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ABSTRACT 19 

Age-associated deterioration of cellular physiology leads to pathological conditions.  The 20 

ability to detect premature aging could provide a window for preventive therapies against age-21 

related diseases. However, the techniques for determining cellular age are limited, as they rely 22 

on a limited set of histological markers and lack predictive power.  Here, we implement 23 

GERAS (GEnetic Reference for Age of Single-cell), a machine learning based framework 24 

capable of assigning individual cells to chronological stages based on their transcriptomes. 25 

GERAS displays greater than 90% accuracy in classifying the chronological stage of 26 

zebrafish and human pancreatic cells. The framework demonstrates robustness against 27 

biological and technical noise, as evaluated by its performance on independent samplings of 28 

single-cells.  Additionally, GERAS determines the impact of differences in calorie intake and 29 

BMI on the aging of zebrafish and human pancreatic cells, respectively. We further harness 30 

the predictive power of GERAS to identify genome-wide molecular factors that correlate with 31 

aging. We show that one of these factors,  junb, is necessary to maintain the proliferative state 32 

of juvenile beta-cells. Our results showcase the applicability of a machine learning framework 33 

to classify the chronological stage of heterogeneous cell populations, while enabling to detect 34 

pro-aging factors and candidate genes associated with aging.    35 

 36 

 37 

  38 
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BACKGROUND 39 

Aging is a universal phenomenon, during which cells undergo progressive 40 

transcriptional 1,2, genomic 3,4, epigenetic 5, and metabolic 6 changes.  The age-related 41 

modifications can deteriorate the functional properties of cells.  The accumulation of cellular 42 

defects can lead to a decline in organismal health and to the onset of age-related diseases.  A 43 

major focus of the biology of aging is to identify factors that accelerate or slow-down, 44 

preferably even reverse, the cellular aging process.  Biological studies have identified 45 

multiple modifiers of the aging process, including genetic and environmental factors 7,8.  For 46 

instance, caloric restriction has been demonstrated to increase lifespan in multiple species 9, 47 

including humans 10.  However, the discovery of factors that influence aging relies on 48 

retrospective measures, after the impact of age has already manifested itself, and depends on a 49 

restricted set of indicators based on histological analysis 11.  It is therefore imperative to 50 

develop reliable indicators of cellular age that forgo the need for detrimental phenotypes.  51 

Predicting cellular aging before the defects manifest themselves would provide a window for 52 

therapeutic interventions.  Preventive therapies during this window would bypass additional 53 

complications arising after the onset of the pathology. 54 

The development of a reliable cellular age predictor requires two principal 55 

components.  Firstly, it entails a reliable assessment of the transitions cells undergo with age. 56 

Secondly, the predictor should be capable of placing cells of unknown age along this 57 

transition path in order to estimate their age.  The first objective, assessment of cellular 58 

transitions, has been enabled by recent advances in single-cell mRNA expression profiling 12.  59 

Cellular progression through the transitions is increasingly being described by both heuristic 60 

methods and probabilistic models.  These methods are categorized as pseudotemporal 61 

estimation algorithms and use techniques such as dimensionality reduction, graph theory, 62 

bifurcation analysis and optimal-transport analysis to place cells along a transition trajectory 63 

13–18.  All the methods make explicit or implicit assumptions about the smoothness of mRNA 64 
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expression profiles along the trajectories and seek to explain part of the variation across the 65 

cells by location along the trajectory.  Unwanted variation that cannot be explained by 66 

trajectory location can confound the analysis.  Some methods protect against confounding 67 

effects by using a prior over pseudotime that leverages information about the time cells were 68 

assayed 18 whilst others do not.  Although current methods can reveal cellular transitions 69 

during a differentiation process 19–22, they have only been shown to work retrospectively, that 70 

is they have no predictive ability to insert de-novo samples into the trajectories.  Thus, their 71 

predictive utility on unseen cells, the second objective, remains unresolved.     72 

Prediction of the position of de-novo samples in a cellular transition trajectory requires 73 

discrimination of the transcriptional features of importance from the confounding factors that 74 

accompany single-cell measurements.  The three main confounding factors are: 1) biological 75 

noise due to fluctuations in mRNA expression levels, 2) technical noise inherent in single-cell 76 

mRNA sequencing, and 3) cell-type diversity within an organ.  Biological noise can arise due 77 

to the stochasticity in biochemical processes involved in mRNA production and degradation 78 

23,24, heterogeneity in the cellular microenvironment 25, and many more unknown factors.  79 

Although mechanisms such as the passive transport of newly transcribed mRNA from the 80 

nucleus to the cytoplasm exist to reduce the level of biological noise 26, it can never be 81 

eliminated completely 23.  In fact, aging might enhance fluctuations in mRNA expression 82 

levels 27,28.  Nevertheless, in certain contexts, fluctuations in expression levels are beneficial 83 

to the organism 29,30.  Technical noise, on the other hand, arises due to the sensitivity and 84 

depth of single-cell sequencing technology 31.  Sequencing involves conversion of mRNA into 85 

cDNA and amplification of the minute amounts of cDNA.  These steps could omit certain 86 

mRNA molecules, muting their detection.  Moreover, amplified cDNA molecules might 87 

escape sequencing due to the limits on the comprehensiveness of the technology.  In effect, 88 

expression noise is inherent to single-cell measurements.  89 
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The diversity in cell types within an organ adds a second layer of complexity to the 90 

inherent noise in mRNA expression.  Diverse types of cells express unique sets of genes and 91 

regulatory networks.  Moreover, numerous studies have demonstrated the presence of cellular 92 

sub-populations within nominally homogenous cells 32,33.  For example, pancreatic beta-cells 93 

have been shown to consist of dynamic sub-populations with different proliferative and 94 

functional properties 34–36, and liver cells were demonstrated to display variability in gene 95 

expression depending on their location within the organ 37.  Thus, the inherent cell-to-cell 96 

heterogeneity adds to the challenge of extracting age-specific transitions from mRNA 97 

expression profiles.  Furthermore, cellular heterogeneity makes it difficult to extrapolate the 98 

results from studies at the tissue-scale to the aging of individual cells and to identify common 99 

molecular signatures of aging 38,39.   100 

In this study, we provide a framework that efficiently ‘learns’ the cellular transitions 101 

of aging from single-cell gene expression data in the presence of expression noise and cellular 102 

heterogeneity.  First, the age predictor is trained to recognize the age of individual cells based 103 

on their chronological stage.  Chronological stage is an easily measurable fact, and hence 104 

provides a ground truth for the training.  Second, we show that the trained predictor can place 105 

robustly cells of unknown ages along the aging path.  To show the utility of the age predictor, 106 

we apply it to the pancreatic beta-cells, which represent an excellent system for studying 107 

aging.  In mammals, the beta-cell mass is established during infancy and serves the individual 108 

throughout life 40.  The long-lived beta-cells support blood glucose regulation, with their 109 

dysfunction implicated in the development of Type 2 diabetes.  Older beta-cells display 110 

hallmarks of aging, such as a reduced proliferative capacity and impaired function 41.  We first 111 

focus on the zebrafish beta-cells due to the potential for visualization and genetic 112 

manipulation of beta-cells at single-cell resolution 36, and extend our framework to human 113 

pancreatic cells using publicly available published datasets.  Finally, we demonstrate the 114 

predictor’s utility in identifying age-modifying genetic and environmental factors.  115 
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RESULTS 116 

Machine learning based framework accurately and robustly predicts chronological stage 117 

To capture the transcriptional dynamics of beta-cells with age, we performed single-118 

cell mRNA sequencing of beta-cells in primary islets dissected from animals belonging to 119 

three chronological stages: Juvenile (1 month post-fertilization (mpf)), Adolescent (3, 4 and 6 120 

mpf) and Adult (10, 12 and 14 mpf).  Using Tg(ins:Betabow) 36, a transgenic line that 121 

specifically marks zebrafish beta-cells with red fluorescence (Supplementary Fig. S1), we 122 

isolated and sequenced 827 beta-cells in multiple batches.  Sequencing was performed using 123 

the Smart-Seq2 protocol, which has been demonstrated to provide higher transcriptional 124 

coverage than other methods 42.  The sequenced cells were quality-controlled to yield a total 125 

of 645 beta-cells (Supplementary Fig. S2).  To identify age-specific transitions, we first 126 

attempted to order the cells using an unsupervised pseudotemporal analysis (Supplementary 127 

Fig. S3).  However, the beta-cells from the three chronological stages were broadly spread 128 

along the predicted temporal trajectory.  The shortfall of unsupervised pseudotemporal 129 

ordering prompted us to consider an alternative approach in which we modeled the data using 130 

the ground truth provided by the chronological stage.  For this, we developed a supervised 131 

deep learning framework to predict the stage of the cellular origin: Juvenile, Adolescent or 132 

Adult (Fig. 1a).  As input to the classifier, genes detected in all the cells were ranked in 133 

descending order of their variability and the top 1000 genes were selected for training 134 

(Supplementary Table S1).  Since neural networks are prone to overfitting, two normalizing 135 

hyperparameters were added: L2 regularization (which penalizes a strong focus on few 136 

inputs) and dropout regularization (which helps ‘averaging’ across connections).  This 137 

framework was named GERAS (GEnetic Reference for Age of Single-cell) in reference to the 138 

Greek God of old age. 139 

For training GERAS, 80% of the beta-cells were randomly chosen.  Optimal 140 

normalizing hyperparameters determined by cross-validation were used for training the final 141 
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predictor.  Following development, we estimated the contribution of the 1000 input genes 142 

towards accurate predictions (Supplementary Fig. S4, Supplementary Table S1).  The 143 

estimation showed that the input genes displayed a wide distribution of importance towards 144 

the accuracy of prediction.  Notably, some of these genes were previously implicated in 145 

diabetes (Supplementary Fig. S4b).  Using the trained GERAS, internal validation was carried 146 

out with a test set comprising the remaining 20% of the cells from each chronological stage.  147 

The cells of the test set had never been shown to GERAS.  Internal validation achieved an 148 

overall accuracy (proportion of cells for which the predicted stage matched the real stage) of 149 

91% (Fig. 1b).  This demonstrates the success of GERAS in classifying individual cells into 150 

chronological stages based solely on their mRNA expression profile.  151 

Next, we wanted to understand the robustness of GERAS under biological and 152 

technical noise, typically encountered in batch measurements of single-cells.  To this end, we 153 

performed external validation using independently sequenced beta-cells.  We sequenced a 154 

new batch of beta-cells from adolescent animals (4 mpf) and used GERAS to predict their 155 

chronological age.  All cells from this independent cohort were classified as ‘Adolescent’ 156 

(100% accuracy), the ground truth for the stage of the cells (Fig. 1c).  Additionally, we tested 157 

the performance of GERAS with beta-cells sequenced using alternative pipelines. 158 

Specifically, we utilized the C1-Chip platform from Fluidigm to sequence a new batch of 159 

beta-cells from adolescent animals (3 mpf).  GERAS achieved 92.3% success in correctly 160 

classifying the cells from the new batch as ‘Adolescent’ (Fig. 1c).  These data underscore the 161 

potential of GERAS in effectively handling batch effects.   162 

To test the performance of GERAS on a regression task, we evaluated the model’s 163 

ability to classify cells obtained from time-points in-between the discrete chronological stages 164 

we used for training.  For interpolation, we collected beta-cells from animals aged 1.5 mpf 165 

(juvenile) or 9 mpf (adult) since these ages were not part of the model’s constituent stages.   166 

GERAS classified 50% of the beta-cells from 1.5 mpf animals as ‘Juvenile’, and 47.3% as 167 
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‘Adolescent’ (Fig. 1d).  Thus, GERAS classified 97.3% of beta-cells in time-periods 168 

neighboring the actual age of the sample.  Similarly, 31% of the beta-cells from 9 mpf 169 

animals were classified as ‘Adolescent’, and 69% as ‘Adult’ (Fig. 1d).  None (0%) of the cells 170 

were attributed to the ‘Juvenile’ stage, further strengthening the interpolation capacity of 171 

GERAS.  Taken together, these results demonstrate that our model divides the continuous 172 

time variable into discrete but linearly-ordered stages, thereby allowing regression analysis of 173 

the data.  174 

GERAS evaluates the impact of an environmental factor on cellular age  175 

The rate of aging is susceptible to modifications 8 and nutritional cues have been noted 176 

to alter aging in many organisms 9,10.  To investigate the effect of altering nutritional cues on 177 

cellular age, we employed the ability of GERAS to handle batch effects and interpolation.  178 

Specifically, we focused on studying the impact of calorie intake on beta-cell aging.  We 179 

separated 3 mpf adolescent zebrafish siblings into two groups.  One group was fed three times 180 

a day with Artemia, a typical fish diet consisting of living prey with a relatively high amount 181 

of fat and carbohydrates 43.  The other group was placed on intermittent feeding with normal 182 

feeding performed on alternate days (Fig. 2a).  After one month, the beta-cells were isolated 183 

and the age of individual beta-cells was evaluated using GERAS for each group.  The analysis 184 

showed a striking difference in age between the two sets of beta-cells obtained from coeval 185 

adolescent zebrafish (Fig. 2a).  While 65% of the beta-cells from zebrafish on intermittent 186 

feeding were classified as ‘Adolescent’, only 23% of the beta-cells from three-times-a-day-187 

fed animals were similarly classified; the rest 77% were categorized as ‘Adult’.  This 188 

difference in classification of the beta-cells isolated from animals of the same age suggests 189 

that higher-caloric intake expedites the aging of young beta-cells.  Moreover, it shows the 190 

utility of GERAS in evaluating a pro-aging factor.  191 

GERAS-based predictions lead to discovery of a molecular factor involved in aging 192 
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To identify molecular players underlying the accelerated aging of beta-cells with 193 

higher-calorie intake, we harnessed the heterogeneity in the chronological stage predictions 194 

along with the inherent heterogeneity in gene expression within single cells.  In our 195 

framework, chronological stage predictions can be easily converted to classification 196 

probability by using the output of ‘softmax’ layer (Fig. 1a and Methods).  This transforms 197 

discrete classifications into a continuous probability distribution (Supplementary Fig. S5).  198 

Taking advantage of this approach, we calculated the correlation between the probabilities of 199 

the beta-cells to be classified in the younger (‘Adolescent’) stage with the mRNA expression 200 

levels of all 11,570 genes expressed in the beta-cells (Supplementary Fig. S5).  For correlation 201 

analysis, genes with positive correlation increase the chance of the cell being classified in the 202 

younger stage, while a negative correlation enhances the chance of classification in the older 203 

stage.  The correlation analysis for beta-cells from three-times-a-day fed animals revealed 204 

1158 genes exhibiting high (positive or negative) correlation with predictive probability (Fig. 205 

2b, Supplementary Table S2 and S3). Unbiased gene ontology analysis using DAVID 44 206 

revealed involvement of the highly correlated genes in aging-related pathways, including 207 

cellular differentiation, protein transport 45,46, amino acid biosynthesis 47,48, NAD+ ADP-208 

ribosyltransferase activity 49 and basic-leucine zipper domain containing transcription factors 209 

50 (Fig. 2c).  In particular, there was a positive correlation with the transcription factors junba 210 

and fosab, suggesting a role for these genes in the classification of the beta-cells to the 211 

younger, ‘Adolsecent’, stage (Fig. 2b).  Additionally, in our primary mRNA expression data 212 

of beta-cells from three chronological stages, junba and fosab displayed significant down-213 

regulation with age (Supplementary Fig. S6).  Notably, junba, was not one of the 1000-input 214 

genes utilized by GERAS for generating predictions, demonstrating the capacity of 215 

correlation analysis to identify genome-wide candidate genes.  216 

Based on the observation that junba expression in beta-cells declines with age, and its 217 

positive correlation with the classification of beta-cells from animals on a higher-calorie diet 218 
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to the younger stage, we decided to investigate the biological impact of reducing junba 219 

function.  For this, we overexpressed a dominant negative version of junba specifically in 220 

beta-cells (using an ins:nls-BFP-2A-DN-junba construct) (Supplementary Fig. S7a).  The 221 

expression of nls-BFP-2A-DN-junba was induced in the background of the beta-cell specific 222 

fluorescence ubiquitination cell cycle indicator (FUCCI)-reporters 51,52, allowing 223 

identification of beta-cell’s cell-cycle stage (Supplementary Fig. S7b, c).  Comparison 224 

between the juxtaposed DN-junba-expressing and control cells within islets from juveniles (1 225 

mpf), a stage associated with high rates of beta-cell proliferation 51, showed a 50% decline in 226 

proliferation upon DN-junba expression (Fig. 3a, b).  Thus, blocking junba function can 227 

reduce the proliferation of juvenile beta-cells.  Since the reduction in proliferation of beta-228 

cells is a hallmark of aging 41, our results suggest that declining junba expression might 229 

underlie this reduction.   230 

A single model for chronological stage classification of the entire human pancreatic cells 231 

Next, to test the applicability of our framework beyond the scope of zebrafish beta-232 

cells, we developed a classifier for human cells using the entire ensemble of pancreatic cells. 233 

The pancreas, a gland located in the abdomen, is involved in metabolic regulation and food 234 

digestion.  Metabolic regulation is accomplished by the endocrine part of the pancreas, which 235 

chiefly consists of beta-, alpha-, and delta-cells.  Food digestion, on the other hand, is 236 

contributed by the exocrine part of the pancreas, composed of ductal and acinar cells.  An 237 

important characteristic of pancreatic cells is the presence of cell-specific marker genes, 238 

allowing computational segregation of the various cell-types based on mRNA expression 239 

levels (Methods).  To develop the classifier for human pancreatic cells, we obtained single-240 

cell mRNA expression profiles from Enge et al.  Their study generated single-cell 241 

transcriptomes from pancreatic cells of eight healthy individuals belonging to three discrete 242 

stages 27: Juvenile (1 month, 5 and 6 years), Young (21 and 22 years), and Middle (38, 44 and 243 

54 years) (Fig. 4a).  Without segregating the data by cell-type, we trained GERAS to predict 244 
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the chronological stage for the entire ensemble of pancreatic cells.  The trained GERAS, 245 

utilizing inputs from multiple genes (Supplementary Fig. S8, Supplementary Table S4), 246 

achieved an overall accuracy of 95% on the test set (Fig. 4b).  Upon segregating the results by 247 

cell type, based on the expression of their respective markers, we found that GERAS 248 

displayed >90% accuracy for each major cell-type of the pancreas (Fig. 4b’), demonstrating 249 

the feasibility of developing a single age classifier for the multiple cell types of the pancreas.  250 

As an additional validation, a second assessment with human cells was undertaken by 251 

utilizing the single-cell mRNA expression profiles of human pancreatic cells from a 252 

publication by Segerstolpe et al. 53.  This independent cohort contains single-cell 253 

transcriptomes from pancreata of six healthy individuals ranging from 22 – 48 year of age. 254 

Additionally, the body mass index (BMI) for each individual was reported, allowing 255 

comparisons between individuals with similar chronological age but different body weight.  256 

Using GERAS trained with the human data from Enge et al., we predicted the chronological 257 

stage of the cells from two individuals (aged 43 and 48 years) belonging to the ‘Middle’ age 258 

group (38 – 54 years).  The predictions displayed >93% classification accuracy (Fig. 4c).  259 

This high accuracy of prediction on data from a second independent source further 260 

strengthens the external validation of our model.  Next, we utilized the data from two 261 

individuals, aged 23 and 22 years.  Despite the proximity in their chronological age, these two 262 

individuals differed in their BMI values (21.5 – normal and 32.9 – obese, respectively).  263 

Strikingly, our analysis revealed different classification pattern for data from each of these 264 

individuals: while 32% of the cells from the 23 year old with normal BMI were classified in 265 

the younger stages, none of the cells from the 22 year old with obese BMI fell in similar 266 

stages (Fig. 4d).  Following this observation, we calculated the classification probability of 267 

the all six individuals in relation to their BMI.  The probability results from our analysis 268 

suggest that an obese BMI correlates with an increased probability for the cells to be 269 

classified in an older stage (Supplementary Fig. S9).  We recommend exercising caution 270 
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while interpreting this result due to the multiple confounding factors associated with human 271 

samples that we could not control for.  A GERAS developed with cells from individuals 272 

encompassing a wider distribution of age and BMI range would be desired for stronger 273 

conclusions.  Nevertheless, the successful age classification of an entire human organ and its 274 

external validation, demonstrate the adaptability of our framework to diverse cell-types, 275 

thereby establishing the universality of the approach. 276 

DISCUSSION 277 

In this study, we have presented a method that provides the blueprint for developing 278 

predictive classifier for cellular aging.  Our chronological stage predictor efficiently handles 279 

biological and technical noise, and functions robustly on a diverse cell population.  The 280 

temporal classifier was developed in an unbiased, data-driven manner.  Genes for building the 281 

predictor were not selected based on their differential expression with time.  The classifier 282 

predicted the chronological age solely from the expression profile of the top 1000 most 283 

variable genes.  The algorithm, however, did not use all genes uniformly.  Instead, varying 284 

levels of importance were attributed to the input genes (Supplementary Fig. S4, S8).  Multiple 285 

genes exhibiting high importance for successful classification show an existing association 286 

with metabolic and age-related degenerative disorders.  For instance, the human pancreatic 287 

GERAS ascribes high importance to Amyloid precursor protein (APP), which is associated 288 

with Alzheimer’s disease, and also recently implicated in pancreatic biology 54.  In the future, 289 

it would be worthwhile to test the biological functions for the genes selected by the classifier, 290 

and to follow-up on them as potential biomarkers of the aging process.  291 

The predictive power of the framework is not restricted to classification tasks.  The 292 

discrete classifications can be readily converted to a continuous probability distribution 293 

(Supplementary Fig. S5).  This characteristic can be exploited to shed light on the molecular 294 

factors controlling the rate of aging.  We used this feature on beta-cells displaying accelerated 295 

aging in response to a higher calorie diet (Fig. 2a).  Correlating the probability distribution 296 
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with gene expression enabled identification of candidate genes involved in the aging process 297 

(Fig. 2b, c).  Such analysis was possible due to the single-cell-centric nature of our approach, 298 

and would be missed out with bulk sequencing in which the cellular variability is averaged 299 

out.  Follow-up analysis using a genetic technique (Supplementary Fig. S7) verified the role 300 

of one candidate gene, junba, in regulating the proliferation of  beta-cells (Fig. 3).  It is 301 

important to note that the mosaic analysis was performed in whole islets without any tissue 302 

dissociation, thus avoiding any dissociation-specific modification in cell physiology 55.  303 

However, a reduction in proliferation represents one aspect of the aging process, and 304 

additional roles for junba activity during the aging process still need verification.  305 

Nonetheless, the age-dependent reduction of Junb, the mammalian homologue of junba, has 306 

been implicated in post-natal maturation of mouse beta-cells 56.  It would be of interest to 307 

follow-up on these results and study the connection between aging and Junb activity in 308 

mammalian models.  309 

Importantly, beta-cells from animals fed three-times-a-day revealed a diversity in their 310 

classification.  Notably, 23% of the beta-cells were classified in the younger stage, suggesting 311 

cellular heterogeneity in the aging process.  This was additionally observed during the 312 

interpolation analysis (Fig. 1d), in which cells from intermediate time-points classified in the 313 

two adjacent stages.  Asynchronous cellular aging in beta-cells was recently hypothesized 314 

using histological analysis 57.  Quantifying the extent of heterogeneity in the aging process 315 

while capturing the mRNA expression profile, made possible by our framework, provides an 316 

exciting opportunity for understanding the molecular underpinnings of heterogeneous cellular 317 

aging.  318 

Our machine-learning based framework has high flexibility in its design and 319 

execution, which can be exploited to develop predictive models based on diverse biological 320 

parameters.  Moreover, the inputs to the predictor are not limited to mRNA expression levels 321 

but can be extended to include other covariates.  With improvements in single cell 322 
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epigenetics58, new models integrating both genetic and epigenetic changes could be built to 323 

improve accuracy and resolution.   324 

Our framework is based on the assumption that chronological age provides a useful 325 

metric for the modeling of age.  Chronological age is an easily observable fact, and this 326 

provided the ground truth for training and testing our models.  The aging trajectory provided 327 

by the use of chronological age served as benchmark for all predictions generated by the 328 

framework.  However, chronological age does not always correlate well with development of 329 

disease and mortality 59.  Previous studies have introduced the concept of biological age 60,61, 330 

a metric that correlates better than chronological age with pathological conditions. However, 331 

the determination of biological age requires training, testing and verification of regression 332 

models.  This leads to the biological age being defined as per the computation model, which 333 

can result in very low overlap between different measures of biological age 62.  In the future, it 334 

would be worthwhile to generate two-tier models combining the information from models 335 

based on chronological and biological age.   336 

We developed our model with the idea in mind to be able to detect premature aging.  337 

However, individual responses might differ towards the factors that lead to accelerated aging.  338 

For instance, within the population of humans with an obese BMI, the ‘metabolically healthy 339 

obese’ group exhibits lower risk for complications as compared to the ‘metabolically 340 

unhealthy obese’ 63,64.  Further work needs to be done to identify individual risk-factors 341 

associated with premature aging.  This would be necessary for recommendations of 342 

preventive therapies.  343 

The predictors presented in this study are restricted by sequencing platforms and the 344 

specific tissues utilized for training them.  This limits their immediate adaptation.  The 345 

predictors are built with data generated from Smart-Seq2 sequencing pipeline, which captures 346 

the full-length mRNAs with high transcriptome coverage. The predictor might be unable to 347 

handle the data from Drop-seq or MARS-seq, protocols that sequence the 3’-end of mRNA 348 
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and provide lower-coverage 42.  Computational efforts for eliminating the idiosyncrasies of 349 

individual platforms 65 would help to remove this restriction.  Additionally, the predictors do 350 

not extend beyond the currently described tissues.  Investigators interested in the aging of 351 

other cells, for instance muscle, would need to develop and validate de-novo predictive 352 

models.  Nevertheless, we expect the groundwork presented here to help with the 353 

development of predictive models.  Further improvements of our approach could expedite the 354 

identification of age-modifying factors, which are important regulators of development and 355 

disease. 356 

CONCLUSION  357 

Here we developed a machine learning based platform that successfully predicts the 358 

chronological stage of individual cells.  We show the framework’s robustness in handling 359 

multiple sample processing pipelines, time-points that fall between the discrete chronological 360 

stages, and diversity in cell types.  The framework’s capability to characterize aging factors 361 

was demonstrated through evaluation of the impact of a higher-calorie feeding on beta-cell 362 

aging.  The predictive power of the framework was further harnessed to discover junba as a 363 

candidate gene that maintains the proliferative beta-cell state, a characteristic trait of younger 364 

beta-cells.  Broad applicability of the framework was demonstrated by predictions on the 365 

entire human pancreatic tissue.  We anticipate that the robustness and flexibility exhibited 366 

here will enable the development of aging models for multiple tissues, opening the possibility 367 

of detecting premature aging and preventing pathological developments.  To maximize the 368 

accessibility and impact of the study, the framework is openly shared on github 66, and a user-369 

friendly, graphical interface is provided for generating predictions from trained models. 370 
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METHODS 371 

Zebrafish strains and husbandry 372 

Wild-type or transgenic zebrafish of the outbred AB, WIK or a hybrid WIK/AB strain 373 

were used in all experiments.  Zebrafish were raised under standard conditions at 28°C.  374 

Animals were chosen at random for all experiments.  Published transgenic strains used in this 375 

study were Tg(ins:BB1.0L; cryaa:RFP)36; Tg(ins:FUCCI-G1)s948 51; Tg(ins:FUCCI-376 

S/G2/M)s946 51.  Experiments were conducted in accordance with the Animal Welfare Act and 377 

with permission of the Landesdirektion Sachsen, Germany (permits AZ 24–9168, TV38/2015, 378 

T12/2016, and T13/2017). 379 

Single cell isolation of zebrafish beta-cells 380 

Primary islets from Tg(ins:BB1.0L; cryaa:RFP) zebrafish were dissociated into single 381 

cells and sorted using FACS-Aria II (BD Bioscience). Islets were dissociated into single cells 382 

by incubation in TrypLE (ThermoFisher, 12563029) with 0.1% Pluronic F-68 (ThermoFisher, 383 

24040032) at 37 °C in a benchtop shaker set at 450 rpm for 30 min. Following dissociation, 384 

TrypLE was inactivated with 10% FBS, and the cells pelleted by centrifugation at 500g for 10 385 

min at 4 °C. The supernatant was carefully discarded and the pellet re-suspended in 500 uL of 386 

HBSS (without Ca, Mg) + 0.1% Pluronic F-68. To remove debris, the solution was passed 387 

over a 30 µm cell filter (Miltenyi Biotec, 130-041-407). To remove dead cells, calcein violet 388 

(ThermoFisher, C34858) was added at a final concentration of 1 µM and the cell suspension 389 

incubated at room temperature for 20 minutes. The single cell preparation was sorted with the 390 

appropriate gate for identification of beta-cells (RFP+ and calcein+) (Supplementary Fig. S1). 391 

FACS was performed through 100 µm nozzle with index sorting.  392 

Single cell mRNA sequencing of zebrafish beta-cells from 96-well plates 393 
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Cells were sorted into a 96-well plate containing 2 µl of nuclease free water with 0.2% 394 

Triton-X 100 and 4 U murine RNase Inhibitor (NEB), spun down and frozen at -80°C. After 395 

thawing the samples, 2 µl of a primer mix was added (5 mM dNTP (Invitrogen), 0.5 µM dT-396 

primer*, 4 U RNase Inhibitor (NEB)). RNA was denatured for 3 minutes at 72°C and the 397 

reverse transcription was performed at 42°C for 90 min after filling up to 10 µl with RT 398 

buffer mix for a final concentration of 1x superscript II buffer (Invitrogen), 1 M betaine, 5 399 

mM DTT, 6 mM MgCl2, 1 µM TSO-primer*, 9 U RNase Inhibitor and 90 U Superscript II. 400 

After synthesis, the reverse transcriptase was inactivated at 70°C for 15 min. The cDNA was 401 

amplified using Kapa HiFi HotStart Readymix (Peqlab) at a final 1x concentration and 0.1 402 

µM UP primer under following cycling conditions: initial denaturation at 98°C for 3 min, 22 403 

cycles [98°C 20 sec, 67°C 15 sec, 72°C 6 min] and final elongation at 72°C for 5 min. The 404 

amplified cDNA was purified using 1x volume of hydrophobic Sera-Mag SpeedBeads (GE 405 

Healthcare) and DNA was eluted in 12 µl nuclease free water. The concentration of the 406 

samples was measured with a Tecan plate reader Infinite 200 pro in 384 well black flat 407 

bottom low volume plates (Corning) using AccuBlue Broad range chemistry (Biotium). 408 

For library preparation, 700 pg cDNA in 2 µl was mixed with 0.5 µl tagmentation 409 

enzyme and 2.5 µl Tagment DNA Buffer (Nextera DNA Library Preparation Kit; Illumina) 410 

and tagmented at 55°C for 5 min. Subsequently, Illumina indices were added during PCR 411 

(72°C 3 min, 98°C 30 sec, 12 cycles [98°C 10 sec, 63°C 20 sec, 72°C 1 min], 72°C 5 min) 412 

with 1x concentrated KAPA Hifi HotStart Ready Mix and 0.7 µM dual indexing primers. 413 

After PCR, libraries were quantified with AccuBlue Broad range chemistry, equimolarly 414 

pooled and purified twice with 1x volume Sera-Mag SpeedBeads. This was followed by 415 

Illumina sequencing on a Nextseq500 aiming at an average sequencing depth of 0.5 million 416 

reads per cell. 417 

 418 
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*dT primer: Aminolinker-AAGCAGTGGTATCAACGCAGAGTCGAC T(30) VN 419 

*TSO primer: AAGCAGTGGTATCAACGCAGAGTACATggg 420 

*UP primer: AAGCAGTGGTATCAACGCAGAGT 421 

Single cell mRNA sequencing of zebrafish beta-cells with the C1 system 422 

The C1™ Single-Cell mRNA Seq 10-17 µm IFC (© Fluidigm Corporation, CA, USA) 423 

was used to perform mRNA sequencing on single cells. In general, the protocol (PN 100-7168 424 

L1) suggested by the manufacturer was followed, with some modifications. 1200 cells in PBS 425 

were directly sorted by FACS into the inlet, mixed 3:2 with suspension reagent, resulting in a 426 

final volume of 6 µl. Cells were loaded with the mRNAseq: Cell load protocol, without 427 

staining on the IFC. For RT and amplification, the mRNA Seq: RT & Amp script was run 428 

with the following cycling parameters: 1x 98ºC 1 min, 5x (95ºC 20-45 sec, 59-49ºC with 429 

0.3ºC increment/cycle 4 min, 68ºC 6 min) 9x (95ºC 20-45 sec, 65-49ºC with 0.3ºC 430 

increment/cycle 30 sec, 68ºC 6 min) 7x (95ºC 30-45 sec, 65-49ºC with 0.3ºC increment/cycle 431 

30 sec, 68ºC 7 min) and 72ºC 10 min using SMART-Seq v4 Ultra Low Input RNA Kit for 432 

Sequencing (Takara BIO USA, INC.). For library preparation, 2 µl cDNA were mixed with 433 

0.5 µl tagmentation enzyme and 2.5 µl Tagment DNA Buffer (Nextera DNA Library 434 

Preparation Kit; Illumina) and tagmented at 55°C for 5 min. Illumina indices were added by 435 

PCR with the following cycling conditions: 1x (72°C 3 min, 98°C 30 sec), 12 x (98°C 10 sec, 436 

63°C 20 sec, 72°C 1 min), 1x (72°C 5 min), using KAPA Hifi HotStart Ready Mix and 0.7 437 

µM final dual indexing primers. Libraries were quantified, equimolarly pooled and purified 438 

twice with 1x volume Sera-Mag SpeedBeads. Illumina sequencing (75bp SE) was done on a 439 

Nextseq500 aiming to achieve an average sequencing depth of 0.5 million reads per cell. 440 

Mapping of read counts and quality control 441 
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 Raw reads in fastq format were trimmed using trim-galore with default parameters to 442 

remove adapter sequences. Trimmed reads were aligned to the zebrafish genome, GRCz10, 443 

using HISAT2 67 with default parameters. htseq-count 68 was used to assign reads to exons 444 

thus eventually getting counts per gene. Using cells that were utilized for developing 445 

zebrafish GERAS (see next section), the following quality control parameters were obtained 446 

(Supplementary Fig. S2): 447 

1. The median and median absolute deviation (MAD) for total reads 448 

2. The median and MAD for % of mitochondrial reads 449 

3. The median and MAD for % spike-ins 450 

4. Number of detectable genes 451 

Cells passed quality control if they belonged to median ± 3*MAD bracket for 1-3 and 452 

contained more than 1500 genes. Read counts for all cells that passed quality control are 453 

available at: https://sharing.crt-dresden.de/index.php/s/zcQ14AMGJAevokU.  454 

Pseudotemporal ordering of zebrafish beta-cells 455 

 Unsupervised pseudotemporal ordering of zebrafish beta-cells was carried out using 456 

the read counts from beta-cells isolated from seven different ages. The cells were grouped in 457 

three stages before analysis: ‘Juvenile’ (1 mpf), ‘Adolescent’ (3, 4, 6 mpf) and ‘Young’ (10, 458 

12, 14 mpf). Ordering was carried out using Monocle 16, as outlined in the vignette for 459 

Monocle2. The analysis is shared online as Monocle.R.  460 

Development of GERAS for zebrafish beta-cells 461 

 For development of GERAS for zebrafish beta-cells, read counts were used from 462 

seven ages of zebrafish: 1 mpf, 3 mpf, 4 mpf, 6 mpf, 10 mpf, 12 mpf and 14 mpf.  The 3 mpf 463 

and 6 mpf stages contained two batches of beta-cells collected and sequenced on different 464 
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days. Each batch of cells originated from six zebrafish.  Read counts were normalized to 465 

transcripts per million (TPM) using the formula: 466 

= 	ℎ	 	  

= ∑ ∗ 1,000,000 

where for gene g and cell c, Transcriptgc are the number of transcripts calculated by dividing 467 

the read counts to the length of the gene in kb, and TPM is the proportion of the gene’s 468 

transcripts among per million of total cellular transcripts.  469 

The entire dataset containing 508 beta-cells were randomly divided into 80%-20% 470 

train-test set. Genes were sorted in descending order according to their expression variability 471 

(calculated by ‘median absolute deviation’) in the entire dataset. The top 1000 most variable 472 

genes were used for developing a four-layer fully connected neural network (Fig. 1a). The 473 

neural network contained two hidden layers with rectified linear unit (ReLU) activation 474 

function, and a softmax output layer. The network was trained to classify the pancreatic cells 475 

into three chronological ages:  Juvenile (1 month post-fertilization (mpf)), Adolescent (3, 4 476 

and 6 mpf) and Adult (10, 12 and 14 mpf). During training, a five-fold cross-validation was 477 

repeated three times over a grid of values for regularization hyperparameters: dropout 478 

frequency (0.4 to 0.9 in steps of 0.1) and regularization constant (0.4 to 1.6 in steps of 0.2). 479 

The combination with the highest cross-validation accuracy was taken as the optimal value, 480 

and a final model was trained using the entire training set and the optimal regularization 481 

hyperparameters. The entire network was implemented in R using TensorFlow API. An 482 

Rmarkdown report detailing the development of zebrafish beta-cell GERAS is available at 483 

https://github.com/sumeetpalsingh/GERAS2017/blob/master/GERAS_Tf_Zf.html 66.   484 

  The trained model was used to predict the chronological age of the test set. Accuracy 485 
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was calculated as the proportion of cells for which the prediction matched the chronological 486 

age. By considering each prediction as a binomial distribution (a ‘Juvenile’ cell can be 487 

classified as ‘Juvenile’ or ‘Not Juvenile’), the standard error was calculated using the 488 

following formula: 489 

	 = ∗ (1 − )
 

where n is the number of cells tested. 490 

Prediction of chronological age using GERAS for zebrafish beta-cells 491 

 For external validation (4 mpf and 3 mpf C1-sample) and interpolation (1.5 mpf and 9 492 

mpf), new batches of zebrafish beta-cells were isolated in 96-well plates and sequenced. 493 

Quality controlled raw counts were obtained as outlined above. The raw counts were 494 

normalized to TPM values, which were then used to predict the chronological stage using pre-495 

trained GERAS. Results were depicted as balloonplots, where a grid contains dots whose size 496 

reflects the percentage of cells classified in the corresponding group.       497 

Assessing the impact of calories on the chronological age of zebrafish beta-cells using 498 

GERAS   499 

Twelve zebrafish at 3 mpf from the same clutch were separated into two groups of 6 500 

animals each.  Both groups were fed with their normal feed of freshly hatched Artemia (brine 501 

shrimp).  The intermittent feeding group was fed on alternate day, while the other group was 502 

fed three times daily with intervals of at least two hours between the feedings.  Amount of 503 

food eaten by each animal was not controlled.  After a month, the beta-cells were isolated into 504 

96-well plates using FACS.  The cells were processed and sequenced together.  TPM-505 

normalized counts from the cells were used to predict the chronological age using GERAS.      506 

Correlation analysis and gene ontology (GO) analysis 507 
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 Correlation analysis was carried out for beta-cells collected from the three-times-a-day 508 

animals. These beta-cells classified in ‘Adolescent’ and ‘Adult’ stage (Fig. 2a). The analysis 509 

calculated the correlation between the probability of a cell to be classified in the younger 510 

(‘Adolescent’) stage and the mRNA expression of genes. To obtain the classification 511 

probability, the softmax for the ‘Adolescent’ stage was calculated from the output layer of 512 

GERAS (Fig. S5). For this, a function (model_softmax) was written that takes the log2-513 

transformed normalized values of single cells, performs forward propagation through GERAS 514 

till the softmax layer, and returns the output. The output contains the probability for the 515 

particular cell to classify in all the three stages (‘Juvenile’, ‘Adolescent’, and ‘Adult’). The 516 

function is deposited as source/model_softmax.R 66. The probability for ‘Adolescent’ stage 517 

was extracted from this output.  518 

Correlation coefficient was calculating using the cor(classification probability, gene 519 

expression) function in R. The calculation was restricted to genes expressed in more than 10% 520 

of the cells (11,570 genes). This gave a correlation value for each gene expressed in beta-cells 521 

from three-times-a-day animals. The values were sorted in ascending order and plotted in Fig. 522 

2b. The genes with the highest positive correlation were identified as the top fifth-percentile, 523 

and the genes with the highest negative correlation were identified as the lowest fifth-524 

percentile. These genes were further used for unbiased gene ontology (GO) analysis using 525 

DAVID 44. As background for GO analysis, the list of expressed genes was used. 526 

Construction of the ins:nls-BFP-T2A-DN-junba; cryaa:RFP plasmid 527 

To generate ins: nls-BFP-T2A-DN-junba;cryaa:RFP, a vector was created by 528 

inserting multiple cloning sites (MCS) downstream of the insulin promoter to yield ins:MCS; 529 

cryaa:RFP. To do so, the plasmid ins:mAG-zGeminin;cryaa:RFP was digested with 530 

EcoRI/PacI and ligated with dsDNA generated by annealing two primers harboring the sites 531 

EcoRV, NheI, NsiI, SalI and flanked by EcoRI/PacI overhangs. The plasmid pUC-Kan 532 
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consisting of the DN-junba (junba157-325, consisting of only the DNA binding domain69) fused 533 

to nls-BFP via T2A sequence flanked by EcoRI/PacI sites was synthesized from GenScript. 534 

ins:MCS;cryaa:RFP and the plasmid pUC-nls-BFP-T2A-DN-junba were subsequently 535 

digested with EcoRI/PacI to yield compatible fragments, which were ligated together to yield 536 

the final construct. The entire construct was flanked with I-SceI sites to facilitate genomic 537 

insertion. 538 

Analysis of proliferation using mosaic expression of DN-junba 539 

 To identify proliferating beta-cells, the zebrafish beta-cell specific FUCCI system51 540 

was used by crossing Tg(ins:FUCCI-G1) with Tg(ins:FUCCI-S/G2/M). Embryos obtained 541 

from the mating were injected with ins:nls-BFP-T2A-DN-junba;cryaa:RFP plasmid, along 542 

with I-SceI, to facilitate mosaic integration into the genome. At 30 dpf, animals were 543 

euthanized in Tricaine and dissected to isolate the islets. The isolated islets were fixed in 4% 544 

paraformaldehyde (PFA) for 48 hours at 4°C, washed multiple times in PBS and mounted on 545 

slides for confocal microscopy. Confocal images were used for cell-counting. All the 546 

Tg(ins:FUCCI-S/G2/M)-positive cells (green fluorescence only) were counted manually 547 

within the BFP-positive and BFP-negative clones. Using Imaris (Bitplane), the total number 548 

of BFP-positive and beta-cells were calculated in the entire islet. For this, the “spots” function 549 

was used after thresholding. For calculating percentages (%), the following calculations were 550 

used: 551 Total	BFP-negative cells = Total beta-cells − 	BFP-positive cells 

%	BFP-positive proliferating cells

= ins:FUCCI-S/G2/M-positive	and	 BFP-positive cells

Total BFP-positive cells
∗ 100 
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%	BFP-negative proliferating cells

= ins:FUCCI-S/G2/M-positive	and	 BFP-negative cells

Total BFP-negative cells
∗ 100 

Statistical analysis 552 

Statistical analysis was performed using R.  No animals were excluded from analysis.  553 

Blinding was not performed during analysis.  Analysis of normal distribution was performed.  554 

To compare chronological age (Adolescent versus Adult) between beta-cell from intermittent 555 

feeding and three-times a day fed animals, Fisher’s exact test for count data (fisher.test(x = 556 

2X2 matrix, alternative = "two.sided")) was performed.  To compare the expression levels of 557 

junba and fosab between Juvenile, Adolescent and Adult, ANOVA followed by Tukey's range 558 

test (fit <- aov(Expression ~ Stage); TukeyHSD(fit)) was performed. To compare the 559 

proliferation between DN-junba expressing cells with control cells, an unpaired two-tailed t-560 

test with unequal variance (t.test (x = dataframe, alternative = "two.sided", paired = FALSE, 561 

var.equal = FALSE)) was used to calculate p-values.  A p-value of less than 0.05 was 562 

considered statistically significant. 563 

Development of GERAS for human pancreatic cells 564 

 For development of GERAS for human pancreatic cells, read counts from Enge et al.27 565 

were obtained from GEO: GSE81547. Read counts were normalized to reads per million 566 

(RPM) using the formula: 567 

= 	∑ 	 ∗ 1,000,000 

where for gene g and cell c, RPMgc is the proportion of the gene’s reads among per million of 568 

the total cellular reads.  569 

The entire dataset containing 2544 pancreatic cells was randomly divided into 80%-570 

20% train-test set. Genes were sorted in descending order according to their expression 571 
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variability (calculated by ‘median absolute deviation’) in the entire dataset. The top 1000 572 

most variable genes were used for developing a four-layer fully connected neural network 573 

(Fig. 4a). The neural network contained two hidden layers with ReLU activation function, and 574 

a softmax output layer. The network was trained to classify the pancreatic cells into three 575 

chronological ages:  Juvenile (1 month, 5 and 6 years), Young (21 and 22 years), and Middle 576 

(38, 44 and 54 years). During training, a five-fold cross-validation was repeated three times 577 

over a grid of values for regularization hyperparameters: dropout frequency (0.4 to 0.9 in 578 

steps of 0.1) and regularization constant (0.2 to 1.2 in steps of 0.2). The combination with the 579 

highest cross-validation accuracy was taken as the optimal value, and a final model was 580 

trained using the entire training set and the optimal regularization hyperparameters. The entire 581 

network was implemented in R using TensorFlow API. An Rmarkdown report detailing the 582 

development of human pancreatic GERAS is available at 583 

https://github.com/sumeetpalsingh/GERAS2017/blob/master/GERAS_Tf_Hs.html 66.   584 

  The trained model was used to predict the chronological age of the test set. Accuracy 585 

was calculated as the proportion of cells for which the prediction matched the chronological 586 

age. By considering each prediction as a binomial distribution (a ‘Middle’ cell can be 587 

classified as ‘Middle’ or ‘Not Middle’), the standard error was calculated using the following 588 

formula: 589 

	 = ∗ (1 − )
 

where n is the number of cells tested. 590 

To calculate the accuracy and standard error per cell type, the expression levels of the 591 

following cell-specific markers were extracted for each cell: ‘INS’ (beta-cell), ‘GCG’ (alpha-592 

cell), ‘SST’ (delta), ‘PRSS1’ (acinar) and ‘KRT19’ (ductal). A cell was classified if the 593 

expression value of any cell-specific marker exceeded 50 RPM, else it was classified as 594 
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‘Others’. For classification, the cell-type marker with the highest expression determined the 595 

cell type. Thus, a (theoretical) cell with RPM values of 1000 INS, 3 GCG, 4 SST, 0 PRSS1, 0 596 

KRT19 was classified as beta-cell, while another (theoretical) cell with RPM values of 3 INS, 597 

5 GCG, 7 SST, 1777 PRSS1, 9 KRT19 was classified as acinar cell. Cell-type specific cells 598 

present in the test set were used to calculate the accuracy per cell-type.  599 

Independent cohort of human pancreatic cells 600 

 For testing GERAS with external data, read counts of pancreatic single-cell data from 601 

Segerstolpe et al.53 were obtained from ArrayExpress (EBI) with accession number: E-602 

MTAB-5061. The publication contained data from six healthy individuals. The entire data 603 

was stratified according to the individuals, and cells from each individual that passed quality-604 

control according to Segerstolpe et al. were used for further analysis. Read counts from the 605 

cells were normalized to RPM for input to GERAS. 606 

Calculating classification probability for ‘Middle’ (38 – 54 years) stage 607 

 To calculate the probability that a particular cell would be classified to the ‘Middle’ 608 

stage, the softmax for the ‘Middle’ stage was calculated from the output layer of human 609 

pancreatic GERAS. For this, the function model_softmax was provided with the log2-610 

transformed RPM values and used to calculate the probability for the particular cell to classify 611 

in all the three stages (‘Juvenile’, ‘Young’, and ‘Middle’). The probability for ‘Middle’ stage 612 

was extracted from this output.  613 

Prediction of chronological age using GERAS for human pancreatic cells 614 

 For predicting the chronological stage of cells belonging to individuals of age 22, 23, 615 

43 and 48 years, RPM values from each individual were used as input to human pancreatic 616 

GERAS. Results were depicted as balloonplots, where a grid contains dots whose size reflects 617 

the percentage of cells classified in the corresponding group. 618 
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Calculating variable importance for GERAS 619 

 Variable importance was calculated as outlined in Gedeon et al. 70. The code for 620 

carrying out the calculation is shared as source/variableImportance.R 66. The code uses the 621 

weights of the trained neural network to calculate the importance of each variable (input) used 622 

for classification. The output is scaled to 0 (least important) and 1 (most important). This was 623 

used to identify the importance of each gene used in zebrafish and human GERAS. The 624 

results were sorted in descending order for plotting. Additionally, the top 20 most important 625 

genes were obtained from the sorted list, and their relative importance calculated using the 626 

formula, 627 

	 = ∑  

where g denotes an individual gene among the top 20. The disease association for each gene 628 

was obtained from DisGeNET database 71. From the database, an association with a score of 629 

greater than or equal to 0.2 was reported.  630 

Shiny implementation of GERAS predictor 631 

 To enable easy access to predictions using GERAS, a Shiny app was developed. The 632 

app is freely available at 633 

https://github.com/sumeetpalsingh/GERAS2017/shiny_GERAS_Tf.R66. The app provides a 634 

graphic-user interface (GUI) for users to make chronological age predictions using a pre-635 

trained GERAS model. The users can upload normalized counts, verify the uploaded data, and 636 

obtain predictions in a downloadable comma-separated (csv) file.  637 

Data availability 638 

 The raw datasets, along with tabulated count data and TPM normalized values, 639 

generated during the current study are available from GEO under accession number 640 
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GSE109881, with the token number ixkzakssxnsjtaf. The data will be made public upon 641 

publication. Normalized read-counts for all human pancreatic samples used in the study are 642 

available at: https://sharing.crt-dresden.de/index.php/s/zcQ14AMGJAevokU , and codes for 643 

developing and testing GERAS are available at 644 

https://github.com/sumeetpalsingh/GERAS2017 66. Please refer to README.md to navigate 645 

the Github folder. The authors welcome any requests for information on the raw data, data 646 

processing, GERAS development and utilization. 647 

   648 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 17, 2018. ; https://doi.org/10.1101/303214doi: bioRxiv preprint 

https://doi.org/10.1101/303214
http://creativecommons.org/licenses/by/4.0/


Page 29 of 45 
 

References 649 

1. Kowalczyk, M. S. et al. Single-cell RNA-seq reveals changes in cell cycle and 650 

differentiation programs upon aging of hematopoietic stem cells. Genome Res. 25, 651 

1860–1872 (2015). 652 

2. Peters, M. J. et al. The transcriptional landscape of age in human peripheral blood. Nat. 653 

Commun. 6, 8570 (2015). 654 

3. Szilard, L. On the nature of the aging process. Proc. Natl. Acad. Sci. U. S. A. 45, 30–45 655 

(1959). 656 

4. Vijg, J. Somatic mutations and aging: a re-evaluation. Mutat. Res. Mol. Mech. 657 

Mutagen. 447, 117–135 (2000). 658 

5. Pal, S. & Tyler, J. K. Epigenetics and aging. Sci. Adv. 2, e1600584–e1600584 (2016). 659 

6. Barzilai, N., Huffman, D. M., Muzumdar, R. H. & Bartke, A. The Critical Role of 660 

Metabolic Pathways in Aging. Diabetes 61, 1315–1322 (2012). 661 

7. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The 662 

Hallmarks of Aging. Cell 153, 1194–1217 (2013). 663 

8. Kenyon, C. J. The genetics of ageing. Nature 464, 504–512 (2010). 664 

9. Piper, M. D. W. & Bartke, A. Diet and Aging. Cell Metab. 8, 99–104 (2008). 665 

10. Most, J., Tosti, V., Redman, L. M. & Fontana, L. Calorie restriction in humans: An 666 

update. Ageing Res. Rev. 39, 36–45 (2017). 667 

11. Kõks, S. et al. Mouse models of ageing and their relevance to disease. Mech. Ageing 668 

Dev. 160, 41–53 (2016). 669 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 17, 2018. ; https://doi.org/10.1101/303214doi: bioRxiv preprint 

https://doi.org/10.1101/303214
http://creativecommons.org/licenses/by/4.0/


Page 30 of 45 
 

12. Wang, Y. & Navin, N. E. Advances and Applications of Single-Cell Sequencing 670 

Technologies. Mol. Cell 58, 598–609 (2015). 671 

13. Marco, E. et al. Bifurcation analysis of single-cell gene expression data reveals 672 

epigenetic landscape. Proc. Natl. Acad. Sci. U. S. A. 111, E5643-50 (2014). 673 

14. Haghverdi, L., Büttner, M., Wolf, F. A., Buettner, F. & Theis, F. J. Diffusion 674 

pseudotime robustly reconstructs lineage branching. Nat. Methods 13, 845–8 (2016). 675 

15. Setty, M. et al. Wishbone identifies bifurcating developmental trajectories from single-676 

cell data. Nat. Biotechnol. 34, 637–45 (2016). 677 

16. Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by 678 

pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014). 679 

17. Schiebinger, G. et al. Reconstruction of developmental landscapes by optimal-transport 680 

analysis of single-cell gene expression sheds light on cellular reprogramming. bioRxiv 681 

doi:10.1101/191056 (2017). doi:10.1101/191056 682 

18. Reid, J. E. & Wernisch, L. Pseudotime estimation: deconfounding single cell time 683 

series. Bioinformatics 32, 2973–2980 (2016). 684 

19. Semrau, S. et al. Dynamics of lineage commitment revealed by single-cell 685 

transcriptomics of differentiating embryonic stem cells. Nat. Commun. 8, 1096 (2017). 686 

20. Chu, L.-F. et al. Single-cell RNA-seq reveals novel regulators of human embryonic 687 

stem cell differentiation to definitive endoderm. Genome Biol. 17, 173 (2016). 688 

21. Moignard, V. et al. Decoding the regulatory network of early blood development from 689 

single-cell gene expression measurements. Nat. Biotechnol. 33, 269–276 (2015). 690 

22. Ocone, A., Haghverdi, L., Mueller, N. S. & Theis, F. J. Reconstructing gene regulatory 691 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 17, 2018. ; https://doi.org/10.1101/303214doi: bioRxiv preprint 

https://doi.org/10.1101/303214
http://creativecommons.org/licenses/by/4.0/


Page 31 of 45 
 

dynamics from high-dimensional single-cell snapshot data. Bioinformatics 31, i89-96 692 

(2015). 693 

23. Thattai, M. & van Oudenaarden, A. Intrinsic noise in gene regulatory networks. Proc. 694 

Natl. Acad. Sci. 98, 8614–8619 (2001). 695 

24. Raj, A., Peskin, C. S., Tranchina, D., Vargas, D. Y. & Tyagi, S. Stochastic mRNA 696 

synthesis in mammalian cells. PLoS Biol. 4, 1707–1719 (2006). 697 

25. Battich, N., Stoeger, T. & Pelkmans, L. Control of Transcript Variability in Single 698 

Mammalian Cells. Cell 163, 1596–1610 (2015). 699 

26. Stoeger, T., Battich, N. & Pelkmans, L. Passive Noise Filtering by Cellular 700 

Compartmentalization. Cell 164, 1151–1161 (2016). 701 

27. Enge, M. et al. Single-Cell Analysis of Human Pancreas Reveals Transcriptional 702 

Signatures of Aging and Somatic Mutation Patterns. Cell 171, 321–330.e14 (2017). 703 

28. Martinez-Jimenez, C. P. et al. Aging increases cell-to-cell transcriptional variability 704 

upon immune stimulation. Science. 355, 1433–1436 (2017). 705 

29. Eldar, A. & Elowitz, M. B. Functional roles for noise in genetic circuits. Nature 467, 706 

167–173 (2010). 707 

30. Dueck, H., Eberwine, J. & Kim, J. Variation is function: Are single cell differences 708 

functionally important?: Testing the hypothesis that single cell variation is required for 709 

aggregate function. Bioessays 38, 172–80 (2016). 710 

31. Kolodziejczyk, A. A., Kim, J. K., Svensson, V., Marioni, J. C. & Teichmann, S. A. The 711 

Technology and Biology of Single-Cell RNA Sequencing. Mol. Cell 58, 610–620 712 

(2015). 713 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 17, 2018. ; https://doi.org/10.1101/303214doi: bioRxiv preprint 

https://doi.org/10.1101/303214
http://creativecommons.org/licenses/by/4.0/


Page 32 of 45 
 

32. Grün, D. et al. Single-cell messenger RNA sequencing reveals rare intestinal cell types. 714 

Nature 525, 251–5 (2015). 715 

33. Papalexi, E. & Satija, R. Single-cell RNA sequencing to explore immune cell 716 

heterogeneity. Nat. Rev. Immunol. (2017). doi:10.1038/nri.2017.76 717 

34. Bader, E. et al. Identification of proliferative and mature β-cells in the islets of 718 

Langerhans. Nature 535, 430–4 (2016). 719 

35. Dorrell, C. et al. Human islets contain four distinct subtypes of β cells. Nat. Commun. 720 

7, 11756 (2016). 721 

36. Singh, S. P. et al. Different developmental histories of beta-cells generate functional 722 

and proliferative heterogeneity during islet growth. Nat. Commun. 8, 664 (2017). 723 

37. Halpern, K. B. et al. Single-cell spatial reconstruction reveals global division of labour 724 

in the mammalian liver. Nature 542, 352–356 (2017). 725 

38. de Magalhães, J. P., Curado, J. & Church, G. M. Meta-analysis of age-related gene 726 

expression profiles identifies common signatures of aging. Bioinformatics 25, 875–881 727 

(2009). 728 

39. Glass, D. et al. Gene expression changes with age in skin, adipose tissue, blood and 729 

brain. Genome Biol. 14, R75 (2013). 730 

40. Gregg, B. E. et al. Formation of a human β-cell population within pancreatic islets is 731 

set early in life. J. Clin. Endocrinol. Metab. 97, 3197–206 (2012). 732 

41. Gunasekaran, U. & Gannon, M. Type 2 diabetes and the aging pancreatic beta cell. 733 

Aging (Albany. NY). 3, 565–75 (2011). 734 

42. Ziegenhain, C. et al. Comparative Analysis of Single-Cell RNA Sequencing Methods. 735 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 17, 2018. ; https://doi.org/10.1101/303214doi: bioRxiv preprint 

https://doi.org/10.1101/303214
http://creativecommons.org/licenses/by/4.0/


Page 33 of 45 
 

Mol. Cell 65, 631–643.e4 (2017). 736 

43. Oka, T. et al. Diet-induced obesity in zebrafish shares common pathophysiological 737 

pathways with mammalian obesity. BMC Physiol. 10, 21 (2010). 738 

44. Huang, D. et al. The DAVID Gene Functional Classification Tool: a novel biological 739 

module-centric algorithm to functionally analyze large gene lists. Genome Biol. 8, 740 

R183 (2007). 741 

45. Li, W., Hoffman, P. N., Stirling, W., Price, D. L. & Lee, M. K. Axonal transport of 742 

human α-synuclein slows with aging but is not affected by familial Parkinson’s 743 

disease-linked mutations. J. Neurochem. 88, 401–410 (2003). 744 

46. Milde, S., Adalbert, R., Elaman, M. H. & Coleman, M. P. Axonal transport declines 745 

with age in two distinct phases separated by a period of relative stability. Neurobiol. 746 

Aging 36, 971–981 (2015). 747 

47. Meynial-Denis, D. Glutamine metabolism in advanced age. Nutr. Rev. 74, 225–36 748 

(2016). 749 

48. McIsaac, R. S., Lewis, K. N., Gibney, P. A. & Buffenstein, R. From yeast to human: 750 

exploring the comparative biology of methionine restriction in extending eukaryotic 751 

life span. Ann. N. Y. Acad. Sci. 1363, 155–70 (2016). 752 

49. Hassa, P. O., Haenni, S. S., Elser, M. & Hottiger, M. O. Nuclear ADP-Ribosylation 753 

Reactions in Mammalian Cells: Where Are We Today and Where Are We Going? 754 

Microbiol. Mol. Biol. Rev. 70, 789–829 (2006). 755 

50. Sikora, E., Kamińska, B., Radziszewska, E. & Kaczmarek, L. Loss of transcription 756 

factor AP-1 DNA binding activity during lymphocyte aging in vivo. FEBS Lett. 312, 757 

179–82 (1992). 758 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 17, 2018. ; https://doi.org/10.1101/303214doi: bioRxiv preprint 

https://doi.org/10.1101/303214
http://creativecommons.org/licenses/by/4.0/


Page 34 of 45 
 

51. Ninov, N. et al. Metabolic regulation of cellular plasticity in the pancreas. Curr. Biol. 759 

23, 1242–1250 (2013). 760 

52. Sakaue-Sawano, A. et al. Visualizing spatiotemporal dynamics of multicellular cell-761 

cycle progression. Cell 132, 487–98 (2008). 762 

53. Segerstolpe, Å. et al. Single-Cell Transcriptome Profiling of Human Pancreatic Islets 763 

in Health and Type 2 Diabetes. Cell Metab. 593–607 (2016). 764 

doi:10.1016/j.cmet.2016.08.020 765 

54. Kulas, J. A., Puig, K. L. & Combs, C. K. Amyloid precursor protein in pancreatic 766 

islets. J. Endocrinol. 235, 49–67 (2017). 767 

55. van den Brink, S. C. et al. Single-cell sequencing reveals dissociation-induced gene 768 

expression in tissue subpopulations. Nat. Methods 14, 935–936 (2017). 769 

56. Zeng, C. et al. Pseudotemporal Ordering of Single Cells Reveals Metabolic Control of 770 

Postnatal β Cell Proliferation. Cell Metab. 25, 1160–1175.e11 (2017). 771 

57. Aguayo-Mazzucato, C. et al. β Cell Aging Markers Have Heterogeneous Distribution 772 

and Are Induced by Insulin Resistance. Cell Metab. 25, 898–910.e5 (2017). 773 

58. Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of 774 

regulatory variation. Nature 523, 486–490 (2015). 775 

59. Lowsky, D. J., Olshansky, S. J., Bhattacharya, J. & Goldman, D. P. Heterogeneity in 776 

healthy aging. J. Gerontol. A. Biol. Sci. Med. Sci. 69, 640–9 (2014). 777 

60. Jylhävä, J., Pedersen, N. L. & Hägg, S. Biological Age Predictors. EBioMedicine 21, 778 

29–36 (2017). 779 

61. Petkovich, D. A. et al. Using DNA Methylation Profiling to Evaluate Biological Age 780 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 17, 2018. ; https://doi.org/10.1101/303214doi: bioRxiv preprint 

https://doi.org/10.1101/303214
http://creativecommons.org/licenses/by/4.0/


Page 35 of 45 
 

and Longevity Interventions. Cell Metab. 25, 954–960.e6 (2017). 781 

62. Belsky, D. W. et al. Telomere, epigenetic clock, and biomarker-composite 782 

quantifications of biological aging: Do they measure the same thing? bioRxiv 783 

doi:10.1101/071373 (2016). doi:10.1101/071373 784 

63. Stefan, N., Häring, H.-U. & Schulze, M. B. Metabolically healthy obesity: the low-785 

hanging fruit in obesity treatment? lancet. Diabetes Endocrinol. (2017). 786 

doi:10.1016/S2213-8587(17)30292-9 787 

64. Roberson, L. L. et al. Beyond BMI: The ‘Metabolically healthy obese’ phenotype & its 788 

association with clinical/subclinical cardiovascular disease and all-cause mortality -- a 789 

systematic review. BMC Public Health 14, 14 (2014). 790 

65. Butler, A. & Satija, R. Integrated analysis of single cell transcriptomic data across 791 

conditions, technologies, and species. bioRxiv doi: 10.1101/164889 (2017). 792 

doi:10.1101/164889 793 

66. Singh, S. P. GERAS (GEnetic Referene for Age of Single-cell). (2017) 794 

https://github.com/sumeetpalsingh/GERAS2017. 795 

67. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low 796 

memory requirements. Nat. Methods 12, 357–360 (2015). 797 

68. Anders, S., Pyl, P. T. & Huber, W. HTSeq--a Python framework to work with high-798 

throughput sequencing data. Bioinformatics 31, 166–169 (2015). 799 

69. Castellazzi, M. et al. Overexpression of c-jun, junB, or junD affects cell growth 800 

differently. Proc. Natl. Acad. Sci. U. S. A. 88, 8890–4 (1991). 801 

70. Gedeon, T. D. Data mining of inputs: analysing magnitude and functional measures. 802 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 17, 2018. ; https://doi.org/10.1101/303214doi: bioRxiv preprint 

https://doi.org/10.1101/303214
http://creativecommons.org/licenses/by/4.0/


Page 36 of 45 
 

Int. J. Neural Syst. 8, 209–18 (1997). 803 

71. Piñero, J. et al. DisGeNET: a comprehensive platform integrating information on 804 

human disease-associated genes and variants. Nucleic Acids Res. 45, D833–D839 805 

(2017). 806 

 807 

  808 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 17, 2018. ; https://doi.org/10.1101/303214doi: bioRxiv preprint 

https://doi.org/10.1101/303214
http://creativecommons.org/licenses/by/4.0/


Page 37 of 45 
 

Acknowledgements: We thank members of the Ninov lab for comments on the manuscript, 809 

members of Center for Regenerative Therapies Dresden (CRTD) fish, microscopy, 810 

sequencing and FACS facility for technical assistance.  We are grateful to Priyanka Oberoi for 811 

illustrations.  812 

 813 

Authors’ Contributions: S.P.S. and Ankit Sharma (Google, N.Y.) conceptualized the 814 

project. S.P.S. and S.J. performed the zebrafish experiments. S.R., S.D. and A.E. performed 815 

single-cell sequencing. S.P.S., H.B., S.K., and G.Z. developed GERAS and its Shiny app. 816 

S.C., J.E.R. and N.N. provided critical feedback and advice. S.P.S., S.C. and N.N. wrote the 817 

manuscript. N.N. obtained key funding for the project.  All authors read and approved the 818 

final manuscript. 819 

 820 

Funding: The project was in part supported by CRTD postdoctoral seed grant (CRTD - FZ 821 

111) to S.P.S. and A.E.  N.N. is supported by funding from the DFG—Center for 822 

Regenerative Therapies Dresden, Cluster of Excellence at TU-Dresden and the German 823 

Center for Diabetes Research (DZD), as well as research grants from the German Research 824 

Foundation (DFG) (NI 1495/2-1), the European Foundation for the Study of Diabetes (EFSD) 825 

and the DZD.  826 

 827 

Competing Interests: The authors declare no competing financial interests. 828 

  829 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 17, 2018. ; https://doi.org/10.1101/303214doi: bioRxiv preprint 

https://doi.org/10.1101/303214
http://creativecommons.org/licenses/by/4.0/


Page 38 of 45 
 

ADDITIONAL FILES 830 

Supplementary Figures (.pdf) 831 

Containing Supplementary Fig. S1-S9. 832 

 833 

Table S1: Variable Importance for zebrafish beta-cell GERAS (.xls) 834 

A table listing the 1000-input genes utilized by zebrafish beta-cell GERAS and their 835 

importance towards successful classification. 836 

 837 

Table S2: Genes negatively correlated with classification probability (.xls) 838 

For beta-cells from three-times-a-day fed animals, correlation analysis was performed. In the 839 

analysis, correlation coefficient was calculated between the probability to be classified in 840 

‘Adolescent’ stage and gene expression. The genes were ranked in descending order of 841 

correlation coefficient. The table contains the genes in the bottom 5th percentile.  842 

 843 

Table S3: Genes positively correlated with classification probability (.xls) 844 

For beta-cells from three-times-a-day fed animals, correlation analysis was performed. In the 845 

analysis, correlation coefficient was calculated between the probability to be classified in 846 

‘Adolescent’ stage and gene expression. The genes were ranked in descending order of 847 

correlation coefficient. The table contains the genes in the top 5th percentile. 848 

 849 

Table S4: Variable Importance for Human pancreatic GERAS (.xls) 850 

A table listing the 1000-input genes utilized by human pancreatic GERAS and their 851 

importance towards successful classification. 852 

 853 

 854 
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Figure Legends 856 

 857 

Figure 1: A Chronological age classifier for zebrafish beta-cells 858 

(a) A schematic of the machine learning framework for predicting the chronological age of 859 

zebrafish beta-cells based on single-cell transcriptome (see Online Methods for details).  860 

(b) Barplot showing the accuracy of GERAS for classifying the age of beta-cells that were 861 

excluded during the training of the model.  The predictions on the excluded beta-cells 862 

displayed greater than 91% accuracy, exhibiting successful separation of single-cells into 863 

chronological stages.  Error bars indicate standard error. 864 

(c) Balloonplots showing the age-classification of de-novo sequenced beta-cells.  GERAS 865 

predicted the age of the cells from independent sources with greater than 92% accuracy, 866 

showcasing the robustness of the model in handling biological and technical noise.  867 

(d) The capacity of GERAS to perform regression analysis was tested using cells with ages 868 

in-between the chronological stages used to train GERAS.  More than 97% of the cells 869 

from the intermediate time-points classify in the nearest-neighbor stages.   870 

Number of cells for each condition is denoted by ‘n’. 871 

 872 

Figure 2: Impact of calorie intake on the chronological stage of zebrafish beta-cells 873 

(a) The impact of calorie intake on the predicted age of beta-cells was investigated.  874 

Statistically, a higher proportion of beta-cells from 4 mpf animals fed three-times-a-day 875 

classified as ‘Adult’, as compared to cells from animals on intermittent feeding, in which 876 

a majority of the cells (67%) classified as adolescent.  (Fisher’s Exact Test, **p-value < 877 

0.01).  878 
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(b) To identify the genes contributing to chronological stage classification, correlation 879 

analysis was performed.  To this end, all beta-cells from the group fed three-times-a-day 880 

were used to calculate the correlation coefficient between gene expression and the 881 

probability of the cell to be classified in the ‘Adolescent’ stage.  The Y-axis denotes the 882 

correlation coefficient and the X-axis depicts all the genes expressed in the beta-cells.  883 

The extreme fifth-percentile values are colored, with the red marking the top 5th percentile 884 

(positive correlation) and blue marking the bottom 5th percentile (negative correlation).  885 

Genes with positive correlation, which include junba and fosab, contribute towards 886 

classification in the ‘Adolescent’ stage as opposed to classification in the ‘Adult’ stage, 887 

thereby increasing the probability of a cell being classified as younger.     888 

(c) Gene-ontology (GO) analysis using DAVID 44 for genes in the extreme fifth-percentile. 889 

This analysis includes the genes exhibiting negative (blue in b) and positive (red in b) 890 

correlation. 891 

Zebrafish illustration provided with permission.  892 

 893 

Figure 3: Inhibition of junba reduces the proliferation of zebrafish beta-cells 894 

(a) Maximum intensity confocal projections of islet from 30 dpf animal showing mosaic 895 

expression of nls-BFP-2A-DN-junba (blue) together with Tg(ins:FUCCI-S/G2/M) (green) 896 

and Tg(ins:FUCCI-G0/G1) (red).  Arrowheads mark proliferating beta-cells, as indicated 897 

by the presence of green fluorescence and absence of red fluorescence.  Scale bar 10 μm. 898 

(b) Tukey-style boxplots showing the percentage of proliferating beta-cells among BFP+ and 899 

BFP- cells.  BFP+ cells co-express DN-junba, while the BFP- cells act as internal control. 900 

The BFP+ cells show a statistically significant decrease in the proportion of proliferating 901 

cells (t-test, **p-value <0.01). ‘n’ denotes number of islets.  902 
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 903 

Figure 4: A Chronological age classifier for human pancreatic cells 904 

(a) A single chronological age classifier for the entire ensemble of human pancreatic cells 905 

using machine learning.  No cell-type segregation was performed during training.  906 

(b) Barplot showing the accuracy of GERAS on classifying the age of pancreatic cells that 907 

were not used for training the model.  An accuracy of 95% was achieved for cells 908 

previously unseen by GERAS.  (b’) The classification accuracy of GERAS on the 909 

previously unseen pancreatic cells after segregating them into major cell-types. 910 

Classification accuracy equals the proportion of cells for which the predicted stage 911 

matched the actual stage.  For each cell-type, greater than 93% accuracy was achieved. 912 

Error bars indicate standard error.    913 

(c) External validation for the classifier was provided by human pancreatic single-cell mRNA 914 

expression data obtained from an independent publication.  Cells from individuals 915 

belonging to the ‘Middle’ (38 – 54 years) stage of the classifier displayed greater than 916 

93% accuracy.  917 

(d) Balloonplot showing classification of cells from individuals with similar chronological 918 

age but different BMI.  In individuals with normal BMI, 32% of the cells were classified 919 

in ‘Juvenile’ and ‘Young’ stages, while none (0%) of the cells from individuals with obese 920 

BMI were similarly classified.    921 

Number of cells for each condition is denoted by ‘n’. 922 

  923 
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Figures 924 

Figure 1 925 

 926 
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Figure 2 928 

 929 

 930 
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Figure 3 932 
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Figure 4 936 
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