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Abstract

Motivation: Existing approaches for predicting RNA secondary structures depend on how to decompose
a secondary structure into substructures, so-called the architecture, to define their parameter space.
However, the architecture has not been sufficiently investigated especially for pseudoknotted secondary
structures.
Results: In this paper, we propose a novel algorithm to directly infer base-pairing probabilities with
neural networks that does not depend on the architecture of RNA secondary structures, followed by
performing the maximum expected accuracy (MEA) based decoding algorithms; Nussinov-style decoding
for pseudoknot-free structures, and IPknot-style decoding for pseudoknotted structures. To train the neural
networks connected to each base-pair, we adopt a max-margin framework, called structured support
vector machines (SSVM), as the output layer. Our benchmarks for predicting RNA secondary structures
with and without pseudoknots show that our algorithm achieves the best prediction accuracy compared
with existing methods.
Availability: The source code is available at https://github.com/keio-bioinformatics/

neuralfold/.
Contact: satoken@bio.keio.ac.jp

1 Introduction
Recent studies have unveiled that functional non-coding RNAs (ncRNAs)
play essential roles such as transcriptional regulation and guiding
modification, resulting in various biological processes ranging from
development and cell differentiation to the cause of diseases (Hirose
et al., 2014). Since it is well-known that functions of ncRNAs are deeply
related to their structures rather than primary sequences, discovering the
structures of ncRNAs leads to understanding the functions of ncRNAs.
However, there are severe difficulties in experimental assays to determine
RNA tertiary structures such as nuclear magnetic resonance (NMR) and
X-ray crystal structure analysis due to high experimental costs and size
limits of measurements on RNA. Therefore, instead of such experimental
assays, we frequently perform computational prediction of RNA secondary

structures, which is defined as a set of base-pairs consisting of hydrogen
bonds between nucleotides.

The most popular approach for predicting RNA secondary structures
is based on thermodynamic models such as Turner’s nearest neighbor
model (Schroeder and Turner, 2009; Turner and Mathews, 2010), which
defines characteristic substructures such as hairpin loops and base-pair
stacking. Free energy of each substructure has been determined by
experimental methods such as the optical melting experiment (Schroeder
and Turner, 2009). The free energy of an RNA secondary structure is
calculated by summing up the free energy of substructures into which it is
decomposed. We can employ the dynamic programming technique to find
the optimal secondary structure that minimizes the free energy for a given
RNA sequence. A number of tools including UNAfold (Zuker, 1989),
RNAfold (Lorenz et al., 2011) and RNAstructure (Reuter and Mathews,
2010) have adopted this approach.
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Fig. 1. An example of pseudoknots.

An alternative approach utilizes machine learning techniques, which
train scoring parameters for decomposed substructures from reference
structures, instead of the experimental techniques. This approach has
successfully been adopted by CONTRAfold (Do et al., 2006, 2007),
Simfold (Andronescu et al., 2007, 2010a), ContextFold (Zakov et al.,
2011) and so on, and thus has enabled us to predict more accurate RNA
secondary structures.

Another important aspect of the RNA secondary structure prediction
is the choice of the decoding algorithm, which finds an optimal secondary
structure from all the possible secondary structures. A classic decoding
algorithm is the minimum free energy (MFE) based algorithm for the
thermodynamic approach, or the maximum likelihood estimation (MLE)
based algorithm for the machine learning based approach, which finds
a secondary structure that minimizes (resp. maximizes) the free energy
(resp. probability or scoring function). Another choice is the posterior
decoding algorithm based on the maximum expected accuracy (MEA)
principle, which is known to be one of the effective approaches for
many high-dimensional combinatorial optimization problems (Carvalho
and Lawrence, 2008). Since we usually evaluate prediction of RNA
secondary structures by base-pair-wise accuracy measures, the MEA-
based decoding algorithms utilize posterior base-pairing probabilities that
can be calculated by McCaskill algorithm (McCaskill, 1990) or the inside-
outside algorithm for stochastic context-free grammars. CONTRAfold and
CentroidFold (Hamada et al., 2009; Sato et al., 2009) have successfully
implemented the MEA-based decoding algorithm for predicting RNA
secondary structures.

Pseudoknot is one of the important structural elements in RNA
secondary structures. A secondary structure includes a pseudoknot if at
least two arcs (hydrogen bonds) drawn above the primary sequence cross
each other (Fig. 1). Many RNAs such as rRNAs, tmRNAs and viral RNAs
form pseudoknotted secondary structures (van Batenburg et al., 2001). It
is known that pseudoknots are involved in the regulation of translation and
splicing, and ribosomal frame shifting (Staple and Butcher, 2005; Brierley
et al., 2007). Furthermore, pseudoknots assist folding into 3D structures
in many cases (Fechter et al., 2001). Therefore, pseudoknots cannot be
ignored for structural and functional analysis of RNAs.

However, all of the above-mentioned algorithms cannot consider
pseudoknotted secondary structures due to computational complexity.
It has been proven that the problem of finding the MFE structure
including arbitrary pseudoknots is NP-hard (Akutsu, 2000; Lyngsøand
Pedersen, 2000). Therefore, practically available algorithms for predicting
pseudoknotted RNA secondary structures fall into one of the following
two approaches; the exact algorithms for a limited class of pseudoknots
such as PKNOTS (Rivas and Eddy, 1999), NUPACK (Dirks and Pierce,
2003, 2004) and pknotsRG (Reeder and Giegerich, 2004), and the heuristic
algorithms that do not guarantee the optimal structure such as ILM (Ruan
et al., 2004), HotKnots (Andronescu et al., 2010b; Ren et al., 2005),
FlexStem (Chen et al., 2008) and ProbKnot (Bellaousov and Mathews,
2010).

We have previously developed IPknot, which enables us fast and
accurate prediction of RNA secondary structures with pseudoknots using
integer programming (Sato et al., 2011). IPknot adopts the MEA-based
decoding algorithm that utilizes base-pairing probabilities combined

with an approximation of decomposing a pseudoknotted structure into
hierarchical pseudoknot-free structures. Prediction performance of IPknot
is sufficiently good in speed and accuracy as compared with the heuristic
algorithms, and is much faster than the exact algorithms.

Both the thermodynamic approach and the machine learning based
approach depend on how to decompose a secondary structure into
substructures, so-called the architecture in (Rivas, 2013), to define their
parameter space. The Turner’s nearest neighbor model is the most well-
studied architecture for pseudoknot-free secondary structures, meanwhile
the energy model for pseudoknotted secondary structures has not been
sufficiently investigated except for the Dirks–Pierce model (Dirks and
Pierce, 2003, 2004) and the Cao–Chen model (Cao and Chen, 2006) for
limited classes of pseudoknots. To the best of our knowledge, an effective
and efficient procedure to find a suitable architecture that can predict RNA
secondary structures more accurately is still unknown.

In this paper, we propose a novel algorithm to directly infer base-
pairing probabilities with neural networks instead of the McCaskill
algorithm or the inside-outside algorithm, which depend on the
architecture of RNA secondary structures. Then, we employ the inferred
base-pairing probabilities as part of the MEA-based scoring function for
the decoding algorithms; Nussinov-style decoding for pseudoknot-free
structures and IPknot-style decoding for pseudoknotted structures. To
train the neural networks connected to each base-pair, we adopt a max-
margin framework, called structured support vector machines (SSVM), as
the output layer. We implement two types of neural networks connected
to each base-pair; bidirectional recursive neural networks (BiRNN) over
tree structures and multilayer feedforward neural networks (FNN) with k-
mer contexts around both of paired bases. Our benchmarks for predicting
RNA secondary structures with and without pseudoknots show that our
algorithm achieves the best prediction accuracy compared with existing
methods.

The major advantages of our work are summarized as follows: (i)
our algorithm enables us to accurately predict RNA secondary structures
with and without pseudoknots, and (ii) our algorithm assumes no prior
knowledge of the architecture that defines the decomposition of RNA
secondary structures and thus the parameter space.

2 Methods

2.1 Preliminaries

Let Σ = {A,C,G,U} and Σ∗ denote the set of all finite RNA sequences
consisting of bases in Σ. For a sequence x = x1x2 · · ·xn ∈ Σ∗, let |x|
denote the number of bases appearing in x, which is called the length of
x. Let S(x) be a set of all possible secondary structures of x. A secondary
structure y ∈ S(x) is represented as a |x| × |x| binary-valued triangular
matrix y = (yij)i<j , where yij = 1 if and only if bases xi and xj
form a base-pair composed by hydrogen bonds including the Watson-Crick
base-pairs (A-U and G-C), the Wobble base-pairs (G-U).

2.2 MEA-based scoring function

We employ the maximum expected accuracy (MEA) based scoring
function that has been originally used for IPknot (Sato et al., 2011).

We assume that a secondary structure y ∈ S(x) can be decomposed
into a set of pseudoknot-free substructures (y(1), y(2), . . . , y(m)) that
satisfies the following conditions: (1) y ∈ S(x) should be decomposed
into a mutually-exclusive set, that is, for all 1 ≤ i < j ≤ |x|,∑

1≤p≤m y
(p)
ij ≤ 1; and (2) every base pair in y(p) should be

pseudoknotted to at least one base pair in y(q) for ∀q < p. Each
pseudoknot-free substructure y(p) is said to belong to the level p. For
any RNA secondary structure y ∈ S(x), there exists a positive integer
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m such that y can be decomposed into m pseudoknot-free substructures.
From this viewpoint, we can say that the above decomposition enables our
method to model arbitrary pseudoknots.

First, we define a gain function of ŷ ∈ S(x) with regard to the correct
secondary structure y ∈ S(x) as follows:

Gγ(y, ŷ) = γTP (y, ŷ) + TN(y, ŷ) (1)

=
∑
i<j

[γI(yij = 1)I(ŷij = 1) + I(yij = 0)I(ŷij = 0)] ,

where γ > 0 is a weight parameter for base pairs, TP and TN denote the
numbers of true positives (base pairs) and true negatives (non-base pairs),
respectively, and I(condition) is the indicator function that takes a value
of 1 or 0 depending on whether the condition is true or false.

Our objective is to find a secondary structure ŷ that maximizes the
expectation of the gain function (1) under a given probability distribution
over the space S(x) of pseudoknotted secondary structures:

Ey|x[Gγ(y, ŷ)] =
∑

y∈S(x)
Gγ(y, ŷ)P (y | x), (2)

where P (y | x) is a probability distribution of RNA secondary structures
including pseudoknots. It has been proven that the γ-centroid estimator (2)
enables us to decode secondary structures accurately from a given
probability distribution (Hamada et al., 2009).

We approximate the expected gain function (2) by the sum of the
expected gain functions for each level of pseudoknot-free substructures
(ŷ(1), . . . , ŷ(m)) in the decomposed set of a pseudoknotted structure
ŷ ∈ S(x), and thus simultaneously find a pseudoknotted structure ŷ and
its decomposition (ŷ(1), . . . , ŷ(m)) that maximize:

Ey|x[Gγ(y, ŷ)] '
∑

1≤p≤m

∑
y∈S(x)

Gγ(p) (y, ŷ(p))P (y | x)

=
∑

1≤p≤m

∑
i<j

[
(γ(p) + 1)pij − 1

]
ŷ
(p)
ij + C,(3)

where γ(p) > 0 is a weight parameter for base pairs at the level p, and
C is a constant independent of ŷ (see the Supplementary Material of
(Hamada et al., 2009) for the derivation). The base-pairing probability
pij is the probability that the base xi is paired with xj . As seen in
Sec. 2.4, we employ one of the three algorithms for calculating base-pairing
probabilities.

It is worth mentioning that IPknot can be regarded as an extension of
CentroidFold (Hamada et al., 2009). If we let the number of decomposed
levels m = 1, the approximate expected gain function (3) is identical to
the γ-centroid estimator used in CentroidFold.

2.3 Decoding algorithms

2.3.1 Nussinov-style decoding algorithm for pseudoknot-free structures
For pseudoknot-free secondary structure prediction, we find ŷ that
maximizes the expected gain (3) with m = 1 under the constraints on
base-pairs, that is,

maximize
∑
i<j

[(γ + 1)pij − 1] ŷij (4)

subject to


i−1∑
j=1

yji +

|x|∑
j=i+1

yij

 ≤ 1 (1 ≤ ∀i ≤ |x|), (5)

yij + ykl ≤ 1 (1 ≤ ∀i < ∀k < ∀j < ∀l ≤ |x|), (6)

This integer programming problem (IP) can be solved by using the
following dynamic programming similar to Nussinov algorithm (Nussinov

et al., 1978):

Mi,j = max


Mi+1,j

Mi,j−1

Mi+1,j−1 + (γ + 1)pij − 1

maxi<k<jMi,k +Mk+1,j

, (7)

and tracing back from M1,|x|.

2.3.2 IPknot-style decoding algorithm for pseudoknotted structures
Maximization of the approximate expected gain (3) can be solved by the
IP problem as follows:

maximize
∑

1≤p≤m

∑
i<j

[
(γ(p) + 1)pij − 1

]
ŷ
(p)
ij (8)

subject to
∑

1≤p≤m


i−1∑
j=1

y
(p)
ji +

|x|∑
j=i+1

y
(p)
ij

 ≤ 1 (1 ≤ ∀i ≤ |x|),

(9)

y
(p)
ij + y

(p)
kl ≤ 1

(1 ≤ ∀p ≤ m, 1 ≤ ∀i < ∀k < ∀j < ∀l ≤ |x|),
(10)∑

i<k<j<l

y
(q)
ij +

∑
k<i′<l<j′

y
(q)
i′j′ ≥ y

(p)
kl

(1 ≤ ∀q < ∀p ≤ m, 1 ≤ ∀k < ∀l ≤ |x|). (11)

Note that due to Eq. (3), we need to consider only base pairs y(p)ij whose

base-pairing probabilities pij are larger than θ(p) = 1/(γ(p) + 1). The
constraint (9) means that each base xi can be paired with at most one base.
The constraint (10) disallows pseudoknots within the same level p. The
constraint (11) ensures that each base pair at the level p is pseudoknotted to
at least one base pair at every lower level q < p. We setm = 2 by default
according to IPknot’s default. This suggests that the predicted structure
can be decomposed into two pseudoknot-free secondary structures.

2.4 Inferring base-paring probabilities

Our scoring function (3) described in Sec. 2.2 is calculated by using base-
pairing probabilities pij . In this section, we introduce two approaches for
computing base-pairing probabilities. The first approach is a traditional
one that is based on the probability distribution of RNA secondary
structures, e.g., the McCaskill model (McCaskill, 1990) for pseudoknot-
free structures and its extension to pseudoknotted structures such as the
Dirks–Pierce model (Dirks and Pierce, 2003, 2004). The second approach
proposed in this paper directly calculates base-pairing probabilities using
neural networks.

2.4.1 Traditional models for base-pairing probabilities
The base-pairing probability pij is defined as:

pij =
∑

y∈S(x)
I(yij = 1)P (y | x) (12)

from a probability distribution P (y | x) over a set S(x) of secondary
structures with or without pseudoknots.

For predicting pseudoknot-free structures, the McCaskill model (McCaskill,
1990) can be mostly used as P (y | x) combined with the Nussinov-style
decoding algorithm described in Sec. 2.3.1. The computational complexity
of calculating Eq. (12) for the McCaskill model is O(|x|3) for time and
O(|x|2) for space by using the dynamic programming technique. This
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A C G C G UU

(c) Output base-pairing probabilities

(a) Inside RNN

A C G UC G U

(b) Outside RNN

A C G UC G U

Fig. 2. A bidirectional recursive neural network for calculating base-pairing probabilities.
Arrows indicate the network parameters of neural networks.

model has been implemented previously as CentroidFold (Hamada et al.,
2009; Sato et al., 2009).

For predicting pseudoknotted structures, we can select P (y | x) from
several models. A naïve model is the use of the probability distribution with
pseudoknots as well as Eq. (2) in spite of high computational costs, e.g.,
the Dirks–Pierce model (Dirks and Pierce, 2003, 2004) for a limited class
of pseudoknots, whose computational complexity isO(|x|5) for time and
O(|x|4) for space. Alternatively, we can employ a probability distribution
without pseudoknots for each decomposed pseudoknot-free structure such
as the McCaskill model. Furthermore, to boost the prediction accuracy, we
can utilize a heuristic algorithm, the iterative refinement, that refines the
base-pairing probability matrix from the distribution without pseudoknots.
See (Sato et al., 2011) for more details. These three models have been
implemented as IPknot (Sato et al., 2011).

2.4.2 Neural network models
We propose two neural network architectures for calculating base-pairing
probabilities instead of the probability distribution over RNA secondary
structures.

The first architecture is the bidirectional recursive neural network
(BiRNN) over tree structures as shown in Fig. 2. The BiRNN consists of
the three matrices: (a) the inside RNN matrix, (b) the outside RNN matrix
and (c) the inside-outside matrix for outputting base-pairing probabilities,
each of whose element contains a network layer (indicated by a circle)
with 80 hidden nodes. Each layer in the inside (resp. outside) matrix
is recursively calculated from connected source layers as like the inside
(resp. outside) algorithm for the stochastic context-free grammars (SCFG).
The ReLU activation function is applied before input to each recursive
node. The base-pairing probability at each position is calculated from the
corresponding layers in the inside and outside matrices with the sigmoid
activation function. Our implementation of BiRNN assumes a simple RNA
grammar

S → aSâ | aS | Sa | SS | ε,

where a ∈ Σ, a and â stand for paired bases, S is the start non-terminal
symbol, ε is the empty string.

The second architecture employs simple multilayer feedforward neural
networks (FNN). To calculate the base-pairing probability pij , an FNN
inputs two k-mers around i-th and j-th bases as shown in Fig. 3. Each
base is encoded by the one-hot encoding of nucleotides and an additional
node that indicates the end of the loop, which should be active for xl s.t.
l ≥ j in the left k-mer around xi or xl s.t. l ≤ i in the right k-mer around
xj . We can expect that this encoding embeds the length of loops and the
contexts around the openings and closings of helices. We set k = 81

for the k-mer context length default (See for more details in Sec. 3.4).
We construct two hidden layers consisting of 200 and 50 nodes with the
ReLU activation function, and one output node with the sigmoid activation
function to output base-pairing probabilities.

yij

A C G C U G U A C G C U G U

...

...

pij

k-mer k-mer

C G U C GAC G U U G U A C G C G U

Fig. 3. A feedforward neural network with k(= 9)-mer contexts around xi and xj
calculates the base-pairing probability pij . The end-of-loop nodes of the highlighted
nucleotides are activated since they are beyond the paired bases.

Note that the FNN model depends on no assumption of RNA secondary
structures, while the BiRNN model assumes an RNA grammar that
considers no pseudoknots. Instead, the FNN model can take longer
contexts around each base-pair into consideration by using longer k-mers.

2.5 Learning algorithm

To optimize the network parameters λ, we employ a max-margin
framework called structured support vector machines (SSVM) (Tsochantaridis
et al., 2005). Given a training dataset D = {(x(k), y(k))}Kk=1, where
x(k) is the k-th RNA sequence and y(k) ∈ S(x(k)) is the correct
secondary structure for the k-th sequence x(k), we aim to find λ that
minimizes the objective function

L(λ) =
∑

(x,y)∈D

(
max
ŷ∈S(x)

[f(x, ŷ) + ∆(y, ŷ)] − f(x, y)
)
, (13)

where f(x, y) is the scoring function of RNA secondary structure y ∈
S(x) for a given RNA sequence x ∈ Σ∗, that is, Eq. (4) for the Nussinov-
style decoding, or Eq. (8) for the IPknot-style decoding. Here, ∆(y, ŷ) is
a loss function of ŷ for y defined as

∆(y, ŷ) =δFN × (# of false negative base-pairs) (14)

+ δFP × (# of false positive base-pairs)

=δFN
∑
i<j

I(yij = 1)I(ŷij = 0)

+ δFP
∑
i<j

I(yij = 0)I(ŷij = 1)

where δFN and δFP are tunable hyperparameters to control the trade-
off between sensitivity and specificity for learning the parameters. We
used δFN = δFP = 0.1 by default. In this case, we can calculate
the first term of Eq. (13) using the Nussinov-style decoding algorithm
or the IPknot-style decoding algorithm modified by the loss-augmented
inference (Tsochantaridis et al., 2005).

To minimize the objective function (13), we can apply stochastic
subgradient descent (Fig. 4) or its variant. We can calculate the
gradients with regard to the network parameters λ for the objective
function (13) using the gradients with regard to pij by the chain rule of
differential. This means that the prediction errors occurred by the decoding
algorithm backpropagate to the neural network that calculates base pairing
probabilities through the connected base pairs.
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1: initialize λk for all λk ∈ λ
2: repeat
3: for all (x, y) ∈ D do
4: ŷ ← arg maxŷ [f(x, ŷ) + ∆(y, ŷ)]

5: for all λk ∈ λ do
6: λk ← λk − η(γ + 1)

∑
i<j

∂pij
∂λk

(ŷij − yij)
7: end for
8: end for
9: until all the parameters converge

Fig. 4. The stochastic subgradient descent algorithm for SSVMs. η > 0 is the predefined
learning rate.

3 Results

3.1 Implementation

Our algorithm was implemented as a program called Neuralfold, which is
short for the Neural network based RNA FOLDing algorithm. We employ
CPLEX IP solver 1 to solve the IP problem (8)–(11). The source code
is available at https://github.com/keio-bioinformatics/
neuralfold/.

3.2 Datasets

We evaluated our algorithm with the Nussinov-style decoding algorithm
for predicting pseudoknot-free RNA secondary structures on two datasets:
TrainSetB and TestSetB assembled from Rfam (Gardner et al., 2011),
which contain 22 families with 3D structures (Rivas, 2013). TrainSetB and
TestSetB include sequences from Rfam seed alignments with no more than
70% identity among each other. TestSetB is made up of 22 RNA families
and its composition is 14 5.8SrRNAs, 18 U1 spliceosomal RNAs, 45 U4
spliceosomal RNAs, 233 riboswitches (from seven different families), 116
cis regulatory elements (from nine different families), three ribozymes,
and one bacteriophage pRNA. TestSetB contains 430 sequences. There
are 52,097 residues in all, of which 22,728 bases (43.6%) form base pairs.
The sequence length is in the range of 27 to 244 nt and the average length
is 121 nt. TestSetB contains 8.3% noncanonical base pairs. TrainSetB
also consists of 22 RNA families as same as TestSetB, by selecting the
sequences dissimilar with TestSetB. TrainSetB contains 1094 sequences.
There are 112,398 residues in all, of which 52,065 bases (46.3%) form base
pairs. The sequence length is in the range of 27 to 237 nt and the average
length is 103 nt. TrainSetB contains 4.3% noncanonical base pairs.

We also evaluated our algorithm with the IPknot-style decoding
algorithm for predicting pseudoknotted RNA secondary structures on
pk168 dataset (Huang and Ali, 2007), which was compiled from
PseudoBase (van Batenburg et al., 2001), This dataset includes 16
categories of 168 pseudoknotted sequences whose lengths are <140 nt.

3.3 Prediction performance

We evaluated the accuracy of predicting RNA secondary structures through
the sensitivity (SEN) and the positive predictive value (PPV), defined as:

SEN =
TP

TP + FN
, PPV =

TP

TP + FP

where TP is the number of correctly predicted base-pairs (true positives),
FP is the number of incorrectly predicted basepairs (false positives),
and FN is the number of base-pairs in the true structure that were not

1 https://www.ibm.com/analytics/data-science/
prescriptive-analytics/cplex-optimizer

Table 1. The accuracy on the pseudoknot-free datasets.

Implementation Model SEN PPV F
Neuralfold BiRNN 0.649 0.601 0.624
Neuralfold FNN 0.600 0.700 0.646

CentroidFold McCaskill 0.513 0.544 0.528

Table 2. The accuracy on the pseudoknotted datasets.

Implementation Model SEN PPV F
Neuralfold FNN 0.801 0.762 0.781

IPknot McCaskill w/o refine. 0.619 0.710 0.661
IPknot McCaskill w/ refine. 0.753 0.684 0.717
IPknot Dirks–Pierce 0.809 0.749 0.778

refine.: the iterative refinement

predicted (false negatives). We also used the F-value as the balanced
measure between SEN and PPV, which is defined as their harmonic mean:

F =
2× SEN × PPV
SEN + PPV

.

We conducted computational experiments on the datasets described
in the previous section using the Nussinov-style decoding algorithm
with the McCaskill model and the neural network models: the BiRNN
model and the FNN model. We employed CentroidFold as the Nussinov
decoding algorithm with the McCaksill model. We performed experiments
on TestSetB using the parameters trained from TrainSetB. As shown in
Table 1, the neural network models achieved better accuracy compared
with the traditional model. Hereafter, we adopt the FNN model with k-mer
contexts as the default model of Neuralfold.

The other computational experiments on the pk168 pseudoknotted
dataset were conducted using the IPknot-style decoding algorithm with
the McCaskill model with and without the iterative refinement, and the
Dirks–Pierce model as well as Neuralfold with the FNN model. Table 2
shows that the FNN model is comparable to IPknot with the Dirks–Pierce
model for pseudoknots, and better than the McCaskill model with and
without the iterative refinement.

Table 3 shows the computation time for various lengths of sequences;
PKB229 and PKB134 in the pk168 dataset, and ASE_00193, CRW_00614
and CRW_00774 in RNA STRAND database (Andronescu et al., 2008).
This shows that the computation time for predicting pseudoknotted
secondary structure of the FNN model is comparably fast to IPknot with
the Dirks–Pierce model.

3.4 Effects of context length

We evaluated the prediction accuracy of the FNN model on the
pseudoknot-free dataset and the pk168 dataset for several lengths of
k-mers to be input to neural networks. Figures 5 and 6 show the
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Table 3. Computation time for calculating base-pairing probabilities of various
lengths of sequences.

ID PKB229 PKB134 ASE_00193 CRW_00614 CRW_00774
length (nt) 67 137 301 494 989
Neuralfold
(FNN) 3.30s 27.78s 44.73s 60.22s 3m4.2s

IPknot
(w/o refine.) 0.01s 0.05s 0.18s 0.55s 2.64s
(w/ refine.) 0.03s 0.08s 0.31s 1.03s 5.86s
(D&P) 8.36s 9m4.7s n/a n/a n/a

Computation time was measured on Linux OS v2.6.32 with Intel Xeon E5-2680
(2.80 GHz) and 64 GB memory.
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Fig. 5. The accuracy of the FNN model with different lengths ofk-mers on the pseudoknot-
free dataset.
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Fig. 6. The accuracy of the FNN model with different lengths of k-mers on the
pseudoknotted dataset.

accuracy for each feature representation with different k-mer lengths
k = {3, 7, 11, 15, 19, 21, 41, 61, 81, 101, 121}. This indicates that the
accuracy is improved mostly when the length of the k-mer is 81, and the
difference of the accuracy on L ≥ 81 is negligible.

3.5 Comparison with competitive methods for predicting
pseudoknot-free secondary structures

We compared our algorithm with the other competitive methods
for predicting pseudoknot-free RNA secondary structures including

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
PPV

0.3

0.4

0.5

0.6

0.7

SE
N

Neuralfold
CentroidFold
CONTRAfold MEA
CONTRAfold Viterbi
RNAfold MEA
RNAfold MFE
ContextFold

Fig. 7. PPV-SEN plots comparing our algorithm with the competitive methods on the
pseudoknot-free dataset.

CentroidFold (Hamada et al., 2009; Sato et al., 2009), CONTRAfold (Do
et al., 2006, 2007), RNAfold in the Vienna RNA package (Lorenz et al.,
2011) and ContextFold (Reeder and Giegerich, 2004). For the posterior
decoding methods with the trade-off parameter γ in Eq. (4), we used
γ ∈ {2n | n ∈ Z, −5 ≤ n ≤ 10}. Figure 7 shows PPV-SEN plots
for each method, indicating that our algorithm works accurately on the
pseudoknot-free dataset.

3.6 Comparison with competitive methods for predicting
pseudoknotted secondary structures

We also compared our algorithm with the other competitive methods
for predicting pseudoknotted secondary structures including IPknot (Sato
et al., 2011), ProbKnot (Bellaousov and Mathews, 2010), FlexStem (Chen
et al., 2008), HotKnots (Andronescu et al., 2010b; Ren et al., 2005),
pknotsRG (Reeder and Giegerich, 2004), ILM (Ruan et al., 2004),
NUPACK (Dirks and Pierce, 2003, 2004) and PKNOTS (Rivas and Eddy,
1999) as well as the methods for predicting pseudoknot-free secondary
structures including CentroidFold and RNAfold. Neuralfold performed
10-fold cross validation on the pk168 dataset. Figure 8 shows PPV-SEN
plots for each method, indicating that our algorithm works accurately on
the pk168 dataset.

4 Discussion
We propose a novel algorithm for directly inferring base-pairing
probabilities with neural networks, which enables us to predict RNA
secondary structures accurately. Sato et al. (2011) have previously
proposed the iterative refinement algorithm for base-pairing probabilities,
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Fig. 8. PPV-SEN plots comparing our algorithm with the competitive methods on the
pseudoknotted dataset. We set γ(1) = 2, γ(2) = 2 for Neuralfold, γ(1) = 2, γ(2) = 4

for IPknot with D&P model, γ(1) = 2, γ(2) = 16 for IPknot with/without refinement,
and γ = 2 for CentroidFold.

which refines the base-pairing probabilities calculated by the McCaskill
algorithm so as to fit for pseudoknotted secondary structure prediction.
The direct inference of base-pairing probabilities with neural networks is
a similar approach to the iterative refinement algorithm in the sense that
both directly update base-pairing probabilities, followed by the IPknot-
style decoding algorithm using the base-pairing probabilities. Although
the iterative refinement algorithm could fortunately improve the prediction
accuracy of IPknot partly, it should be stated that the iterative refinement
algorithm is an ad-hoc algorithm since there exists no theoretical guarantee.
Meanwhile, the neural networks that infer base-pairing probabilities are
trained from given reference secondary structures by the max-margin
framework, meaning that we can theoretically expect that the neural
network models improves the secondary structure prediction. In fact,
Table 2 shows that our algorithm achieved not only better accuracy than
the iterative refinement algorithm, but is also comparable to that of the
Dirks–Pierce model, which can calculate exact base-pairing probabilities
for a limited class of pseudoknots.

The direct inference of base-pairing probabilities with neural networks
presented in this paper is the first algorithm that can be trained for
pseudoknotted secondary structures except for HotKnots 2.0 (Andronescu
et al., 2010b), which finds a pseudoknotted secondary structure by an
MFE-based heuristic decoding algorithm with energy parameters of the
Dirks–Pierce model or the Cao–Chen model trained from pseudoknotted
reference structures. One of the advantages of our algorithm over HotKnots
2.0 is that no assumption on the architecture of RNA secondary structures
is required. In other words, our model can be trained from arbitrary classes
of pseudoknots, while HotKnots cannot be trained from more complicated
classes of pseudoknots than the one that the model had assumed.
Furthermore, our algorithm can compute base-pairing probabilities, which
can be applicable for various applications of RNA informatics such as
family classification (Sato et al., 2008; Morita et al., 2009), RNA-RNA
interaction prediction (Kato et al., 2010) and simultaneous aligning and
folding (Sato et al., 2012). Accurate base-pairing probabilities calculated
by our algorithm can improve the quality of such applications.

The FNN model takes two k-mers around each base-pair as input to
infer its base-pairing probability, where k is the context length to model
the length of loops and the contexts around the openings and closings of
helices. Here, we can see in Figure 9 how different the context k-mer
lengths will affect the prediction of pseudoknotted secondary structure.
Consider the input bases when calculating the base pairing probability of
the blue-highlighted base pair (AU) using the FNN model. The FNN model

U A

A

A

U

U

Predicted structure
(k-mer = 11)

Predicted structure
(k-mer = 41)

Reference structure

AGUCUAACAUGUCGGGCUGAGACAUGUC

1 28

Stem1

Stem2

Stem2 Stem2Stem1 Stem1

10-mer
13-mer

Fig. 9. (Top) Comparison between the reference structure of ID : PKB189 (top-left)
and predicted structures with the context length k=11 (top-middle) and k=41 (top-right).
(Bottom) Distance between two stems (Stem 1 and Stem 2) in the pseudoknotted structure.

with the context length k=11 takes 5 bases on both the upstream and the
downstream of the base i and j as input. As seen in Figure 9 (bottom), the
distances from the bases A and U are 10 and 13 to the stem 2, respectively.
This means that all the bases of the stem 2 are NOT completely located
within the context length k=11 around the base pair AU. On the other hand,
for the FNN model with the context length k=41, all the bases of the stem
2 are completely located within the context around the base pair AU. This
leads the FNN model to correctly predict the base pair AU, suggesting that
longer context length enables to consider dependency between stems in
pseudoknotted substructures.
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