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Abstract 

Cocaine addiction is a global health problem that causes substantial damage to the health of 

addicted individuals around the world. Dopamine synthesizing (DA) neurons in the brain play a 

vital role in the addiction to cocaine. But the underlying molecular mechanisms that help 

cocaine exert its addictive effect have not been very well understood. Bioinformatics can be a 

useful tool in the attempt to broaden our understanding in this area. In the present study, Gene 

Set Enrichment Analysis (GSEA) was carried out on the upregulated genes from a dataset of DA 

neurons of post-mortem human brain of cocaine addicts. As a result of this analysis, 3 miRNAs 

have been identified as having significant influence on transcription of the upregulated genes. 

These 3 miRNAs hold therapeutic potential for the treatment of cocaine addiction.  
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Introduction 

Cocaine addiction is a public health problem that spans the whole world. It is associated with 

various somatic, psychological, socio-economic, and legal complications [1], [2]. Cocaine 

addiction is a disorder which is chronic and relapsing and is characterized by compulsive drug-

seeking and drug use[3]. Addiction to drugs in general is thought to be linked with long-term 

changes in neural gene expression through various epigenetic mechanisms. These mechanisms 

practically form a ‘molecular memory' that helps retaining the drug-addicted condition [4] 

Despite the involvement of diverse neural cell types and circuits in creating the effects of drugs 

of abuse, the most important role is played by the dopamine (DA)-synthesizing neurons of the 

ventral midbrain. DA neurons innervate widespread regions of the forebrain. Only 1 in 200,000 

neurons of the human brain are part of the midbrain DA cells. Despite being relatively small in 

number among the neural cellular population, DA cells are significant in mediating both the 

acute rewarding effects of drugs of abuse and the conditioned responses to cues associated 
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with previous drug use [5].  On the other hand, after cessation of chronic drug abuse, different 

types of adverse consequences (e.g. anhedonia and dysphoria) may arise from the lack of DA 

neurotransmission [6]. 

Activation of the meso-cortico-limbic system through elevation of dopamine release in the 

nucleus accumbens is how almost all psychoactive drugs cause addiction in humans [7]–[9]. 

Dopamine release is involved in motivational, emotional, contextual, and affective information 

processing of behaviour and drug reinforcement mechanisms. Dopamine levels in the synapses 

in the meso-cortico-limbic system get raised when cocaine blocks the transporter that pumps 

the neurotransmitter out of the synapse into the presynaptic nerve terminal. From animal and 

human studies (including brain imaging by positron emission tomography; PET) it has been 

found that the increased dopamine transmission plays a major role to the reinforcing effects of 

cocaine [10].  

Previously it was hypothesized that only a simple dysfunction of the meso-cortico-limbic 

dopaminergic system is responsible for all aspects of cocaine addiction but that has been 

proven wrong as cocaine blocks the serotonin and norepinephrine presynaptic transporters as 

well and increases in both synaptic dopamine and norepinephrine levels have been found to 

mediate the rewarding cocaine subjective experience (‘high’) [11], [12]. Cocaine also alters the 

level of other neurotransmitters such as glutamate, GABA, endocannabinoid, and 

corticotrophin-releasing hormone [13]–[16]. Interactions between these neurotransmitter 

systems modulate the reward, motivation, and memory systems in the brain [17], [18]. 

Due to the critical role played by DA neurons in addiction, shedding more light on drug-induced 

molecular changes in these cells has become crucial yet our understanding of the nature of 

these changes still remains far from complete [19]. For gaining new insight into the 

pathophysiology of complex disorders such as drug addiction, postmortem human brain can be 

a unique resource despite the challenges associated with its use [20]. 

In this study, upregulated genes in DA neurons from postmortem human brain were identified 

to shed more light on the molecular mechanism, pathways and the key players involved with 

cocaine addiction. For doing this, gene expression dataset GSE54839 was used [17]. 

Methods 

Identification of Upregulated Genes from GSE54839 

 

From the NCBI website GEO datasets were searched using the term “cocaine AND differential 

gene expression” and reference series GSE54839 was analyzed with GEO2R. 
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For GEO2R analysis two groups termed “Cocaine addiction” and “Control” were defined. Thirty 

samples belonged to each groups. Using the GEOquery [21] and limma R [22] packages from the 

Bioconductor project, GEO2R analysis was performed [23]. Top 250 differentially expressed 

genes were found. P values were adjusted using the Benjamini & Hochberg (false discovery 

rate) method [24]. Log2 transformation to the data was applied. R script used to perform the 

calculation was obtained from the R script tab. 

 

Enrichment Analysis 

Enrichment analysis of the Upregulated genes was carried out using 

 ChEA2016 TFs [27] 

 MiRTarBase 2017 [28] 

 KEGG 2016 [29] 

 

Results and Discussion 

R script 

# Version info: R 3.2.3, Biobase 2.30.0, GEOquery 2.40.0, limma 3.26.8 
# R scripts generated  Tue Apr 17 00:24:53 EDT 2018 
 
################################################################ 
#   Differential expression analysis with limma 
library(Biobase) 
library(GEOquery) 
library(limma) 
 
# load series and platform data from GEO 
 
gset <- getGEO("GSE54839", GSEMatrix =TRUE, AnnotGPL=TRUE) 
if (length(gset) > 1) idx <- grep("GPL6947", attr(gset, "names")) else idx <- 1 
gset <- gset[[idx]] 
 
# make proper column names to match toptable  
fvarLabels(gset) <- make.names(fvarLabels(gset)) 
 
# group names for all samples 
gsms <- "111000111000111000111000111000111000111000111000111000111000" 
sml <- c() 
for (i in 1:nchar(gsms)) { sml[i] <- substr(gsms,i,i) } 
 
# log2 transform 
ex <- exprs(gset) 
qx <- as.numeric(quantile(ex, c(0., 0.25, 0.5, 0.75, 0.99, 1.0), na.rm=T)) 
LogC <- (qx[5] > 100) || 
          (qx[6]-qx[1] > 50 && qx[2] > 0) || 
          (qx[2] > 0 && qx[2] < 1 && qx[4] > 1 && qx[4] < 2) 
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if (LogC) { ex[which(ex <= 0)] <- NaN 
  exprs(gset) <- log2(ex) } 
 
# set up the data and proceed with analysis 
sml <- paste("G", sml, sep="")    # set group names 
fl <- as.factor(sml) 
gset$description <- fl 
design <- model.matrix(~ description + 0, gset) 
colnames(design) <- levels(fl) 
fit <- lmFit(gset, design) 
cont.matrix <- makeContrasts(G1-G0, levels=design) 
fit2 <- contrasts.fit(fit, cont.matrix) 
fit2 <- eBayes(fit2, 0.01) 
tT <- topTable(fit2, adjust="fdr", sort.by="B", number=250) 
 
tT <- subset(tT, select=c("ID","adj.P.Val","P.Value","t","B","logFC","Gene.symbol","Gene.title")) 
write.table(tT, file=stdout(), row.names=F, sep="\t") 
 
 
################################################################ 
#   Boxplot for selected GEO samples 
library(Biobase) 
library(GEOquery) 
 
# load series and platform data from GEO 
 
gset <- getGEO("GSE54839", GSEMatrix =TRUE, getGPL=FALSE) 
if (length(gset) > 1) idx <- grep("GPL6947", attr(gset, "names")) else idx <- 1 
gset <- gset[[idx]] 
 
# group names for all samples in a series 
gsms <- "111000111000111000111000111000111000111000111000111000111000" 
sml <- c() 
for (i in 1:nchar(gsms)) { sml[i] <- substr(gsms,i,i) } 
sml <- paste("G", sml, sep="")  set group names 
 
# order samples by group 
ex <- exprs(gset)[ , order(sml)] 
sml <- sml[order(sml)] 
fl <- as.factor(sml) 
labels <- c("cocain","control") 
 
# set parameters and draw the plot 
palette(c("#dfeaf4","#f4dfdf", "#AABBCC")) 
dev.new(width=4+dim(gset)[[2]]/5, height=6) 
par(mar=c(2+round(max(nchar(sampleNames(gset)))/2),4,2,1)) 
title <- paste ("GSE54839", '/', annotation(gset), " selected samples", sep ='') 
boxplot(ex, boxwex=0.6, notch=T, main=title, outline=FALSE, las=2, col=fl) 
legend("topleft", labels, fill=palette(), bty="n") 
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Enrichment Analysis of Upregulated Genes 

ChEA2016 TFs 

Index Name P-value Adjusted 
p-value 

Z-
score 

Combine
d score 

1 RELA_24523406_ChIP-
Seq_FIBROSARCOMA_Human 

3.88E-14 2.34E-11 -1.74 53.67 

2 ATF3_23680149_ChIP-Seq_GBM1-
GSC_Human 

4.98E-10 1.50E-07 -1.59 34.06 

3 ESR1_21235772_ChIP-Seq_MCF-
7_Human 

0.0001396 0.008406 -3.12 27.69 

4 CLOCK_20551151_ChIP-
Seq_293T_Human 

0.00003391 0.002268 -2.66 27.38 

5 TRIM28_21343339_ChIP-
Seq_HEK293_Human 

0.001042 0.03136 -3.45 23.67 

MiRTarBase 2017 

Index Name P-value Adjusted 
p-value 

Z-
score 

Combine
d score 

1 hsa-miR-124-3p 4.38E-07 0.000524 -9.8 143.46 

2 hsa-miR-16-5p 0.0001975 0.03449 -
10.0
9 

86.04 

3 hsa-miR-34a-5p 6.19E-07 0.000524 -5.13 73.27 

4 hsa-miR-17-5p 0.005434 0.1546 -7.95 41.48 

5 hsa-miR-15a-5p 0.0008265 0.08314 -5.35 37.94 

KEGG 2016 

Index Name P-value Adjusted 
p-value 

Z-
score 

Combine
d score 

1 TNF signaling pathway_Homo 
sapiens_hsa04668 

0.00000123
3 

0.00018 -1.91 26.05 

2 Influenza A_Homo sapiens_hsa05164 0.00000254
6 

0.000185
8 

-1.94 25.03 

3 AGE-RAGE signaling pathway in diabetic 
complications_Homo sapiens_hsa04933 

0.00001095 0.000532
8 

-2 22.9 

4 Herpes simplex infection_Homo 
sapiens_hsa05168 

0.00003759 0.001372 -1.71 17.38 

5 Cocaine addiction_Homo 
sapiens_hsa05030 

0.0001009 0.002945 -1.71 15.71 

 

For the upregulated genes: 

From the ChEA2016 TFs database, RELA_24523406_ChIP-Seq_FIBROSARCOMA_Human was 

found to be the most significant transcription factor. Hsa-miR-124-3p was identified as the most 
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significant miRNA from the MiRTarBase 2017. From the KEGG 2016 pathway analysis, TNF 

signaling pathway_Homo sapiens_hsa04668 was found to be the most significant pathway 

mediated by the upregulated genes. 

Precursor of the mature miRNA, hsa-miR-124-3p, namely the miR-124 is a small non-coding 

RNA molecule which has been fund in flies [30], nematode worms [29], mouse [28] and human 

[31]. Dicer enzyme processes the mature ~21 nucleotide mature miRNAs from hairpin precursor 

sequences. MiR-124 is the most abundant miRNA expressed in neuronal cells.  The sequence 

for hsa-miR-124-3p is- 53 -   uaaggcacgcggugaaugccaa  - 74 [32] 

Precursor of the mature miRNA, hsa-miR-16-5p namely the miR-16  family is vertebrate specific 

and its members have been predicted or discovered in a number of different vertebrate 

species. The sequence for hsa-miR-124-3p is- 14 -   uagcagcacguaaauauuggcg  - 35 [32] 

Precursor of the mature miRNA, hsa-miR-34a-5p namely the miR-34 family gives rise to three 

major mature miRNAs. Members of the miR-34 family were discovered computationally at first 

[33]  and verified experimentally later [34], [35]. The sequence for hsa-miR-34a-5p is- 22 -   

uggcagugucuuagcugguugu  - 43 [32] 

Role of miRNAs as important regulatory agents for gene expression is being considered as 

therapeutic means in various diseases. Unlike siRNAs, miRNA-targeted therapy is capable of 

influencing not only a single gene, but entire cellular pathways or processes. Mitigating the 

effects exerted by overexpression of malignant miRNAs is possible through the application of 

artificial antagonists such as oligonucleotides or other small molecules. It is also possible to 

supplement miRNAs through the use of synthetic oligonucleotides [36]. In the case of current study, 

the miRNAs which were found to influence the transcription of upregulated genes in cocaine 

addiction can be supplemented so that they can negatively regulate those genes and thus 

reduce the addictive effects. 

Conclusion  

From the Gene Set Enrichment Analysis, 3 miRNAs have been discovered to be significantly 

associated with the transcription of upregulated genes in cocaine addiction. Therefore we 

predict that these 3 miRNAs hold therapeutic promise against cocaine addiction. Further 

studies in vitro should be carried out in order to get more knowledge about the efficacies of 

these miRNAs in mitigating the effects of cocaine addiction. 
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