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Abstract 24 

Advances in DNA sequencing technology have revolutionised the field of molecular 25 

analysis of trophic interactions and it is now possible to recover counts of food DNA barcode 26 

sequences from a wide range of dietary samples. But what do these counts mean? To obtain 27 

an accurate estimate of a consumer’s diet should we work strictly with datasets 28 

summarising the frequency of occurrence of different food taxa, or is it possible to use the 29 

relative number of sequences? Both approaches are applied in the dietary metabarcoding 30 

literature, but occurrence data is often promoted as a more conservative and reliable option 31 

due to taxa-specific biases in recovery of sequences. Here, we point out that diet summaries 32 

based on occurrence data overestimate the importance of food consumed in small 33 

quantities (potentially including low-level contaminants) and are sensitive to the count 34 

threshold used to define an occurrence. Our simulations indicate that even with recovery 35 

biases incorporated, using relative read abundance (RRA) information can provide a more 36 

accurate view of population-level diet in many scenarios. The ideas presented here highlight 37 

the need to consider all sources of bias and to justify the methods used to interpret count 38 

data in dietary metabarcoding studies. We encourage researchers to continue to addressing 39 

methodological challenges, and acknowledge unanswered questions to help spur future 40 

investigations in this rapidly developing area of research.  41 
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1. Introduction 42 

Many recent studies documenting trophic interactions make use of metabarcoding, 43 

an approach which combines high-throughput sequencing (HTS) with DNA barcoding to 44 

characterise organisms in complex mixtures (Nielsen et al. 2017). When HTS first became 45 

available the potential applications in diet studies were clear and the methods were quickly 46 

embraced by the community (Deagle et al. 2009; Valentini et al. 2009). In a comprehensive 47 

review of DNA-based diet analysis by King et al. (2008) the possibility of using HTS was only 48 

briefly mentioned as a ‘Future Direction’, and just four years later another review paper 49 

focussed entirely on this approach (Pompanon et al. 2012). While many underlying technical 50 

and biological details vary between dietary metabarcoding studies, the general workflow is 51 

now well defined. It involves extraction of DNA from faecal samples or stomach contents, 52 

PCR amplification of DNA barcode markers from food taxa of interest, and then DNA 53 

sequencing for taxonomic classification of the recovered sequences.  The workflow has been 54 

applied to determine diet in a range of animals, from invertebrates to large mammalian 55 

herbivores and carnivores (representative studies summarised in Table 1). 56 

The rapid adoption of HTS to characterise complex mixtures of DNA is not unique to 57 

dietary studies; over the last ten years the technology has produced a wealth of new genetic 58 

data providing insight into almost all areas of biology (Goodwin et al. 2016). One feature of 59 

HTS is that it provides counts of DNA sequences in each sample and therefore it has the 60 

potential not only to provide a qualitative list, but also to quantify what DNA is present. The 61 

interpretation of sequence read counts as a numerical representation of sample 62 

composition is common in many HTS applications. For example, studies sequencing 63 

transcripts to determine differences in gene expression (Finotello & Di Camillo 2015), 64 

profiling microbe communities (Vandeputte et al. 2017) or measuring epigenetic variation 65 

(Schield et al. 2016) all rely on sequence read counts. However, decisions about how to 66 

interpret read counts is certainly not routine and the validity of interpretations is sometimes 67 

questioned even in fields where the practice is well established (e.g. Edgar 2017; Olova et al. 68 

2017). These debates are constructive, and should motivate researchers to test the 69 

underlying assumptions and justify their interpretations, but can inadvertently give rise to 70 

the false impression that count data are always misleading. 71 
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The reality is that metabarcoding studies always use sequence counts to some 72 

extent. In dietary investigations, count data are used either to record the occurrence of food 73 

species within samples based on a threshold number of sequences (i.e. presence/absence of 74 

taxa), or to calculate the percentage of DNA belonging to each food species as a proxy for 75 

relative biomass consumed (i.e. relative abundance of taxa; Figure 1). The conversion of 76 

sequence counts to occurrence data is often considered a more conservative approach than 77 

using proportional data. In their introduction to the Molecular Ecology Special Issue on 78 

‘Molecular Detection of Trophic Interactions’, Symondson & Harwood (2014) pointed out 79 

that authors of many metabarcoding papers “now simply record numbers of predators 80 

testing positive for a target prey or plant species, providing a pragmatic and useful surrogate 81 

for truly quantitative information”. This sentiment, that focusing only on occurrence data is 82 

a reliable and safe option, is now common in the literature and this step in the analysis 83 

pipeline is often uncritically applied as the default option. Using counts as an indication of 84 

biomass in the sample is more controversial. Indeed, the difficulties of obtaining an accurate 85 

biomass signature from sequence counts include both technical and biological biases that 86 

affect barcode marker recovery rates from different taxa (Amend et al. 2010; Deagle et al. 87 

2009; Pompanon et al. 2012). Therefore in the best-case scenario sequence read counts can 88 

only provide a rough estimate of proportional abundance. Still, to accept the notion that 89 

relative sequence counts provide no meaningful information would mean that, within one 90 

sample, a few DNA sequences from one food taxon is equivalent to 10,000 sequences from 91 

another. Most molecular ecologists would interpret these disparate counts to mean that 92 

there are differences in template DNA abundance (as long as methods used to collect the 93 

data are reasonable) and that there is some biological basis for that difference. Ignoring this 94 

difference may inhibit ecological understanding. 95 

Here, we review the approaches taken to interpret sequence count data in dietary 96 

metabarcoding studies and consider their implications. We point out that converting 97 

sequence read counts to occurrence information can introduce strong biases and thus we 98 

suggest it is not always a “conservative” approach. We also assess the scale of biases in 99 

recovery of sequences from different food taxa in study systems where it has been 100 

examined. Using simulations we explore the impact of these biases on data summaries 101 

(both based on occurrence and read counts). In this light, we evaluate factors that impact 102 

data summaries in dietary metabarcoding and consider where using sequence count data as 103 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 18, 2018. ; https://doi.org/10.1101/303461doi: bioRxiv preprint 

https://doi.org/10.1101/303461


 

5 
 

an indication of relative biomass within samples might be justified to provide a more 104 

nuanced picture of animal diet. 105 

The issues we consider on how best to summarise dietary data have implications for 106 

all metabarcoding studies (Taberlet et al. 2018) and similar issues have been considered 107 

extensively in traditional diet studies (e.g. Barrett et al. 2007; Laake et al. 2002). In HTS-108 

based diet studies the ideas are most relevant when the underlying objective is to estimate 109 

the true diet of a particular consumer (i.e. the relative biomass contributions of alternative 110 

diet species). This may not be a clearly stated goal, but is often implicit in outcomes of 111 

dietary metabarcoding studies. Approaches for summarising sequence counts may be of less 112 

concern in studies aiming to provide a list of taxa consumed by a particular species (niche 113 

breadth), a summary of trophic interactions in a food web, or an indicator of dietary 114 

differences between sites. Throughout the paper we will refer to the two general 115 

approaches of summarising sequence count data as ‘occurrence’ (i.e.  presence/absence of 116 

taxa) and ‘relative read abundance’ (RRA; i.e. proportional summaries of counts). We focus 117 

mainly on dietary studies using DNA extracted from faecal material. The use of HTS to 118 

identify food in stomach contents is common in invertebrates, and also fish, but the 119 

material recovered is in various states of digestion and the sequence counts are less likely to 120 

contain a meaningful quantitative signal compared to the more consistent signal seen in 121 

faecal material (Deagle et al. 2013; Nakahara et al. 2015).  122 

 123 

2. Current Practice 124 

Non-dietary metabarcoding studies use a range of approaches to interpret sequence 125 

count data, and these vary depending on the targeted organisms. Recent papers published 126 

in Molecular Ecology on bacterial/archaeal communities all make use of RRA, although half 127 

of these studies also presented summaries based on taxon occurrences (Table S1). There is 128 

widespread acknowledgement of taxon-specific biases in recovery of the bacterial/archaeal 129 

barcode markers, but RRA is accepted as a flawed, but useful, measure of these diverse 130 

communities that cannot be easily characterized by other means (Forney et al. 2004; 131 

Ibarbalz et al. 2014). There is no clear consensus in metabarcoding of eukaryotic 132 

communities: RRA is sometimes used exclusively (often the case in studies of fungi), 133 
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whereas metazoan studies use either occurrence data only or both metrics in tandem 134 

(recent examples listed in Table S1). 135 

In dietary metabarcoding studies, it is common to only interpret sequence data after 136 

conversion to taxon occurrences (representative studies summarised in Table 1). This 137 

conversion is done in various ways. During initial processing of sequence reads, most 138 

researchers discard rare sequences to avoid incorporation of background sequencing errors 139 

(e.g. Quéméré et al. 2013). After this a summary table of remaining sequence reads in each 140 

sample is produced and sequences are assigned taxonomy (often with similar sequences 141 

being clustered). Then, when converting these read counts to occurrence data, a threshold 142 

number of reads is often required for each taxon to be tallied as an occurrence. Sequencing 143 

depth can vary considerably between samples, so in practice a threshold percentage of 144 

reads is often used (e.g. 1% of food sequences McInnes et al. 2017b), or sequencing depth 145 

can be rarefied to a common level (O'Rorke et al. 2016). These approaches normalize 146 

detection across samples, so that more sequences are required for an occurrence to be 147 

recorded in samples with higher read depths. 148 

Once occurrences are recorded in individual samples, several metrics can be used to 149 

summarise the diet across samples. Those considered here are percent frequency of 150 

occurrence (%FOO), percent of occurrence (POO) and weighted percent of occurrence 151 

(wPOO) (Figure 1; see Box 1 for details). 152 

 Some dietary metabarcoding studies present RRA data along with occurrence 153 

summaries, although relatively few have relied solely on information obtained from RRA 154 

(Table 1). In almost all of these studies, the number of sequences obtained per sample are 155 

converted to percentages (Figure 1a), because the absolute counts are dependent on 156 

several factors unrelated to the overall importance of the sample (amount of starting 157 

material used, DNA extraction efficiency, standardization of samples before HTS, etc.). To 158 

provide an overall diet summary, sample-specific RRA values can be averaged across 159 

samples; when doing so, each sample is given equal weight (Box 1; Figure 1b). The RRA of 160 

taxa in each sample will vary depending on genetic marker, laboratory protocol, and 161 

bioinformatic filtering strategy (Alberdi et al. 2017; Deagle et al. 2013). Ensuring laboratory 162 

methods are robust (i.e. focussing on samples with sufficient target DNA and checking 163 

replicates) and using a standardised bioinformatics pipeline without excessive filtering can 164 
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help ensure RRA data are reproducible and precise (Alberdi et al. 2017; Deagle et al. 2013; 165 

McInnes et al. 2017a; Murray et al. 2015). 166 

 167 

Box 1: Some metrics used to summarise sequence data in dietary metabarcoding 168 
 169 
Occurrence Data 170 

Frequency of occurrence (FOO) is the number of samples that contain a given food item, most 171 

often expressed as a percent (%FOO). Percent of occurrence (POO) is simply %FOO rescaled so 172 

that the sum across all food items is 100%.  Weighted percent of occurrence (wPOO) is similar to 173 

POO, but rather than giving equal weight to all occurrences, this metric weights each occurrence 174 

according to the number of food items in the sample (e.g., if a sample contains 5 food items, each 175 

will be given weight 1/5).  Mathematical expressions are as follows:  176 

 177 

%𝐹𝑂𝑂𝑖 =
1

𝑆
∑ 𝐼𝑖,𝑘

𝑆

𝑘=1

× 100% 178 

 179 

𝑃𝑂𝑂𝑖 =
∑ 𝐼𝑖,𝑘
𝑆
𝑘=1

∑ ∑ 𝐼𝑖,𝑘
𝑆
𝑘=1

𝑇
𝑖=1

 180 

 181 

𝑤𝑃𝑂𝑂𝑖 =
1

𝑆
∑

𝐼𝑖,𝑘
∑ 𝐼𝑖,𝑘
𝑇
𝑖=1

𝑆

𝑘=1

 182 

 183 

where T is the number of food items (taxa), S is the number of samples, and I is an indicator 184 

function such that Ii,k = 1 if food item i is present in sample k, and 0 if not.  185 

 186 

Many metabarcoding diet studies make use of both %FOO and POO (e.g. Xiong et al. 2017). POO 187 

provides a convenient view since each food taxon contributes a percentage of total diet (unlike 188 

%FOO which does not sum to 100%). In POO summaries samples with a high number of food 189 

taxa have a stronger influence, whereas in wPOO each sample is weighted equally (i.e. lower 190 

weighting to food taxa in a mixed meal) and this may be more biologically realistic (wPOO is the 191 

same as split-sample frequency of occurence; see Tollit et al. 2017 and references within). 192 

 193 

Read Abundance Data 194 

Using the sequence counts, relative read abundance (RRAi) for food item i is calculated as: 195 

𝑅𝑅𝐴𝑖 =
1

𝑆
∑

𝑛𝑖,𝑘
∑ 𝑛𝑖,𝑘
𝑇
𝑖=1

𝑆

𝑘=1

× 100% 196 

 197 

where ni,k is the number of sequences of food item i in sample k.  198 

 199 

 200 

 201 

  202 
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3. Does converting read counts to occurrence data solve our problems? 203 

 It is often assumed that because conversion to occurrence data moderates the 204 

impact of taxa-specific bias in marker signal, it provides a trustworthy, or at least 205 

conservative, view of diet. While it is true that occurrence-based summaries of diet are less 206 

affected by recovery bias, it is not necessarily the case that they provide a more accurate 207 

representation of overall diet. Our simulations suggest POO summaries are highly consistent 208 

but generally less accurate representation of overall diet compared to RRA summaries even 209 

when moderate taxa-specific recovery biases are present (see Box 2 for details).  210 

 211 

Box 2: Simulations evaluating approaches for summarising population-level diet 212 

composition 213 

 To compare how effectively occurrence and RRA methods reconstruct population-level 214 

diet we simulated HTS read counts for samples derived from a population with a fixed diet and 215 

investigated the impact of taxa-specific sequence recovery biases (Figure 2). Our simulation 216 

results are for a population with 40 food taxa in its diet, occurring in exponentially declining 217 

abundance. Sequencing was simulated for 100 scat samples assuming a mean of either 3 or 20 218 

food taxa per sample, and assuming different sequence recovery bias scenarios: no bias, low 219 

bias or high bias. The biases introduce positive or negative biases of up to 4x and 20x (low and 220 

high biases respectively) relative to a standard. In high bias scenario a 50:50 mixture could lead 221 

to 400 fold recovery bias) Diet summaries were made using: (1) RRA; (2) POO with a 1% 222 

minimum sequence threshold. For further details see Supplementary Material (S3). 223 

 Overall results show that with these parameters RRA summaries were on average more 224 

accurate but had higher variance than POO summaries. POO produced more consistent 225 

estimates less impacted by recovery biases, but only outperformed RRA when the largest 226 

recovery biases corresponded to the most common food items. Both methods were more 227 

accurate when the number of food taxa per sample was small: with a small number of food taxa  228 

per sample POO estimates provide more realistic enumeration of rare items and RRA estimates 229 

are less impacted by sequence recovery biases (since biases are only expressed in the context of 230 

other taxa in a sample).  231 

 232 
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 233 

Figure 2: Simulation results: (a) difference between true diet proportions and estimated 234 
population diet (compared using Bray-Curtis dissimilarity metric) for RRA and POO summary 235 
methods under different bias scenarios. The first plot shows an example bias vector (for both 236 
low and high bias) used in one simulation with differential recovery values for each food taxa. 237 
The boxplots summarise results from 1000 simulations for each bias scenario where the 238 
average number of taxa per sample was 3 or 20. (b) In these simulations the most common taxa 239 
(T1) was forced to have the greatest positive bias or the greatest negative bias (low bias 240 
scenario = Low T1+ or Low T1-; high bias scenario = High T1+ and High T1-). Plots show the 241 
bias vectors and the corresponding population diet summaries are illustrated as bar plots. 242 
Numbers on top of bars are Bray-Curtis dissimilarity compared to true diet. Again, the average 243 
number of taxa per sample was 3 or 20. See Box 2 text and Supplementary Materials (S3) for 244 
details. 245 

 246 

 The primary drawback of occurrence datasets is that the importance of rare food 247 

taxa are often artificially inflated at the expense of food taxa eaten in large amounts, 248 

effectively flattening the rank-abundance species curves typically seen in dietary datasets 249 

(Figure 1; Box 2). This effect can be illustrated in metabarcoding data from a population-250 

level diet study of killer whales (Figure 3). This study concluded that the whale population’s 251 

diet consisted primarily of Chinook salmon (~80%) based on high RRA of this species in most 252 

samples (Ford et al. 2016). If we consider the killer whales’ diet as occurrence (POO; each 253 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 18, 2018. ; https://doi.org/10.1101/303461doi: bioRxiv preprint 

https://doi.org/10.1101/303461


 

10 
 

food species occurrence given equal value), the view changes considerably because other 254 

salmon species and halibut frequently detected at low levels become important prey. The 255 

threshold level used to count an occurrence also impacts the relative importance of these 256 

fish prey; a lower threshold increases the importance of rare diet items (Figure 3). These 257 

different diet estimates have substantial implications when diet percentages are combined 258 

with bioenergetics estimates and consumer population size to derive estimates of prey 259 

consumption (Chasco et al. 2017). Another implication of rare-item inflation occurs in 260 

studies of niche partitioning. Here, the conclusion that species feed on separate resources 261 

may be inaccurate because separation may be driven primarily by partitioning of rare diet 262 

items, which are given similar weight as shared important food.  In contrast, the conclusion 263 

that species overlap in their dietary niche is potentially less likely (i.e. requiring overlap in 264 

both primary and rare food items), but may therefore be more biologically meaningful when 265 

found (Clare 2014). 266 

 How much influence rare diet taxa have in overall diet estimates depends to some 267 

extent on the foraging strategy of the focal species and food distribution. In cases where 268 

small amounts of rare diet items are consumed in most feeding bouts, the importance of 269 

these items could be strongly over-estimated in occurrence-based summaries (as seen in 270 

the simulations with a high number of taxa per scat sample; Box 2). This may be the 271 

situation for some large grazing herbivores that forage continuously across a grassland, 272 

often eating relatively rare plant taxa in proportion to their availability (i.e., non-selective 273 

feeding).  In contrast, when rare diet items are eaten sporadically, their DNA would be 274 

detected only occasionally and diet estimates would be more realistic. For instance, some 275 

carnivores feed sporadically, individualistically, and in discrete foraging events such that 276 

prey occurrences may provide a more meaningful indication of how often each taxon is 277 

predated (Codron et al. 2016). The feeding ecology of a species is reflected to some extent 278 

in the number of food taxa in individual faecal samples and this varies widely between 279 

studies (Table 1). This value provides insight into the potential impact of rare-item inflation 280 

bias. For example, in Figure 1, the zebra faecal samples have many food taxa per sample and 281 

when summarised as occurrences, these have a predictably flat rank-abundance curve; this 282 

curve would be generated regardless of the true amount of each plant consumed in each 283 

meal (Box 2). 284 
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Summaries based on occurrences become less accurate when samples are pooled 285 

(i.e. when sequence reads from individual scats are not identifiable; Clare et al. 2014; Deagle 286 

et al. 2009; Ford et al. 2016) because rare diet taxa present in any one of the pooled 287 

samples are weighted equally to taxa found in all of the pooled samples. The time period 288 

over which food consumption is integrated in a faecal DNA sample (influenced by gut 289 

passage time) can affect these data in a similar way, since longer integration will mean rare 290 

taxa have a greater likelihood of being present in each sample. 291 

The inflated importance of rare sequences in occurrence summaries could also 292 

magnify some problems encountered in diet metabarcoding. There are occasions when 293 

exogenous DNA can contaminate a sample of interest. This includes field-based 294 

contamination from non-food eDNA (McInnes et al. 2017a), laboratory contamination (De 295 

Barba et al. 2014), and misassignment of sequence-to-sample during HTS (i.e. tag-jumping; 296 

Schnell et al. 2015). These problems will generally have less influence in RRA summaries 297 

since the real food items should dominate unless samples are very poor quality. A similar 298 

issue is the detection of secondary predation (i.e. DNA from gut contents of ingested prey). 299 

Depending on the study system and research question, secondary predation may or may not 300 

be a serious problem. However, occurrence-based datasets are expected to over-emphasise 301 

these detections and ruling out secondary predation in occurrence summaries may require 302 

information of RRA, examination of prey co-occurrence, or expert knowledge (Bowser et al. 303 

2013; Hardy et al. 2017; McInnes et al. 2017b).   304 

 305 

4. Does RRA actually reflect food biomass? 306 

The relationship between proportions of biological material in a sample and 307 

sequence reads recovered by HTS has been studied in many experiments by sequencing 308 

artificial mixtures with known composition. These ‘mock communities’ are most relevant to 309 

dietary metabarcoding studies when made from food tissues similar to what is being 310 

consumed. Both mitochondrial and chloroplast DNA markers are present in multiple copies 311 

in each cell and copy number varies between tissue types (e.g. leaves versus roots; Ma & Li 312 

2015) and physiological state (e.g. juvenile vs. gravid adult; Veltri et al. 1990). Getting a 313 

thoroughly homogeneous mix of tissues in a small volume suitable for DNA extractions is 314 

challenging; therefore, mixtures made from DNA extracted separately for each taxa are 315 

sometimes used (e.g. Ford et al. 2016; Krehenwinkel et al. 2017; Piñol et al. 2015). However, 316 
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mixing purified genomic DNA will miss differences in cell density, and differences in genome 317 

size will confound results, making interpretation difficult (Piñol et al. 2015). Mixtures of PCR 318 

products can identify technical biases (e.g. assessing PCR primers), but miss underlying 319 

biological differences. 320 

Conclusions from analyses of mock communities vary from no relationship to good 321 

correlations between the composition of the mixture and sequence reads (Edgar 2017; 322 

Kimmerling et al. 2018; Pornon et al. 2016). One reason for these different conclusions is 323 

that the range of concentrations analysed varies considerably across studies, from equal 324 

mixtures of a few taxa, to mixtures containing many taxa in very different abundances. A 325 

positive relationship between RRA and sample composition across a broad range of 326 

concentrations (often plotted on a log-log scale (e.g. Elbrecht & Leese 2015; Nichols et al. 327 

2016)) might be missed over a smaller range. High variability between studies is also due to 328 

biotic differences in target organisms and technical differences (e.g. different barcode 329 

markers, PCR primers, sequencing platforms, etc.). This variation makes it difficult to 330 

generalise, and considerable work is required to understand the reliability of RRA in any 331 

system. Two taxonomic prey groups that have been the focus of several dietary 332 

metabarcoding studies, and for which mock communities have been examined, are fish and 333 

insects. These groups provide some insight into the expected scale of biases.  334 

 In metabarcoding of fish mixtures, conserved PCR primers are generally employed 335 

and documented recovery biases are moderate. In their killer whale study, Ford et al. (2016) 336 

analysed known percentages of DNA extracted from four fish species and the RRA of each 337 

fish corresponded well to input (generally within 5% of expected values) providing 338 

confidence in their conclusions. Using prey species of harbour seals Thomas et al. (2016) 339 

carried out a detailed study on sequence recovery from blended tissue mixtures. Various 340 

taxa (primarily fish; n=18) were sequenced in 50:50 tissue mixes with a control fish, and the 341 

extent of deviations from the control fish measured. The recovered sequences varied from 342 

20% to 60%, a 3-fold variation in marker recovery relative to the control. A recent study 343 

looking at recovery of barcode markers from bulk samples of larval fish avoided marker 344 

amplification by directly sequencing all DNA, then bioinformatically recovering relevant 345 

marker sequences (Kimmerling et al. 2018). They found strong correspondence between 346 

biomass in known mixtures and sequence counts, suggesting that without PCR amplification 347 

biases, biological differences in mtDNA density between these fish are small. Even studies 348 
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looking at fish environmental DNA samples have found a relationship between fish density 349 

and recovered sequence counts (Lacoursière‐Roussel et al. 2016; Port et al. 2015; Thomsen 350 

et al. 2016). 351 

 Many studies have sequenced DNA from insect mock communities; however, rather 352 

than considering if read counts are proxies for input biomass, the focus of these studies has 353 

generally been to test if taxa can be detected (Alberdi et al. 2017; Clarke et al. 2014; 354 

Elbrecht & Leese 2015; Yu et al. 2012). The reason for this focus is that insect communities 355 

tend to be complex, with many rare taxa, and the recovery biases large. In studies by Yu et 356 

al. (2012) and Clarke et al. (2014), a paltry 43-76% of species known to be present in mock 357 

communities were recovered. A study that included a mixture containing equal amounts of 358 

purified DNA from 12 arthropod species (10 insects, 2 spiders), reported RRA values for half 359 

of the species were that were more than 100 times lower than expected (i.e. expected 8% 360 

and recovered at <0.08% (Piñol et al. 2015)). Another arthropod study found consistent 361 

relationships between percentages of DNA and RRA; however, the slope of the correlation 362 

deviated from the expected value of 1 in different insect orders and with different DNA 363 

markers, which was attributed to copy number variation (Krehenwinkel et al. 2017). Even a 364 

change in PCR primers used to amplify a marker from the same gene can produce very 365 

different results (Alberdi et al. 2017). Because of the generally poor correlation between 366 

biomass and read counts most diet studies looking at insectivorous predators focus on 367 

occurrence data (Table 1), but methodological improvements may change this (Jusino et al. 368 

2017).  369 

 Diet studies incorporate more complexity than analysis of mock communities due to 370 

potential differential digestion of food taxa. Relatively few captive feeding experiments have 371 

examined how well dietary DNA counts reflect known diet, but studies have been carried 372 

out on herbivores (sheep, deer) and marine predators (penguins, seals). These have 373 

focussed on simple diets (~2-6 diet items) and results generally show that comparisons 374 

between major and minor diet components are reflected in RRA. For example, the diet of 375 

sheep fed two plants in ratios of 0:100, 25:75, 50:50, 75:25, 100:0 had a good correlation 376 

with the percentages of DNA marker sequences amplified from rumen content (Willerslev et 377 

al. 2014). In a study on captive deer, >90% of the diet was made up of three plant species 378 

with two other species fed in low amounts. In this case >90% of sequences came from the 379 

three dominant taxa, but considering just these taxa, the correlation between what went in 380 
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and what came out was poor (Nakahara et al. 2015). Similarly, in faecal samples from 381 

captive penguins fed pilchards as the majority of their diet, sequence reads from pilchards 382 

were most common in the data; however, the three other fish species fed in mass ratios 383 

45:35:20 produced sequences counts of 60:6:34 (Deagle et al. 2010).  384 

 Detailed captive feeding studies examining quantitative prey DNA recovery have 385 

been carried out on captive seals and sea lions (Bowles et al. 2011; Deagle & Tollit 2007; 386 

Thomas et al. 2014). Early studies used quantitative PCR rather than HTS and found the 387 

amount of marker DNA recovered provided a reasonable indication of biomass ingested 388 

(Bowles et al. 2011; Deagle & Tollit 2007). A trial with harbour seals by Thomas et al. (2014) 389 

compared HTS data from food tissue (affected by biological and technical biases) with faecal 390 

DNA (affected by digestion as well). The scale of bias introduced by digestion was generally 391 

smaller than biases observed in undigested fish tissue mix. Since digestion bias may be in 392 

the same or opposite direction to tissue biases, the overall effect is expected to increase 393 

variance in prey-specific recovery biases compared to tissue mixes. These seal studies all 394 

excluded prey hard parts from DNA extractions, but in other systems where this may not be 395 

feasible, digestion biases could be larger. For example, faeces from insectivorous animals 396 

often contain relatively undigested hard body parts (i.e. exoskeleton). The impact on DNA 397 

recovery is difficult to assess: hard fragments will contain undigested DNA, but the DNA may 398 

not be extracted as efficiently as DNA present from soft bodied prey (Clare 2014).  399 

 Another approach to understanding how much of a signal is present in counts from 400 

DNA sequences is to compare results with other methods of diet analysis. In a study of large 401 

mammalian herbivores, Kartzinel et al. (2015) found a nearly one-to-one correlation 402 

between estimates of C4 grass (family Poaceae) consumption based on stable isotopes 403 

analyses and RRA based on metabarcoding of the chloroplast marker (trnL-P6). The use of 404 

alternative proxies for diet composition can also reveal complexities. Craine et al. (2015) 405 

used similar protocols to Kartzinel et al. (2015) but found C4 grass RRA to be under-406 

represented compared to measures based on stable isotopes. They suggested that 407 

chloroplast density scales with foliar nitrogen concentrations so that RRA values could 408 

reflect dietary sources of protein, and thus may deviate from dietary sources of biomass as 409 

represented by carbon stable isotopes. If RRA values based on this marker occasionally 410 

reflect an animal’s source of protein more closely than its source of carbon (i.e., biomass), 411 

this knowledge can enable count data to still be interpreted appropriately. 412 
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 Several studies have used traditional morphological analysis of food remains to help 413 

cross-validate RRA data (Soininen et al. 2009; Thomas et al. 2017). Thomas et al. (2017) 414 

analysed DNA and prey hard parts in >1000 seal faecal samples, and while there were minor 415 

differences between methods in prey recovery and taxonomic resolution, both methods 416 

provided a highly similar picture of population-level diet (Thomas et al.  2017; Table S2). 417 

Cross-validation has the problem that all methods of diet determination are biased, so if 418 

there is disagreement the correct answer may be unclear (Soininen et al. 2009). However, 419 

congruence between datasets is reassuring and known biases can be taken into account 420 

when making conclusions (e.g. jellyfish are digested quickly, so occurrence in faecal DNA but 421 

not stomach contents is credible;  Jarman et al. 2013; McInnes et al. 2017b).  Large 422 

differences in results between methods warrant further investigation; multiple lines of 423 

independent evidence provide the strongest support for any conclusion. 424 

 Overall, assessing recovery bias between food taxa is complex, specific to a study 425 

system, and can require significant effort. In some cases, broad correlations are likely, but 426 

this cannot be taken for granted and very large biases may occur (e.g. Pawluczyk et al. 427 

2015).  428 

 429 

5. A view of the way forward in interpreting sequence counts  430 

 What should be considered best practice given the potential biases we have outlined 431 

in diet metabarcoding studies? First of all, we should take a step back and remember that 432 

getting estimates of the true diet of any species using any method is a challenging 433 

proposition – all methods of diet analysis have biases. A well-designed metabarcoding diet 434 

study may provide as accurate an estimate as any other approach, while also providing high 435 

taxonomic resolution, the opportunity to detect rare foods and the potential to solve 436 

otherwise intractable problems (e.g. liquid feeding). We should also remember that other 437 

classic experimental design issues, such as collecting appropriate sample sizes and getting 438 

representative samples, will potentially have a bigger impact on study outcomes than the 439 

diet estimation method. Furthermore, dietary metabarcoding has a huge variety of 440 

applications, many of which do not require highly accurate dietary proportions. 441 

Still, we will inevitably come to a point in dietary metabarcoding studies where we 442 

need to decide how to interpret sequence counts. It is often the case that the overarching 443 

views of population-level diet are consistent regardless of how sequence counts are 444 
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summarised (i.e. when commonly occurring food items are also represented by the highest 445 

number of sequences). This is most likely to be the case when faecal samples contain a 446 

limited number of food taxa (in the extreme case where there is only one taxon per sample, 447 

occurrence and RRA estimates are identical and recovery biases have no impact). However, 448 

some outcomes will depend on how we consider counts. Occurrence summaries are less 449 

affected by differential recovery of markers from food taxa, but tend to put much more 450 

weight on food consumed in small quantities and potential contaminants. RRA can 451 

potentially provide a weighting of food present in a sample based on biomass, but 452 

differential recovery of markers (especially from dominant food taxa) can impact data 453 

summaries.  Our strongest recommendation is that if one approach is relied on heavily, 454 

some justification should be given for its use, and potential biases inherent in the method 455 

should be acknowledged and taken into account when drawing conclusions. 456 

 457 

5.1 Using occurrence data 458 

Many future diet studies will have almost no information on the scale of biases in 459 

the recovery of sequences from specific food taxa. The use of occurrence data may be a 460 

sensible approach, but careful consideration of the impact of this choice is still required and 461 

the bioinformatics steps taken to produce this dataset should be documented. We 462 

recommend converting counts to percentages (excluding non-food sequences from total 463 

count) and then defining a minimum sequence percentage threshold to determine 464 

occurrences. This will limit the impact of variation in read depth. The threshold is a trade-off 465 

between maximizing inclusion of real diet sequences and excluding low-level background 466 

noise (secondary predation, contamination, sequencing errors). A 1% threshold may be 467 

suitable for many situations, but when diets are extremely diverse with potentially large 468 

recovery biases (e.g. some bats species), then a much lower threshold may be justified (e.g. 469 

0.01% in Alberdi et al. 2017). In these cases, ensuring contaminant sequences do not 470 

influence results requires additional vigilance (De Barba et al. 2014; Nguyen et al. 2015). 471 

Given that many of the issues we have raised regarding the use of occurrence data stem 472 

from the disproportionate influence of rarer sequences, it may seem advantageous to use a 473 

higher minimum sequence threshold (e.g. >5% constitutes occurrence). While this type of 474 

summary can provide insight, rare taxa that make up a small percentage of sequences in 475 

many samples would be missed completely (Alberdi et al. 2017) and taxa-specific biases in 476 
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recovery also have a larger impact on these high threshold occurrence summaries (see 477 

simulations in Supplementary Material S3 comparing different threshold levels). Since the 478 

purported benefit of occurrence-based approaches is to record food taxa even when there 479 

is strong bias against them, thresholds higher than 1% cannot be generally recommended. 480 

The sequencing depth required per sample is directly related to the minimum 481 

threshold; in diverse and/or potentially highly biased situations warranting a very low 482 

threshold (e.g. 0.01%), high numbers of reads per sample would be needed (e.g. >10000). 483 

Lower read depth is sufficient with a 1% threshold and increasing replication (biological or 484 

technical) would be preferable to having redundant sequences within samples. Even when 485 

sequence counts are not used directly, it is important these data are available as 486 

supplementary material (and ideally the sequence reads archived) with appropriate 487 

explanatory files outlining potential biases. This allows others to revisit the data and will 488 

allow insight in future comparative meta-analyses.  489 

 Summaries of data based only on occurrence information will remain appropriate in 490 

many situations. This includes dietary metabarcoding studies that use DNA from food 491 

remains in gut contents since differences in time since ingestion will have a major impact on 492 

relative number of reads recovered per taxon (Egeter et al. 2015; Greenstone et al. 2014). In 493 

studies using faecal samples, occurrence summaries will often be appropriate when food is 494 

clearly differentially digested, the sequence recovery bias is known to be high (e.g. many 495 

animals with an insectivorous diet), or this bias is unknown and results cannot be cross-496 

validated. Note, that this appropriateness may differ between dietary analyses of relatively 497 

similar consumers. For example, most bat diet studies only analyse occurrence data, but the 498 

bat Myotis daubentonii (Figure 1) has relatively low diet richness compared to other bats 499 

and RRA may be suitable (Vesterinen et al. 2016). 500 

 501 

 5.2 Using RRA 502 

Incorporation of RRA into analyses will have the most benefit when individual faecal 503 

samples contain several food taxa and the same food taxa occur across many samples. In 504 

these cases, occurrence summaries may provide very inaccurate summaries (Box 2). 505 

Unfortunately RRA-based summaries from these types of samples can be most affected by 506 

recovery biases (Box 2) and careful decisions about how to interpret data are required. 507 

When there is uncertainty surrounding which method will be more accurate, presentation 508 
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of results summarised with both methods is recommended. Conclusions relying heavily on 509 

RRA should include justification as to why the counts are expected to contain a roughly 510 

accurate signature. One way to justify interpretations based on RRA is through cross-511 

validation of the diet data with alternative methods, and this is recommended whenever 512 

possible. Alternatively, mock community experiments and/or feeding trials can be carried 513 

out, but this is feasible in a limited number of situations. In study systems where diet is 514 

relatively well known, examining biases in a small number of dominant food taxa can ensure 515 

they are not drastically over or underestimated and will lend support to using RRA 516 

information. The dominant diet items have by far the strongest impact on RRA diet 517 

summaries as significant shifts in percentages of these species will adjust percentages of all 518 

food taxa (i.e. unit sum constrained data must sum to 100%). One question that inevitably 519 

arises is at what point does “semi-quantitative” RRA information stop being useful? Our 520 

simulations indicate that even in scenarios with 20x overestimation of some food and 20x 521 

underestimation of others (i.e. in 50:50 mixtures this could lead to 400 fold recovery bias) the 522 

population-level RRA summaries often still provides a more accurate view of diet compared 523 

to POO (Figure 2). But the limits of usefulness will depend on the application. It is probable 524 

that comparisons between closely related food taxa will provide more reliable RRA data, 525 

because biological differences should be smaller and technical biases less pronounced (e.g. 526 

animal COI primer binding sites will be more conserved, or length differences in the plant 527 

trnL-P6 marker will be low). However, it is risky to make generalizations and to transfer 528 

specific methodological findings between study systems.  529 

Further refinements to increase confidence in RRA dietary metabarcoding data are 530 

possible. Because conversion to occurrence datasets has been seen as a necessary remedy 531 

for biases in sequence recovery, there has been less incentive for researchers to test new 532 

protocols and evaluate markers on their ability to obtain accurate RRA data. While it is 533 

sensible to use standard DNA barcode markers, by ignoring information in RRA during 534 

marker development we might have inadvertently imposed limitations on the field. 535 

Fortunately, we are starting to move towards a point where markers used in different 536 

applications are better understood and alternative less-biased approaches are being 537 

explored (e.g. the use of multiple target markers (Stat et al. 2017) or PCR-free approaches 538 

(Srivathsan et al. 2016)). Inclusion of control materials in sequencing runs can also ensure 539 

consistency between experiments (Hardwick et al. 2017). For the most accurate diet 540 
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estimates, correction factors can be developed to take into account known biological 541 

differences between taxa in mixtures (e.g. gene copy number differences; Angly et al. 2014; 542 

Vasselon et al. 2018). Such species-specific correction factors have been developed for fish, 543 

with the intent of applying them in field-collected seal diet samples (Thomas et al. 2016).  544 

While the effort needed to justify the RRA approach may be challenging, the 545 

possibility of obtaining more accurate diet estimates will make it worthwhile in many 546 

situations. We have seen such effort undertaken in papers addressing broad ecological 547 

questions (Kartzinel et al. 2015; Willerslev et al. 2014), and in diet studies of marine 548 

predators, where population consumption have significant fisheries management 549 

implications (Ford et al. 2016; Thomas et al. 2017). This approach should also be possible in 550 

monitoring programs, such as those carried out on seabird diet (Jarman et al. 2013; 551 

Sydeman et al. 2017), where the long-term investment warrants the development of robust 552 

DNA-based methods that provide the best possible data. 553 

 554 

5.3 Outstanding issues 555 

 There are a number of issues in the diet metabarcoding literature that have an 556 

impact on both occurrence and RRA summaries that have yet to be clearly addressed. One 557 

of these is the impact of collecting data with markers that have low taxonomic resolution 558 

(McInnes et al. 2017b) or collating data at higher taxonomic levels to increase certainty in 559 

taxonomic assignment (Biffi et al. 2017). Depending on how broad the grouping are, 560 

occurrence summaries may not be very informative as many occurrences are potentially 561 

pooled. For RRA it is unclear whether pooling counts from multiple taxa will nullify fine-scale 562 

stochasticity in recovery biases, or magnify lineage-specific biases. A related issue is how to 563 

summarise data from diet metabarcoding studies using multiple markers. When markers are 564 

targeting the same food taxa, either additive (i.e. include detections by any marker) or 565 

restrictive strategies (only include food detected by all markers) could be logically applied in 566 

occurrence and RRA summaries (Alberdi et al. 2017). The situation is even more complex 567 

when a “universal” primer set is used to define the broad diet and group-specific primers 568 

subsequently improve taxonomic resolution for particular groups (e.g. a marker targeting all 569 

plants together with several that offer greater resolution for specific plant families). Errors 570 

based on the universal marker will be propagated when attempting to incorporate data 571 

from the other primer sets (i.e. if the grass family is estimated to be 20% of a diet instead of 572 
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the true 40%, then the perceived importance of each grass species is reduced).This problem 573 

can be avoided to some extent by reporting each component separately, but this provides 574 

an unsatisfactory synthesis for omnivorous and other species with a very diverse diet that 575 

can only be characterised with several markers (De Barba et al. 2014). Studies that use a 576 

marker capturing only one component of the diet need to be very clear that the results 577 

comprise an unknown amount of the total diet. 578 

 Simulations such as the ones outlined in this paper can help establish which 579 

scenarios are most sensitive to biases (from either occurrence or RRA). When informed by 580 

experimental work to assign an error range to each parameter, and combined with 581 

sensitivity analysis, this can identify which sources of bias have the largest impact on 582 

conclusions. Some of the details we have focussed on may be inconsequential for many 583 

studies and we have not considered the effect of alternate summaries on downstream 584 

applications. For example, it would be very interesting to see how switching between 585 

occurrence and RRA datasets affects outputs in the context of food web studies (Roslin & 586 

Majaneva 2016). 587 

 The ultimate test for how to deal with sequence counts in HTS diet analyses will 588 

remain in empirical studies. We hope this opinion piece will be a starting point to highlight 589 

the need to consider all sources of bias and to justify the methods used when confronting 590 

count data in metabarcoding studies. We also hope that this critique is not discouraging to 591 

researchers approaching this new and rapidly developing area of research, as no single 592 

study should be rightly expected to address all issues arising from DNA-based diet analyses. 593 

Instead, our aim is to encourage researchers to continue to addressing methodological 594 

challenges, and acknowledge unanswered questions to help spur future investigations. As 595 

the field matures, we envisage publication standards will emerge to provide the most robust 596 

diet data and provide an accurate indication of the uncertainty associated with dietary 597 

assessments. 598 

 599 

Data Accessibility 600 

All data in figures is either publically accessible or will be deposited in Dryad along with R 601 

scripts to produce the figures (including simulations). 602 

Author Contributions 603 

All Authors contributed ideas and to the writing of the paper  604 
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 605 

 606 

 607 

 608 

Figure 1: Information in faecal samples from dietary metabarcoding datasets of harbour seal 609 

(Thomas et al. 2017), an insectivorous bat (Vesterinen et al. 2016) and Grevy’s zebra 610 

(Kartzinel et al. 2015). (a) Individual-level data in 10 faecal samples viewed using different 611 

metrics. Colours represent different food taxa. (b) Population-level summaries of these 612 

datasets showing the top 15 food taxa (%FOO ranking); 1% threshold used for occurrence in 613 

POO and wPOO calculations. In the lower plots the sum contribution of remaining food taxa 614 

are plotted at end. In each example population data include only collections from one site 615 

and samples with >50 food taxa reads. 616 
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 617 

 618 

 619 

Figure 3: Killer whale diet in the Salish Sea illustrated with bipartite graphs constructed from 620 

data in Ford et al. (2016) using either (a) RRA (b) POO with a 0.1% threshold or (c) POO with 621 

a 1% threshold. Samples (DNA from faecal material) are shown on left of each plot and were 622 

pooled according to collection dates (Early, Middle, Late) in different years. The overall diet 623 

calculated by the different methods is shown on the right of each plot (includes the seven 624 

prey taxa with >1% of sequences in at least one sample). Line thickness shows contribution 625 

of taxa in each sample to the overall diet.626 
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 627 

Table 1 Use of sequence counts in 20 metabarcoding diet studies carried out using faecal DNA collected from a range of different species. Representative 628 

studies across a range of focal taxa carried out by different research groups are shown rather than trying to summarise all dietary metabarcoding studies.  629 

Focal Taxa  Reference FOO† RRA‡ Sample 
number 

Number 
food 
taxa§ 

Taxa per 
sample¶ 

Marker Target group Sequences per 
sampleᶲ 

Sequencer  Count data 
Available 

Snail O'Rorke et al. 
(2016) 

N Y 35 >50  NR ITS fungus 3500 (rarefied) MiSeq Yes 

Snail Waterhouse et 
al. (2014) 

Y N 60 26  4.7 16S earthworms 1047 454 No 

Pigeon Ando et al. 
(2013) 

Y Y  48 44  6.7 trnL plants 743 454 No 

Albatross McInnes et al. 
(2017b) 

Y Y 447 ~20  NR 18S metazoan >100 prey MiSeq Yes 

Puffin Bowser et al. 
(2013) 

Y Y 129 ~40  NA CO1, 16S metazoan >50 prey 454 No 

Sandpiper Gerwing et al. 
(2016) 

Y N 164 132 NA CO1, 16S metazoan, 
fish/cephalopod/crustacea 

721^ 454 No 

Desman 
(Rodent) 

Biffi et al. 
(2017) 

Y N 383 156  5.8 CO1 arthropods 6910^ Ion Torrent No 

Bat Clare et al. 
(2014) 

Y N 25 
(pooled) 

>158 NA CO1 arthropods >10000* Ion Torrent No 

Bats Burgar et al. 
(2014) 

Y N 64 >120 15 CO1 arthropods 230 454 No 

Bat Vesterinen et 
al. (2016) 

Y Y 82 59 NR CO1 arthropods 995 Ion Torrent Yes 

Bat Aizpurua et al.  
(2018) 

Y Y 79 >276 8.4 CO1, 16S arthropods >10000* MiSeq No 

Seal Thomas et al.  
(2017) 

N Y 1166 71 3.2 CO1, 16S salmon, fish and 
cephalopods 

1227 MiSeq No (Available 
on request) 

Seal Hardy et al. 
(2017) 

Y N 112 115 3 to 6 16S, 12S vertebrates, invertebrates >10000* MiSeq Yes 

Killer Whale Ford et al. 
(2016) 

N Y 13 
(pooled) 

16  NA 16S fish >10000* MiSeq Yes (raw 
sequences) 

Bear De Barba et al.  
(2014) 

Y N 91 >84  NA trnL, 12S, 16S, 
ITS 

plants, vertebrates, 
invertebrates 

>500 HiSeq Yes 
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Cats Xiong et al. 
(2017) 

Y N 103 40  3.6-4.1 16S vertebrates >10000* HiSeq No 

Monkey Quéméré et al. 
(2013) 

Y N 96 >130  13.9 trnL plants 23793 Illumina No 

Deer Erickson et al.  
(2017) 

N Y 12 >91 71 rbcL plants >10000* MiSeq No 

Large 
herbivores 

Kartzinel et al. 
(2015) 

Y Y 292 >110  NA trnL, ITS plants >10000* HiSeq Yes 

Ibex and 
Goat 

Gebremedhin 
et al. (2016) 

Y Y 39 >50  NR trnL plants >8000 454 Yes 

 630 

† For this table Frequency Of Occurrence (FOO) refers to any use of presence/absence data 631 

‡ For this table Relative Read Abundance (RRA) refers to the use of sequence counts to weight taxa present in samples. This includes distance methods such as Bray-Curtis 632 

dissimilarity. 633 

§ Taxonomic level of assignments varies between studies, therefore the number of taxa is not directly comparable. 634 

¶ In some cases multiple markers were used, or multiple samples were pooled, making this value Not Applicable (NA). NR indicate the number of food taxa per sample was 635 

Not Reported. 636 

ᶲ Most studies report mean number of food taxa sequences recovered per sample, but variance is not usually provided. The minimum number was reported in some cases. 637 

^ Unclear if these sequence counts include non-target DNA such as consumer DNA. 638 

* The maximum value reported here was 10000 reads per sample.  639 
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