); Lb = rhs(Fb)
Ab = assemble(ab)

Where dSm represent the integral along the membrane, dSa is the integral along

the aggregates boundaries, dSS is the integral on the remaining edges with smooth

solutions and dxb represents the bleaching area. A similar system matrix is im-

plemented without the bleaching term and the left-hand side is pre–assembled as

the matrix A with the right-hand side L. The time dependent system is solved in

FEniCS by:

while t < t_end:
if t%t_frame <= t_bleach:

b = assemble(Lb , tensor=b)
solve(Ab, c1.vector (), b)

else:
b = assemble(L, tensor=b)
solve(A, c1.vector (), b)

c0.assign(c1)
(u0 , ub0) = c0.split(True)
t += dt

Results
Calibration and simulation of intracellular transport

To calibrate the unknown parameters α, β, γ, p, k1, k2 we make a comparison be-

tween the simulation result and the FLIP images. The frame time for the FLIP

experiment in Figure 3(A-D) where ∆tframe = 2.8s, within that time the bleaching

area with a diameter of 25µm where bleached with 100% laser intensity for 2s. Thus

the imaging process with a laser power of 0.5% took 0.8s.

To easily compare the simulation results and the FLIP sequence, the goal function

seen in Figure 3(E-H) is created. The goal function is a piecewise linear discontin-

uous Galerkin function defined on the mesh, which represents the values from the

denoised FLIP images. To denoise the FLIP sequence, Gaussian blur with a radius

of 1 pixel is used. At the discrete times ti = ∆tframe(i − 1) + tcompare seconds

i = 1, 2, 3, . . . , n the L2 norm of the difference between the goal function and the

simulation is calculated to represent the misfit functional as:

E =
1

n

n∑
i=1

∫
Ω

|u(ti,x) + ub(ti,x)− cg(ti,x)|2 dx , (18)
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Figure 3 The first four images (A-D) are the original FLIP images of the CHO cells expressing
GFP-Q73 in the cytoplasm and nucleus. It is produced in a temperature controlled (35± 1◦C)
environment on a Zeiss LSM 510 confocal microscope using the 488nm line of an Argon laser.
The black circle on the image (A) shows the 25-pixel wide bleaching area and a scalebar which is
5 µm. The leftmost FLIP image (A) is taken before bleaching, the next image (B) is taken after it
has been bleached 10 times, i.e., time t = 28 s. The third FLIP image (C) is the 20’th FLIP image
in the sequence (time t = 56 s) and the last (D) is at time t = 109.2 s which correspond to FLIP
fame 39. The second row (E-H) shows the corresponding goal function. The third row (I-L) shows
the simulation results, all at times corresponding to the displayed FLIP images.

where cg is the goal function. For the sequence in Figure 3 the number of FLIP

images is n = 40 and the time where the simulation and FLIP data are compared is

tcompare = 2.6s. To calibrate the unknown parameters, the Nelder–Mead downhill

simplex algorithm [35] from the SciPy library [36] is used. The stop criterium is set

such that either the difference in the parameter or the difference in the misfit func-

tional between each iteration should be lower than 10−4. Looking at the reactions

rates k1 and k2 it is known from (10) that in equilibrium the equilibrium constant

can be described as:

K =
k1

k2
=
uA
uC

. (19)

Assuming that the first FLIP image before bleaching (see Figure 3A) is in equilib-

rium, K can be determined by the use of the average intensities from inside the

aggregates and cytoplasm, respectively. From the FLIP image in Figure 3A the

equilibrium constant turns out to be K = 1.16. Thus by expressing k2 in terms

of k1, the parameters that need to be calibrated are reduced to α, β, γ, p, k1. The

initial guesses for the calibration are set to α0 = 25, β0 = 20, γ0 = 0.5, p0 = 0.05

and (k1)0 = 0.001. After 405 iterations and 679 evaluations, the resulting calibrated
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parameters are

α̃ = 17.6 , β̃ = 36.0 , γ̃ = 0.198 , p̃ = 0.318 ,

k̃1 = 0.0718 , and k̃2 =
1

1.16
k̃1 = 0.0619 . (20)

The misfit functional with the initial parameters E0 = 7, 141 where lowered to

E = 2, 807 for the calibrated parameters in (20). The calibration process took

around 9 hours on an Intel Core i5 processor at 3.2 GHz with 8 GB memory running

Ubuntu 16.04 LTS. The results of the calibration process are presented in Figure

3(I-L).

Figure 4 (A-D) are the original FLIP images of the CHO cells expressing GFP-Q73 in the
cytoplasm and nucleus. The black circle on the image (A) shows the 18-pixel wide bleaching area
and a scalebar which is 5 µm. (A) is taken before bleaching, (B) is after 10 time bleaches, i.e.,
time t = 26 s. (C) is the 20’th FLIP image in the sequence (time t = 52 s) and (D) is produced at
time t = 104 s which correspond to FLIP fame 40. The second row (E-H) shows the
corresponding goal function. The third row (I-L) shows the simulation results, all at times
corresponding to the displayed FLIP images.
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In Figure 4(A-D) a similar FLIP sequence with ∆tframe = 2.6s, tcompare = 2.4s

and n = 55 can be seen. The simulations have been made on a mesh consistent of

1998 triangles, and the initial guesses for the calibration are set to α0 = 15, β0 = 10,

γ0 = 0.05, p0 = 0.5 and (k1)0 = 0.01. After 179 iterations and 293 evaluations within

five and a half hour the resulting calibrated parameters are

α̃ = 15.9 , β̃ = 34.6 , γ̃ = 0.0614 , p̃ = 0.447 ,

k̃1 = 0.0111 , and k̃2 =
1

1.02
k̃1 = 0.0109 . (21)

The simulation result with the calibrated parameters can be seen in Figure 4(I-L).

Calibration test

To test the calibration approach a forward simulation with known parameters is

made to represent and replace the FLIP images, which we calibrated against. The

forward simulation is made with the same initial and boundary conditions as used

in Figure 3, on the mesh from Figure 2. The chosen parameters are:

α = 17 , β = 36 , γ = 0.2 , p = 0.3 ,

k1 = 0.0718 , and k2 =
1

1.16
k1 = 0.0619 . (22)

Gaussian noise with the mean set to zero and a variance whose size is approxi-

mately 10% of the maximum intensity is added to the results of the forward simu-

lation. The forward simulation result now replace the goal function that is usually

extracted from the experimental FLIP images in the calibration process. The rest

of the setup, including the initial guesses on the parameters for the calibration, is

identical to the one used for the calibration in Figure 3. Through the calibration

process the misfit function E was lowered from 639.4 to 169.7 in 388 iterations with

612 function evaluations which took around 10 hours. The calibrated parameters

are:

α̃ = 16.96 , β̃ = 35.99 , γ̃ = 0.2002 , p̃ = 0.3003 ,

k̃1 = 0.07182 , and k̃2 =
1

1.16
k̃1 = 0.06191 . (23)

A small error is seen on the fourth digit, which is due to both the Gaussian noise

and the size of the stop criterion for the Nelder–Mead algorithm.

Discussion
Phase separation and aggregation of polyQ proteins are prominent signs of certain

neurodegenerative diseases. Often, protein inclusions of GFP–tagged polyQ pro-

teins are first visible in cells after several days in culture allowing only for studying

relatively inert, bright and stable aggregate structures [15, 13]. Thus a key re-

quirement in traditional approaches is that the IBs and similar fluorescent protein

aggregates differ in their intensity significantly from the fluorescent protein pool
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in the surrounding cyto- or nucleoplasm. This, however, limits the analysis to cer-

tain inclusion types. Here, we present a new computational approach for inferring

diffusion, membrane permeability, and exchange rate constants of GFP–mtHtt be-

tween cytoplasm and aggregates of differing brightness directly from experimental

FLIP image sequences. Our method allows for detection and dynamic character-

ization of protein aggregates even in cases, where they are not visible in single

image acquisitions. Using the calibrated reaction–diffusion model, we found that

rate constants for exchange of GFP–mtHtt between such large but dim inclusions

and the cytoplasm are fast (binding rate constant k1 = 0.0718 s−1 (Figure 3) and

k1 = 0.0111 s−1 (Figure 4) and release rate constant of k2 = 0.0619 s−1 (Figure 3)

and k2 = 0.0109 s−1 (Figure 4). We found similar values previously for the same

protein and cell system using a simple multi–compartment model which ignored

diffusion and nucleo–cytoplasmic exchange of GFP–mtHtt (i.e. binding rate con-

stant k1 = 0.016 ± 0.006 s−1 and release rate constant of k2 = 0.0127 ± 0.004 s−1,

mean ± SEM of 6 cells) [7]. From that, we can conclude, that the typical residence

time of GFP–mtHtt once bound to cytoplasmic aggregates is on order 16–83 s be-

fore being again released and available for free cytoplasmic transport and nucleo–

cytoplasmic exchange. Our estimates of intracellular diffusion constants for GFP–

mtHtt of α = 1
2 (15.9 + 17.6) = 16.75µm2/s are in good agreement with what would

be expected for a protein the size of GFP-Q73 (i.e. Stokes radius of R ≈ 3.4 nm

[9]) in the cytoplasm (i.e. viscosity of η = 3.79 · 10−9 kg
s·m predicts α = 16.6 accord-

ing to data from [37]). Supporting that notion is a previous report, which found

α = 18.4 ± 3.3µm2/s for diffusion of GFP–mtHtt of the same size (i.e., Q73) in

the cytoplasm of N2a cells using FRAP [9]. Using an average cytoplasmic diffusion

constant of α = 16.75µm2/s and the upper estimate of the time constant for bind-

ing of 1/(k1 = 0.0718 s−1) = 14 s from our analysis, we conclude that GFP–mtHtt

can diffuse on average 30µm away from an aggregate after release before the next

binding event takes place. Thus, diffusion is not limiting the aggregation kinetics,

which explains, why we found very similar estimates for the binding and dissocia-

tion constants as reported here with our previous model which ignored cytoplasmic

diffusion altogether [7]. We believe that rapid diffusion and exchange of soluble

mtHtt with cytoplasmic inclusions could contribute to the efficient recruitment of

other proteins to IBs which further accelerates cellular dysfunction as observed in

various studies [38, 14, 6].

In [28] we presented a method using a semi-permeable membrane model to de-

scribe the transport of eGFP. The same semi-permeable membrane model is used

in this paper. However, the relatively high permeabilities of the GFP-mtHtt pro-

tein may indicate that the traffic across the nuclear membrane could be caused

by selective and directed transport [39]. In fact, we found that nuclear membrane

permeabilities for GFP–mtHtt in the cells studied in Figure 3 and 4 were higher

than what we previously observed for GFP using the same FLIP modeling approach

(ref. Scientific Reports-MS). On the other hand, two to three days after transient

transfection, we often observed slowed nuclear-cytoplasmic exchange of GFP–mtHtt

compared GFP, likely due to the pronounced formation of sub-resolution aggregates

which interfere with normal nucleo–cytoplasmic transport (not shown but see Figure

6 in [7]). Such varying results have been reported previously [40, 27, 41, 42, 43] and
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they could be well attributed to the eventual occurrence of soluble oligomers, whose

transport across the nuclear membrane is delayed, while transport of monomeric

mtHtt profits from interaction with FG-rich repeats in the nuclear pore, which can

accelerate transport compared to passive cargo [37]. It is possible to replace the

semi-permeable membrane model with a model similar to the compartment model

for the aggregates, and thus obtain a reactive membrane transition.

The proportionality constant γ depends on the structures and intensity observed

on the first FLIP image. Those these cannot be expected to be fully equal, as they

are structure dependent.

In this paper, only one reaction rate is fitted for all aggregates in the same cell.

Each extra reaction rate per aggregate would increase the complexity of the cali-

bration process, such that one should have independent evidence for such hetero-

geneity before extending the model into that direction. For the readers that may

want individual reaction mechanics for each aggregate, we suggest to calibrate the

parameters α, β, γ and p first, and then fix these parameters while finding the ones

for the aggregates. This can be done under the assumption that the traffic from the

aggregates is so small that it would not affect the other parameters.

Conclusion
Our new computational method allows one to determine diffusion constants, nucleo-

cytoplasmic permeability and exchange kinetics of polyQ proteins, such as mtHtt,

from live-cell FLIP image data. This is the first time, to our knowledge, that all such

transport parameters can be inferred in parallel from the full spatiotemporal FLIP

intensity profile directly within the cell geometry. Using this new method, we find

that polyQ proteins can exchange rapidly between cytoplasm and aggregates and

that diffusion of protein monomers is not limiting this exchange process. Further-

more, we show that computational FLIP is an efficient method to detect dim protein

aggregates due to their delayed fluorescence loss. Binding and dissociation constants

of mtHtt to and from such aggregates are comparable such that the inclusions are

hardly visible in single images. Finally, our method sets the stage for a systematic

exploration of how the aggregation process affects the nucleo-cytoplasmic perme-

ability of polyQ proteins. Our new approach is widely applicable to quantify protein

dynamics in cellular inclusions of various disease models.
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