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ABSTRACT 

Genes act as a system and not in isolation. Thus, it is important to consider coordinated changes of gene expression 

rather than single genes when investigating biological phenomena such as the aetiology of cancer. We have 

developed an approach for quantifying how changes in the association between pairs of genes may inform patient 

prognosis called Differential Correlation across Ranked Samples (DCARS). Modelling gene correlation across a 

continuous sample ranking does not require the classification of patients into ‘good’ or ‘poor’ prognosis groups and 

can identify differences in gene correlation across early, mid or late stages of survival outcome. When we evaluated 

DCARS against the typical Fisher Z-transformation test for differential correlation, as well as a typical approach 

testing for interaction within a linear model, on real TCGA data, DCARS significantly ranked gene pairs containing 

known cancer genes more highly across a number of cancers. Similar results are found with our simulation study. 

DCARS was applied to 13 cancers datasets in TCGA, revealing a number of distinct relationships for which survival 

ranking was found to be associated with a change in correlation between genes. Furthermore, we demonstrated that 

DCARS can be used in conjunction with network analysis techniques to extract biological meaning from multi-

layered and complex data.  

Availability: https://github.com/shazanfar/DCARS. 
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INTRODUCTION 

 

Correlation quantifies the degree of monotonic association between two variables. In the context of gene expression, 

correlated genes are often associated with sets of genes that are co-ordinately expressed and are likely to belong to 

biologically meaningful groups such as pathways or perform a similar function. In cancer, coordination of gene 

expression can be disrupted due to various genetic anomalies such as point mutations, copy number variations or 

larger structural changes in the genome (Sevimoglu and Arga, 2014; Ciriello et al., 2013; Bashashati et al., 2012). 

The level of concordance among genes in expression profiles of cancerous tissue relative to a normal tissue is one 

lens through which cancer can be investigated. Genes that develop a concordant pattern of expression in tumours 

may work together to evade anti-tumour mechanisms, for example increase in metabolic activity in tumour tissues 

(Vazquez et al., 2016; Hanahan and Weinberg, 2011). Such changes highlight gene dysregulation in the context of 

explaining heterogeneous mechanisms and treatment avenues (Taylor et al., 2009). 

 

Characterizing the molecular underpinnings that associate with survival of patients with various cancers (Schramm, 

Li, et al., 2013) as opposed to only distinguishing the differences between tumour and normal tissue offers the 

opportunity to study the disease at a finer resolution. Importantly, this can also lead to an increased accuracy of 

prediction of patient prognosis (Barter et al., 2014). An increased understanding of the differences in gene 

coordination among patients across an important biological variable like survival outcome will improve 

understanding of disease mechanism and potential treatment options. 

 

Methods exist for determining differences in correlation between two distinct groups of patients (Schramm, Li, et al., 

2013; Siska and Kechris, 2017; Siska et al., 2016; Lai et al., 2004; Fukushima, 2013), the most relevant of which is 

Fisher’s Z-transformation to test for differential correlation, described further in (Fukushima, 2013). However, these 

rely on first distinguishing two distinct sample groups for comparison. In the case where we do not have a clear way 

of dichotomising patients or samples, we would nevertheless like to assess some measure of differential correlation. 

One naïve method of determining this is to simply use a statistical linear model to test for an interaction effect 

between two genes with the response being the outcome of interest (such as survival time or ranking of survival), 

indeed one might also use a survival-specific statistical model such as Cox Proportional Hazards and test for a 

significant interaction term between two genes. This method, along with Fisher’s Z-transformation however relies on 

the assumption of normally distributed gene expression, which may not be appropriate, as well as requiring samples 

to be dichotomised into two groups. 

 

We have developed an approach called Differential Correlation across Ranked Samples (DCARS), which uses local 

weighted correlations to build a powerful and robust statistical test to identify significant variation in levels of 

concordance across a ranking of samples. We applied this method to 13 TCGA gene expression datasets, using all 

complete survival information as the basis for ranking samples. DCARS is able to identify patterns of gene co-

expression across patients ordered on survival that are more complex than simple presence or absence of correlations, 

as well as nonlinear interactions between gene pairs. Furthermore, DCARS can be used to identify significant edges 
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within an existing network, which can be used to interrogate, characterise and compare subnetworks across multiple 

cancers.  

 

MATERIAL AND METHODS 

 

DCARS (Differential Correlation across Ranked Samples) robust testing framework 

The DCARS testing framework is summarised in Figure 1. For a set of samples with index i=1,2,…I, assume we 

have ranked gene expression measurements for two genes x and y, denoted by 𝑥𝑖 and 𝑦𝑖  respectively. Then for I sets 

of sample weights (Figure S1) of length I with (i,j)th entry in Wij, we calculate the sequence of local weighted 

correlations between x and y. Weighted correlation Rxyj is calculated using the formula for genes x and y with a 

vector of weights Wij for i=1,2,…I,  

 

𝑅𝑥𝑦𝑗 =
∑ 𝑊𝑖𝑗 ∑ 𝑊𝑖𝑗𝑥𝑖𝑦𝑖 − ∑ 𝑊𝑖𝑗𝑥𝑖 ∑ 𝑊𝑖𝑗𝑦𝑖  

√∑ 𝑊𝑖𝑗 ∑ 𝑊𝑖𝑗 𝑥𝑖
2 − (∑ 𝑊𝑖𝑗𝑥𝑖)

2 √∑ 𝑊𝑖𝑗 ∑ 𝑊𝑖𝑗 𝑦𝑖
2 − (∑ 𝑊𝑖𝑗𝑦𝑖)

2

 

 

with all summations over the index i. The vector Rxy is a sequence of weighted correlations with the weights 

changing akin to a sliding window, and the sample standard deviation of this sequence taken as the DCARS test 

statistic: 

 

𝐷𝐶𝐴𝑅𝑆𝑥𝑦 =  𝑆𝑥𝑦 = √
∑ 𝑅𝑥𝑦𝑗

2 − (∑ 𝑅𝑥𝑦𝑗)
2

𝐼 − 1
. 

 

Since the null distribution of this statistics is not known at present, and may depend on factors such as the total 

sample size, presence of ties in the data, and choice of weight matrix, statistical significance of Sxy is calculated using 

a permutation approach, where gene expression sample labels are repeatedly permuted at random, with higher 

observed values of Sxy providing evidence for a difference in correlation across the sample ranking. 

 

This method may also be used on gene expression data using the measurements themselves as opposed to the gene 

ranks, but to ensure robustness of the weighted correlation estimates and stability of the DCARS test statistic we 

ranked the gene expression measurements across samples, computing a set of quantities akin to local weighted 

Spearman correlation coefficients.  

 

Critical Values and Weight Matrices 

The weighting scheme for which the local weighted correlation is calculated may vary according to different shape 

and parameter schemes (Figure S1), such as a triangular weight with a varying span, or a blocking weight and 

harmonic weight. This selection of weighting scheme affects the null distribution of the DCARS test statistic as 

neighbouring ranked samples are given more or less influence. 
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Calculating the significance of the DCARS test statistic is achieved through permutation. To reduce the running time 

of the testing framework across multiple pairs we first calculate the observed test statistics across all pairs of genes 

tested, resulting in a natural ranking of gene pairs in terms of evidence towards differential correlation along the 

sample ranking. The observed test statistics can be ordered to obtain a ranking or utilised as a score to assign to edges 

in a weighted network. To obtain statistical significance we take a stratified sample of observed test statistics and 

perform a permutation test on the corresponding gene pairs. This approach is used to estimate the critical value of the 

test statistic to obtain (unadjusted) statistical significance at a chosen level. For each of the 13 cancers listed in Table 

1, we performed DCARS testing using triangular weight matrices of span 0.5, across each edge of the STRING 

network where both nodes existed in the cancer gene expression dataset. Further to this, we implemented a three-

stage procedure which expedites the process of calculating significance as follows:  

1) calculate observed DCARS test statistics,  

2) calculate the 1000 permutation based p-values for a sample of up to 500 gene pairs stratified by the 

observed test statistic, and  

3) loess smoothing to fit a nonlinear curve through this set of points,  

thereby obtaining dataset specific critical values of the test statistic associated with a level of significance of 0.05. 

 

Simulation setup 

To assess the statistical properties of DCARS, we performed a simulation study. Briefly, we simulated a single pair 

of gene expression values x and y across 100 samples ordered by survival such that the first j (= 10, 30, 50, 70, 90) 

samples were positively correlated with a correlation coefficient of r (= 0, 0.25, 0.5, 0.75, 1), where x and y were 

simulated from bivariate normal distributions with mean 0 and variance 1. This was repeated 100 times leading to a 

total of 2500 simulated datasets. For each simulated dataset, values were transformed into gene ranks and each of the 

nine methods listed below were used to assess presence of differential correlation or association between x and y. 

These nine methods included 

1. DCARS with triangular weight matrix with span 0.1; 

2. DCARS with triangular weight matrix with span 0.5; 

3. DCARS with triangular weight matrix with span 0.7; 

4. DCARS with block weight matrix with span 0.1; 

5. DCARS with harmonic weight matrix; 

6. Linear model on original raw data testing for interaction; 

7. Linear model on ranked data testing for interaction; 

8. Fisher’s Z-transformation test on original raw data; and 

9. Fisher’s Z-transformation test on ranked data. 

Methods 1-5 were the DCARS methods, with weight matrices triangular with span 0.1, 0.5, and 0.7, block with span 

0.1, and harmonic (Figure S1 shows these weights); method 6-7 are two linear model methods where the sample 

ranking was used as the response to a multiple linear regression with interaction between x and y with p-values 

associated with the interaction term considered the result, for the original simulated data and for the ranked data. 

Methods 8-9 were Fisher’s Z-transformation test for differential correlation, where the 100 samples were split into 

the first 50 and the last 50, utilising the raw and ranked data respectively. For the DCARS methods p-values were 
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calculated using 100 permutations, and the performance of the statistical test was assessed by calculating the 

proportion of repetitions in which the test was called significant (p-value < 0.05). Based on the results of this 

simulation, we were able to determine the statistical properties of DCARS as well as identify suitable values for the 

corresponding weight matrices. 

 

TCGA data processing 

Gene expression (FPKM), somatic mutation, and associated clinical data from The Cancer Genome Atlas (TCGA) 

were downloaded using the TCGAbiolinks R package (Colaprico et al., 2016), specifically the Data release 8.0 of 

August 22 2017. Complete survival data was used, i.e., censored values were removed for this analysis. We then 

chose to continue with cancer datasets that had at least 100 complete survival data points, resulting in a mean of 168 

samples across 13 datasets, across eight tissue or organ types including breast, central nervous system, 

gastrointestinal, gynecologic, head and neck, skin, thoracic and urologic tissues, summarised in Table 1. Gene 

expression data was filtered so that there was at least 1 FPKM for at least 20% of observations, for which a mean of 

15,480 genes passed filtering. Furthermore, genes were intersected with the nodes in the STRING protein-protein 

interaction database (Szklarczyk et al., 2015) resulting in a mean of 4484 genes across the 13 cancer datasets. 

Somatic mutation information was curated across genes where a sample and gene was scored as 1 if a non-silent 

mutation existed in that gene for that sample. This set of information was overlapped with the STRING database 

resulting in a mean of 3,327 mutated genes being queried across the 13 TCGA datasets. 

 

A priori information curation 

STRING protein-protein interaction network 

Utilising a priori networks is useful for identifying patterns of gene expression that are more likely to be causative, as 

well as reducing computational burden (Schramm, Jayaswal, et al., 2013; Ghazanfar and Yang, 2016). Thus in order 

to meaningfully assess gene pairs, we used the STRING protein-protein interaction database (Szklarczyk et al., 2015). 

The raw STRING-DB information (version 10.5) was downloaded and restricted to human (code 9606) interactions. 

High confidence interactions were chosen to be interactions with a score of 980 or above. This resulted in a network 

containing 23,678 edges across 5,508 nodes.  

 

Known Cancer Gene Lists 

In order to evaluate the associations of identified genes with cancer we downloaded the list of genes from the Cancer 

Gene Census (CGC) (Futreal et al., 2004) on Jan 19 2018, containing a list of 699 genes implicated in cancer. In 

addition, we downloaded the list of genes from the Network of Cancer Genes version 5.0 (An et al., 2016), a 

manually curated list of 1,571 protein coding cancer genes. The union of these two sets of cancer related genes was 

taken as the final list of ‘known’ cancer related genes. 

 

Gene Pathway Information 

To further assign biological meaning to the identified genes and sets of genes, we utilised the REACTOME pathways 

from the C2 curated gene sets collection obtained from the Molecular Signatures Database (MSigDB, version 5.1) 

(Liberzon et al., 2015). For specific known gene sets we assigned the most representative pathways to them by first 
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selecting the smallest pathway with the highest proportion of representation of the given gene set. This method 

results in any gene set being given an annotation, so long as at least one gene in the gene set belongs to any one of 

the pathways. 

 

Testing and estimation of DCARS genes using TCGA data and STRING 

We tested for DCARS by calculating the test statistics across all edges of the STRING network and selecting gene 

pairs with unadjusted p-value of 0.05. To simplify interpretation, we then characterised these gene pairs in terms of 

the weighted correlation vector across the sample ranking, i.e. gene pairs were classed as positive, negative or zero 

on the low survival end if their mean weighted correlation across the first 10% of samples were between 0.3 and 1, -

0.3 and 0.3, and between -1 and -0.3 respectively. Similarly gene pairs were classed as positive, negative or zero on 

the high survival end if their mean weighted correlation across the last 10% of samples were between 0.3 and 1, -0.3 

and 0.3, and between -1 and -0.3 respectively. These sets of significant gene pairs formed networks and were 

interrogated further for biological insight. 

 

Testing for association of somatic mutations across sample rankings 

In order to facilitate interpretations of results associated with the gene expression data, we also performed a 

Wilcoxon Ranked Sum Test with the matching somatic mutation data across survival rankings, specifically asking if 

the presence of at least one non-silent somatic mutation was associated with survival ranking. We performed this per 

cancer using the intersection of samples in which the gene expression data, complete survival and mutation 

information were available, selecting genes with an unadjusted p-value below 0.05 as having a gene whose mutation 

is significantly associated with survival ranking. The number of samples used in each cancer is given in Table 1.  

 

Evaluation of DCARS based on TCGA data 

We used the Cancer Gene Census (CGC) and Network of Cancer Genes 5.0 (NCG) lists of genes to evaluate if genes 

had previously been associated with cancer. In particular we performed a one-sided Wilcoxon Rank Sum test to 

assess whether there was a positive association between gene pairs that contained at least one gene in the known 

cancer gene list and DCARS test statistics for that gene pair. As a comparison, we also performed Fisher’s Z-

transformation test on the samples split 50/50 on the ranked gene expression data as described in the Simulation 

setup section. 

 

RESULTS 

 

Differential Correlation across Ranked Samples (DCARS) enables efficient identification of significant gene 

pairs 

Our novel DCARS approach identifies gene pairs that show differential correlation across patient survivals. We 

applied our approach to each of the 13 cancers listed in Table 1 across each edge of the STRING network where both 

nodes existed in the cancer gene expression dataset (Supplementary File 1). Using the DCARS method, we identified 

a total of 8,108 unique significant (unadjusted p-value 0.05) gene pairs across the 13 TCGA datasets, which were 

further characterised as having changes in correlation between positive, zero and negative across the survival 
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rankings (Figure S2). We found that the number of significant gene pairs was between 365 (KIRC) and 1,172 

(LUAD) with a median of 589 (Table 1). Among these 8,108 gene pairs we found that there was a set of 1,305 

unique gene pairs that were shared among at least two cancers, corresponding to 1,349 genes.  

 

DCARS gene pairs highly enriched with known cancer genes when applied to TCGA data 

Compared to the typical Fisher Z-transformation test for differential correlation and the linear model with test for 

interaction term, DCARS ranked gene pairs containing known cancer genes more highly when applied to TCGA data. 

A significant association between the known cancer gene list and DCARS gene pair ranking was observed for 7 of 

the 13 cancers studied (Figure 2A), whereas only 1 and 3 cancers were associated with known cancer genes using the 

Fisher Z-transformation test and linear model interaction test respectively. This is despite having observed a 

moderate positive association between Fisher’s Z-transformation test -log10(p-values) and DCARS test statistics 

across all cancers, with Spearman correlations between 0.39 and 0.59 (Figure S3), and similarly for the linear model 

interaction test (between 0.47 and 0.72 Figure S4).  

An additional measure of propensity of recapturing known cancer genes is to identify the proportion of known cancer 

genes that appear in the top ranked list of gene pairs, using the DCARS, Fisher Z-transformation test and the linear 

model interaction test. We calculated the proportion of known cancer genes appearing in the top 1,000 gene pairs for 

each TCGA dataset and each method, and found that DCARS consistently selected a higher proportion of known 

cancer genes than the other two methods, with the highest proportion for seven cancer datasets and the second 

highest for the remaining six datasets (Figure 2B, Figure S6). 

Having identified a strong overrepresentation of gene pairs with DCARS and at least one gene belonging to the 

known cancer gene list provides evidence that the identified gene pairs are strongly of biological interest and 

DCARS is a useful method at identifying gene relationships of interest, as well as highlighting potential novelty of 

suggested mechanisms of known cancer genes. 

 

DCARS statistics are robust to choice of weights leading to computational efficiency  

Monotonic relationships were found between observed test statistics and the corresponding permutation based p-

values (Figure S6). Furthermore, critical values were found to be dependent on the number of samples in the dataset 

and the choice of weighting scheme (Figure S7A). The DCARS test statistic is influenced by the choice of weights, 

however if the same weighting scheme is used, then the distribution of these test statistics is similar across cancers 

and depends on the sample size (Figure S7A). We found that the observed critical values for the TCGA datasets 

varied between 0.098 (OV) and 0.15 (COAD) at a significance level of 0.05. Further interrogation revealed there was 

an overall monotonic trend between the number of samples in the dataset and the estimated DCARS critical value 

(Figure S7B). Randomly subsetting from the largest dataset (OV with 229 samples) and repeating the analysis 

confirmed that the critical value was indeed related to the sample size (Figure S8 and Figure S9). The estimated 

critical value is also dependent on the choice of weight matrix used. Repeating the OV subset analysis with a 

triangular weight matrix of different span of 0.1 (Figure S9), revealed that the curve between sample size and the 

corresponding critical values is roughly parallel to that when using a triangular weight matrix of span 0.5 (Figure 

S7C). Importantly, we also found that the ranking of test statistics was mostly preserved using either a triangular 
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weight matrix of span 0.1 or 0.5 (Figure S7D), suggesting DCARS is fairly robust to somewhat arbitrary choice of 

weighting spans. Thus we suggest that utilising a triangular matrix of span 0.5 is a suitable choice for weight matrix. 

 

DCARS is a more powerful test especially with imbalanced groups of correlated samples 

While DCARS identifies more cancer related associations than other typical differential correlation approaches, we 

also show that DCARS is more powerful through simulation (Figure 2C and Figure S10). Overall, DCARS methods 

either performed similarly or outperformed other statistical tests for identifying changes in correlation associations 

between x and y. DCARS was consistently more powerful than the linear model with interaction test. The Fisher Z-

transformation test method first split samples into the first 50% and last 50% and tested for differential correlation. In 

the case of correct model specification (third row of Figure S10), where the first set of 50 samples were simulated 

with positive correlation, the Fisher Z-transformation test was marginally more powerful, but in the case of model 

misspecification (for example shown in Figure 2C), DCARS maintained a higher level of power. These simulation 

results highlight the ability of DCARS to powerfully capture differences in correlation robustly without needing to 

specify two sets of samples.  

In terms of characterising false positive error, simulating a correlation value of zero corresponds to the null model, 

where in fact no difference in correlation exists across samples (leftmost column in Figure S10). Thus, estimates of 

proportion of significance for this simulation setting are estimates of the false positive error rate. DCARS methods 

performed similarly to the other methods in terms of the estimated false positive error rate (Figure S11), with median 

estimated false positive error rates ranging between 0.04 and 0.07 for the DCARS methods and 0.04 and 0.06 for the 

other statistical tests, indicating that DCARS controls the false positive rate while maintaining statistical power. 

 

DCARS captures changes in correlation that are conserved across multiple cancers 

In order to identify gene pairs that were associated with global patterns of gene expression in cancer, we looked 

specifically at gene pairs that were significant and consistent across multiple cancers. The REACTOME pathways 

(C2 from MSigDB) were used to further explore biological processes associated with the genes we identified. We 

selected gene pairs that were 1) significant and 2) had weighted correlation patterns in a consistent direction. We 

identified three gene pairs consistently significant across four cancers (Table 2), 19 that were significant across three 

cancers (Table 2) and a further 430 pairs that were significant over two cancers (Supplementary File 2). In particular 

at least one the three specific gene pairs, COPA and COPE, that had this pattern across four cancers (Figure 3A) has 

previously been shown to be associated with biological processes in cancer, discussed further below. 

 

Of the genes belonging to gene pairs that are significant in the same direction over three or more cancers, we 

observed overrepresentation of genes (Supplementary File 3) belonging to processes associated with membrane 

budding (p-value<10-4, STRING version 10.5 functional enrichment tool (Szklarczyk et al., 2015), genes include 

COPA, COPE, FCHO2, FNBP1L, PICALM, and WASL) and the majority of genes were involved in cellular 

macromolecule metabolic processes (p-value<10-3, highly connected genes include JAK2, SEC61A1, RPL35A, 

among other genes such as CLSPN, RAD9A, and POT1, TINF2, and PSMD6, PSMB1, and PSMA6). One identified 

gene pair is that of CLSPN and RAD9A found to be positively correlated in high survival patients in LUAD, OV and 

SKCM cancers, belonging to the TP53 pathway. RAD9 has also been implicated in cancer, where aberrant or 
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uncontrolled expression is associated with deleterious health consequences (Lieberman et al., 2011). This supports 

the notion that the TP53 pathway is ‘on’ when actively fighting a tumour, and suggests that tumours with low 

associated survival evade activation of the tumour suppressive TP53 pathway (Vogelstein et al., 2000).  

 

COPI-coated vesicle budding 

We looked at individual gene pairs in which changes were observed in the same direction, and found a number of 

pairs with concordant direction of correlation (gain or loss of positive or negative correlation) across survival time. 

One of the most common gene pairs identified was COPA and COPE, identified to be negatively correlated in low 

survival and not correlated in high survival groups among BLCA, BRCA, LGG and SKCM (Figure 3A). 

Additionally, the LUSC network contains the gene pair COPA and COPB1 which is positively correlated in the high 

survival group. This set of genes is related to vesicle transport which may be recruited to carry signals across tumour 

cells (Wang et al., 2010), and thus may be associated to processes occurring in tumours.  

 

Network-based analysis of DCARS gene pairs allows discovery of specific pathways unique to survival groups 

To demonstrate the potential of DCARS to build on meaningful biological analyses, we performed a network 

analysis on each of the TCGA datasets. Subnetworks of the STRING network were built by selecting the 

significantly DCARS gene pairs, assigning a direction of weighted correlation across survival on each edge. We were 

then able to interrogate the structure of the resulting networks, including identifying concordant patterns of 

correlation change across survival along communities detected using the walktrap algorithm implemented in the 

igraph R package (Csárdi and Nepusz, 2006). All figures associated with all cancers are provided in Figure S2, 

Figure S12, and Supplementary File 4, with those associated with a chosen cancer of skin cutaneous melanoma 

(SKCM) shown in Figure 4A. Rather than specifically look at the changes from positive, zero, or negative weighted 

correlation in the low survival group to positive, zero, or negative weighted correlation in the high survival group, we 

instead noted for gene pairs if there was one of 1) correlation of any direction present in the low survival group and 

not in the high survival group, 2) correlation of any direction present in the high survival group and not in the low 

survival group, or 3) if there was a switch in correlation direction between the high and low survival group. This 

approach revealed a number of distinct subnetworks within the DCARS derived network contained a high proportion 

of edges with correlations present in either the low or high surviving group (Figure 4B and Figure 4C). This suggests 

that DCARS can point towards processes that may be switched ‘on’ in one group of samples and ‘off’ in the other. 

One such example in the SKCM DCARS network is the subnetwork associated with Cell Cycle Checkpoints, where 

the majority of correlation is present in the high survival group (Figure 4D), corroborating with the notion that 

processes associated with cell cycle are altered in melanoma (Kaufmann et al., 2008). This specific characterisation 

of subnetworks in terms of identifying correlation in the low or high survival set of samples allows for deeper 

understanding of the biological mechanisms at play in terms of the hallmarks of cancer (Hanahan and Weinberg, 

2011), and potentially lead towards identification of therapeutic targets. 

 

Integrating DCARS with somatic mutation information points to potentially causative biological associations 

We utilised the TCGA somatic mutation information, by identifying genes with nonsilent mutations that associated 

with survival ranking (Figure S13), taking into account whether gene mutations were associated with a lower or a 
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higher survival ranking. We then associated the gene mutation results with DCARS gene pairs by identifying 

significant gene pairs that contained a significantly mutated gene. We further split these gene pairs of interest based 

on 1) if the mutated gene is associated with high or low survival ranking, and 2) if at least one of the gene pair 

appears in the list of known cancer genes. These lists of mutated genes and gene pairs are given in Table 3 (contain 

known cancer genes and mutated in low survival samples), Table S1 (contain known cancer genes and mutated in 

high survival samples), Table S2 (do not contain known cancer genes and mutated in low survival samples), and 

Table S3 (do not contain known cancer genes and mutated in high survival samples). We identified 9 known cancer 

genes that were more mutated in the low surviving group and also belonged to a gene pair that was DCARS for the 

same cancer. In addition to these 8 genes, we also found 28 genes not in the known cancer gene list that were more 

mutated in the low surviving group and also belong to a gene pair that was DCARS for the same cancer. We also 

found a total of 45 genes that were more mutated in the high surviving group with corresponding DCARS results, of 

which 13 appear in the known cancer gene list. 

 

PIK3CA in LGG 

The gene PIK3CA, appearing in the list of known cancer genes, was more mutated in low survival groups of lower 

grade glioma (LGG) (Table 3), and the corresponding DCARS LGG subnetwork in which PIK3CA belonged related 

to IL2 signalling (Supplementary File 4, LGG network). Within the subnetwork, correlation was found to exist 

between PIK3CA and ERRB2, BCL2L1, and PIK3R3 respectively in low survival samples and correlation was 

found to exist between PIK3CA and INSR in high survival samples (Figure 3B). Such a pattern may suggest that 

rather than entire processes being absent or present across one end of the set of samples, subtle switching of gene 

coexpression can occur in these pathways via events such as mutation. Indeed, previous literature (Karakas et al., 

2006) has shown that mutations in PIK3CA are associated with overactivation of the PI3K/AKT pathway leading to 

an increase in cell proliferation, in a number of cancers. Additionally we found this gene was also associated with 

COAD and SKCM with similarly more mutations observed in lower surviving patients, but no direct DCARS 

associations of interest were identified.  

 

CHEK2 in LUAD 

The gene CHEK2, a known checkpoint kinase and tumour suppressor (McGowan, 2002) and appearing in the known 

cancer gene list, was more mutated in low survival groups of lung adenocarcinoma (LUAD) (Table 3), and the 

corresponding DCARS LUAD subnetwork in which CHEK2 belonged related to Cell Cycle Checkpoint pathway 

(Supplementary File 4, LUAD network), specifically involving the cell cycle division genes CDC25A, CDC25C, 

CHEK2, and TP53. Within the subnetwork, correlation was found to exist between CHEK2 and CDC25A, CDC25C, 

H2AFX respectively in high survival samples and correlation was found to exist between CHEK2 and PLK2 in low 

survival samples, whereas a subtle switch in correlation was observed between CHEK2 and TP53 (Figure 3C). The 

presence of lower absolute correlation in the low survival group among these gene pairs suggests these processes are 

deregulated in the low survival group and may still retain typical function in the high survival group (Eymin and 

Gazzeri). This further analysis highlights the ability for DCARS to select gene pairs that are biologically informative 

and can shed light on the underlying biology. 
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DISCUSSION 

 

We have introduced a novel approach called Differential Correlation across Ranked Samples (DCARS) and have 

shown that it is a powerful method for identifying patterns of correlation that varies across ranked samples. This 

method is more flexible than typical approaches that require samples to be split into two distinct patient groups.  

When applied to TCGA data, our approach combined with further network analytics leads to biological insight as 

highlighted here with our study using TCGA data. 

 

While we have applied DCARS to the gene expression data in TCGA, it can easily be applied to many other 

biological data platforms and diseases, e.g. DNA methylation patterns. DCARS is a flexible statistical approach that 

assesses changes in correlation of two variables across a ranking of samples. This approach is able to discover 

biologically informative relationships among genes across a variable of interest. Here, we have used it in the context 

of gene expression and survival rankings of samples, but the same approach can easily be extended to consider other 

biomedical data, for example identifying changes in correlation pattern between genes across single cells ordered 

along a pseudotime trajectory; or identifying changes in correlation between other types of clinical variables ordered 

along another clinical variable such as BMI. DCARS can be extended to other types of data such as categorical data, 

where the measure of concordance can be tailored to suit the data type. Since DCARS utilises ranked samples and 

transforms the gene expression data into gene ranks, it does not rely on distributional assumptions such as normality 

to ensure meaningful results, thus is robust to departures from normally distributed data.  

 

Our current DCARS method requires an ordered set of samples. In the context of survival, a number of samples may 

be censored, and thus it is unclear what the latent or ‘true’ order of samples is. One approach to address this issue is 

to modify the associated weight matrix to reflect the censored sample, or to perform a repeated analysis where 

different plausible sample orders are used. Similar to this potential issue is the case where sample ties may occur, in 

which case the weight matrix may simply have equal values assigned to the tied samples.  

 

Interestingly, there is the possibility that other factors relevant to the sample ranking can be associated with the 

correlation patterns observed in the data. For example, in our illustration of DCARS using cancer survival ranking, 

cancer samples may differ in terms of the tumour sample itself in a way that associates with survival. This could be 

through various factors such as the proportion of normal or stromal to tumour cells in the sample, and the level of 

infiltration of other cell types such as immune cells. A strategy to account for these other factors is to perform 

correction through a regression analysis such as those used in experimental batch correction methods, and perform 

DCARS on the resulting matrix of residual measurements. Another exciting possibility is to perform a cell type 

deconvolution algorithm to identify putative cell type compositions for the sample at hand, and then perform 

DCARS on the resulting cell-type specific gene expression signal across the sample ranking. This would identify 

changes in correlation across a sample ranking specific to a cell type of interest. 

 

We have demonstrated the utility of the DCARS method by applying it to the TCGA gene expression dataset, 

whereby known cancer genes were greatly overrepresented and some interesting biological associations between 
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cancer genes was identified. In addition we demonstrated that DCARS is an informative aspect of a network-based 

analysis, further enhancing existing network analytics such as community detection (Petrochilos et al., 2013; Fuller 

et al., 2007; Ideker et al., 2002). In the current work we utilised a community detection approach to identify 

biological processes most associated with ‘presence’ or ‘absence’ of correlation on the low- or high- end of survival 

outcome. If coupled with corresponding gene expression of normal tissue, the ‘normal’ level of concordance between 

genes can be identified and thus a more informative observation be found where a pair of genes may have ‘gained’ or 

‘lost’ correlation in low or high survival groups, directly associating to potential therapeutic targets. 

 

In summary, our novel Differential Correlation across Ranked Samples (DCARS) method is a powerful and flexible 

testing framework for identifying changes in correlation patterns across a ranking of samples, allowing for deep 

interrogation of the complex relationships observed in gene expression systems.  
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TABLES AND FIGURES LEGENDS 

Table 1. Details of TCGA cancer datasets. Thirteen datasets were retained for weighted correlation analysis, which 

had 100 or more samples with complete survival data.  

Tissue or organ 

type 

TCGA 

abbreviation 
Full name 

Number 

of 

samples 

Significant 

gene pairs 

Number 

mutated 

samples 

Number 

significant 

mutated 

genes 

Breast BRCA Breast invasive carcinoma 151 725 134 60 

CNS 
GBM Glioblastoma multiforme 129 546 124 3 

LGG Brain Lower Grade Glioma 125 728 123 10 

Gastrointestinal 

 

COAD Colon adenocarcinoma 102 620 95 136 

LIHC Liver hepatocellular carcinoma 130 814 121 16 

STAD Stomach adenocarcinoma 145 481 144 55 

Gynecologic OV Ovarian serous cystadenocarcinoma 229 589 159 15 

Head and Neck HNSC Head and Neck squamous cell carcinoma 217 423 214 56 

Skin SKCM Skin Cutaneous Melanoma 220 564 217 77 

Thoracic 
LUAD Lung adenocarcinoma 183 1172 179 50 

LUSC Lung squamous cell carcinoma 212 375 207 74 

Urologic 
BLCA Bladder Urothelial Carcinoma 178 706 177 49 

KIRC Kidney renal clear cell carcinoma 173 365 77 6 
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Table 2. Significant gene pairs across three or more cancers. Gene pairs were filtered so that they were significant in the same direction in at least 3 cancers. 

Highlighted genes belong to the list of known cancer genes, gene pairs are sorted alphabetically, with most representative REACTOME pathway given. Correlation 

was identified as zero, negative, or positive at the low or high end of survival samples. 

Gene pair Cancers Representative REACTOME pathway 
Correlation in low 

survival 
Correlation in high 

survival 

FCHO2 PICALM 
BLCA, GBM, HNSC, 

OV GOLGI_ASSOCIATED_VESICLE_BIOGENESIS positive zero 

COPA COPE 
BLCA, BRCA, LGG, 

SKCM COPI_MEDIATED_TRANSPORT negative zero 

SRSF5 TRA2B 
BRCA, LGG, LIHC, 

LUAD MRNA_3_END_PROCESSING zero positive 

ARID2 PBRM1 GBM, LGG, LUAD UNKNOWN positive positive 

IL1R1 MYD88 BLCA, BRCA, OV IL1_SIGNALING positive zero 

ACTL6A ARID1B BLCA, BRCA, SKCM UNKNOWN positive zero 

JAK2 LEPR HNSC, KIRC, LUAD IL_6_SIGNALING zero positive 

POT1 TINF2 KIRC, LGG, OV PACKAGING_OF_TELOMERE_ENDS zero positive 

CCNC CDK8 LGG, LUAD, SKCM SMAD2_SMAD3_SMAD4_HETEROTRIMER_REGULATES_TRANSCRIPTION positive zero 

TIMM22 TIMM50 BLCA, BRCA, LGG MITOCHONDRIAL_PROTEIN_IMPORT positive zero 

PSMA6 PSMB1 BLCA, COAD, OV CROSS_PRESENTATION_OF_SOLUBLE_EXOGENOUS_ANTIGENS_ENDOSOMES zero positive 

TAF7 TAF9 BLCA, GBM, LIHC RNA_POL_II_TRANSCRIPTION_PRE_INITIATION_AND_PROMOTER_OPENING zero positive 

NUTF2 RANGAP1 BRCA, LGG, LUAD MITOTIC_PROMETAPHASE positive zero 

LIMS1 PARVA BRCA, LGG, LUAD CELL_EXTRACELLULAR_MATRIX_INTERACTIONS positive zero 

ELP2 ELP3 COAD, LGG, SKCM UNKNOWN positive zero 

RPL35A RPL36AL KIRC, LIHC, LUAD PEPTIDE_CHAIN_ELONGATION zero positive 

PSMB1 PSMD6 BLCA, LUAD, LUSC CROSS_PRESENTATION_OF_SOLUBLE_EXOGENOUS_ANTIGENS_ENDOSOMES zero positive 

INTS3 INTS6 GBM, LUAD, STAD UNKNOWN zero positive 

MRPL23 MRPL36 COAD, LUAD, OV UNKNOWN positive zero 

FNBP1L WASL LGG, OV, SKCM DCC_MEDIATED_ATTRACTIVE_SIGNALING positive zero 

CLSPN RAD9A LUAD, OV, SKCM ACTIVATION_OF_ATR_IN_RESPONSE_TO_REPLICATION_STRESS zero positive 

RPL10A SEC61A1 BLCA, SKCM, STAD SRP_DEPENDENT_COTRANSLATIONAL_PROTEIN_TARGETING_TO_MEMBRANE zero negative 

 

  

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 18, 2018. ; https://doi.org/10.1101/303735doi: bioRxiv preprint 

https://doi.org/10.1101/303735
http://creativecommons.org/licenses/by-nc/4.0/


18 

 

Table 3. DCARS gene pairs associated with somatic mutations in the low survival group with at least one known 

cancer gene. Highlighted yellow cells are genes that appear in the list of known cancer genes. Correlation was 

identified as zero, negative, or positive at the low or high end of survival samples. 

Cancer Mutated Gene Gene Pair Low surviving correlation High surviving correlation 

BLCA 

ESPL1 ESPL1 PTTG1 zero positive 

MAP3K4 
GADD45G MAP3K4 negative zero 

GADD45B MAP3K4 negative zero 

BRCA 

LYN LYN STAT3 zero positive 

MSH2 

EXO1 MSH2 positive positive 

MSH2 POLE zero positive 

FEN1 MSH2 zero positive 

NUP214 NUP214 NUP85 zero positive 

COAD WRN TOP3A WRN positive zero 

LGG PIK3CA 

BCL2L1 PIK3CA negative zero 

PIK3CA PIK3R3 positive zero 

INSR PIK3CA zero positive 

LIHC PRKDC PRKDC TP53 zero positive 

LUAD 

CHEK2 

CDC25C CHEK2 positive positive 

CDC25A CHEK2 positive positive 

CHEK2 H2AFX zero positive 

KRAS 
KRAS RAF1 zero positive 

BRAF KRAS zero positive 

NFE2L2 HMOX1 NFE2L2 positive zero 

RELA CREBBP RELA zero positive 

TOP2A RANBP2 TOP2A zero positive 
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Figure 1. Methods flowchart. 

Data: A matrix of gene expression with N samples (columns) and p genes (rows) with accompanying complete 

sample ranking data, such as survival time, for the N samples is required, in which columns are ordered by survival 

time and gene expression values are converted to ranks for each gene across samples. 

Network: An a priori network is used to identify pairs of genes in which DCARS testing should be performed. 

Alternatively all paired combinations of genes can be assessed. 

Significance: To obtain the observed test statistic for a given pair of genes x and y in the network, the expression 

rank is taken along the survival rank. A vector of weighted correlations is calculated with a set of sample weights 

(triangular weights with span of 0.5 shown here), and finally the DCARS statistic is calculated as the sample 

standard deviation of the weighted correlation vector. Permuted DCARS statistics are obtained by rearranging the 

order of survival rank, ensuring that pairs of (x,y) expression and thus the overall correlation structure is maintained. 

Statistical significance is obtained by comparing the observed DCARS statistic against permuted DCARS statistics, 

with higher values giving evidence towards DCARS occurring for this pair of genes.  
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Figure 2. Comparison of DCARS and other statistical tests with TCGA data and in simulation. 

A. Barplot of associations with the known cancer gene list using DCARS, Fisher’s Z-transformation test, and the 

linear model interaction test. We performed a one-sided Wilcoxon Rank Sum test to assess if a positive association 

between gene pairs containing at least one gene in the known cancer gene list existed with the resulting gene pair 

ranking determined by DCARS (test statistic), Fisher Z-transformation test –log(p-value), and linear model 

interaction test –log(p-value) respectively. Barplots show the –log(p-value) of the Wilcoxon Rank Sum test, with 

vertical line corresponding to a p-value of 0.05, bars are capped at p-value of 1x10-5. Seven of the 13 TCGA datasets 

are significant using DCARS, whereas only three are significant using Fisher’s Z-transformation test and a single 

cancer significant for the linear model interaction test. 

B. Dotplot of proportion of known cancer genes represented in the top 1000 gene pairs for each cancer and each 

method. Dots are coloured by their ranking with red dots corresponding to the method for which the highest 

proportion of cancer genes appear in the top gene pairs list, followed by orange and then grey dots. The size of dots 
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corresponds to the proportion of known cancer genes appearing in the top gene pairs list. DCARS is ranked first for 

seven cancer datasets and ranked second in the remaining six datasets. 

C. Barplots show the proportion of tests for simulated data that were considered significant with a p-value of 0.05 

across a set of 100 data points where the first set of 30 values were correlated at values of 0, 0.25, 0.5, 0.75 and 1. 

Grey dots show the ideal values associated with a false positive rate of 0 and statistical power of 1. Simulations with 

correlated values of 0 adhered to the null model of no differential correlation across data points and thus estimate the 

false positive rate. DCARS methods perform similarly to other statistical tests in terms of estimated false positive 

rate. DCARS methods either perform similarly or outperform other statistical tests in other simulation scenarios, e.g. 

when the number of first values correlated is far from 50/100, and when simulated correlation values are 0.5 or less. 
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Figure 3. Weighted correlation vectors of specific gene pairs of interest. 

A. Local weighted correlation vectors from low (left) to high (right) survival of COPA and COPE across all 13 

TCGA datasets. Green bars on the side indicate significant DCARS gene pairs. 

B. Local weighted correlation vectors from low to high survival for specific gene pairs involving PIK3CA across the 

LGG TCGA dataset. All rows shown are significant DCARS gene pairs.  

C. Local weighted correlation vectors from low to high survival for specific gene pairs involving CHEK2 across the 

LUAD TCGA dataset. All rows shown are significant DCARS gene pairs. 
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Figure 4. DCARS analysis results for skin cutaneous melanoma (SKCM) TCGA dataset.  

A. Heatmaps display the weighted correlation vectors from low to high survival samples, with red indicating positive 

weighted correlation and blue negative weighted correlation. Bars along the sides indicate gene pairs for which the 

weighted correlation is identified as positive (red) or negative (blue) or zero (white) at either low or high end of 

survival, thus characterising each gene pair in terms of the direction of change of weighted correlation. 
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B. Subnetwork of STRING network generated by obtaining DCARS gene pairs, where disjoint subnetworks with 

fewer than 5 nodes removed for clarity, red edges represent gene pairs correlated in low survival samples, blue edges 

represented gene pairs correlated in high survival samples, green pairs represent a switch in correlation between low 

and high survival samples. 

C. Subnetwork as in panel B with community detection result overlaid, and most representative REACTOME 

pathway labelled. Shading indicates the proportion of edges representing gene pairs correlated in low survival (red) 

and in high survival (blue). 

D. Heatmap of proportion of gene pairs attributed to either high (correlated in high survival) or low (correlated in 

low survival) group for each community shown in panel C, labelled by the most representative REACTOME 

pathway.  
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SUPPLEMENTARY TABLES AND FIGURES LEGENDS 

Table S1. DCARS gene pairs associated with somatic mutations in the high survival group with at least one known 

cancer gene. Highlighted cells are genes that appear in the list of known cancer genes. Correlation was identified as 

zero, negative, or positive at the low or high end of survival samples. 

Cancer Mutated Gene Gene Pair Low surviving correlation High surviving correlation 

BLCA 
MYH9 MYH9 MYL9 zero positive 

PTK2 PIK3CA PTK2 positive zero 

COAD 
DCTN1 DCTN1 DCTN2 negative zero 

NUP88 NUP214 NUP88 negative zero 

HNSC TSC2 TSC1 TSC2 zero positive 

LUSC 

CDC27 ANAPC13 CDC27 positive zero 

TP53 

SUMO1 TP53 zero positive 

SP1 TP53 zero positive 

SIRT1 TP53 zero positive 

OV 
KAT6B 

BRPF1 KAT6B positive zero 

BRD1 KAT6B positive zero 

MLH1 MLH1 PCNA zero positive 

SKCM 

BRCA1 ATM BRCA1 positive zero 

RPTOR 
RPTOR RRAGB negative zero 

PRKAA1 RPTOR negative zero 

RSRC1 RPL10 RSRC1 negative zero 

XPO1 RANGAP1 XPO1 negative zero 

STAD 

IRS1 INSR IRS1 zero positive 

MUC1 MUC1 MUC2 zero positive 

MYD88 

MYD88 TLR8 positive zero 

MYD88 TLR4 positive zero 

MYD88 TLR1 positive zero 

MYD88 TLR6 positive zero 
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Table S2. DCARS gene pairs associated with somatic mutations in the low survival group with no known cancer 

genes. Correlation was identified as zero, negative, or positive at the low or high end of survival samples. 

Cancer Mutated Gene Gene Pair Low surviving correlation High surviving correlation 

BLCA 

BBS4 ARL6 BBS4 positive zero 

BOP1 

BOP1 CEBPZ zero positive 

BOP1 BRIX1 zero positive 

BOP1 RRP1B zero positive 

CENPE AURKB CENPE positive positive 

WEE1 
CCNB1 WEE1 zero positive 

CDC25C WEE1 zero positive 

BRCA 

ARPC2 
ARPC2 ARPC4 positive zero 

ARPC1B ARPC2 positive zero 

DHX37 DHX37 HEATR1 zero positive 

DNAJC7 
DNAJC7 HSPA12B zero negative 

DNAJC7 HSPA5 zero positive 

ITSN1 AP2B1 ITSN1 positive zero 

MCM7 

MCM7 RAD17 negative zero 

MCM7 MCM8 zero positive 

MCM7 RFC5 zero positive 

MCM7 MCMBP zero positive 

SRRM2 SRRM2 SRSF4 zero positive 

USO1 GOSR2 USO1 zero positive 

COAD PNP HPRT1 PNP zero positive 

GBM EEF1A1 EEF1A1 RPL6 zero positive 

HNSC ARCN1 ARCN1 COPZ1 negative zero 

LGG CFH C3 CFH positive zero 

LIHC 
LNPEP LNPEP SLC2A4 negative zero 

PIGC PIGC PIGH zero positive 

LUAD 

CTNNA1 
CTNNA1 VCL positive zero 

CTNNA1 JUP zero positive 

FBL BOP1 FBL positive positive 

MOV10 MOV10 TNRC6B zero positive 

PSMD13 

PSMD1 PSMD13 positive zero 

PSMC5 PSMD13 positive zero 

PSMD13 PSMD2 positive zero 

PSMD11 PSMD13 positive zero 

LUSC AGL AGL GBE1 zero positive 

SKCM 
FANCM FANCI FANCM positive zero 

PROCR PROCR THBD zero positive 
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Table S3. DCARS gene pairs associated with somatic mutations in the high survival group with no known cancer 

genes. Correlation was identified as zero, negative, or positive at the low or high end of survival samples. 

Cancer Mutated Gene Gene Pair Low surviving correlation High surviving correlation 

BLCA 

PPP1R12A PPP1CC PPP1R12A positive zero 

UCHL5 

PSMB10 UCHL5 negative zero 

PSMD8 UCHL5 zero positive 

PSMB7 UCHL5 zero positive 

PSMB4 UCHL5 zero positive 

PSMB2 UCHL5 zero positive 

PSMA3 UCHL5 zero positive 

PSMA4 UCHL5 zero positive 

PSMD3 UCHL5 zero positive 

PSMA2 UCHL5 zero positive 

COAD 

COPG1 COPB1 COPG1 zero negative 

DHX37 DHX37 WDR36 zero positive 

DLD DLD GCSH zero positive 

EXOC3 EXOC3 EXOC7 zero positive 

EXOSC4 
EXOSC1 EXOSC4 positive zero 

EXOSC2 EXOSC4 positive zero 

FZD7 FZD7 WNT5B zero positive 

GEMIN5 GEMIN5 SNRPD1 positive zero 

MUT ACLY MUT negative zero 

NFS1 LYRM4 NFS1 zero positive 

POLR2D 
GTF2B POLR2D zero positive 

POLR2C POLR2D zero positive 

PRPF8 PRPF8 TXNL4A zero positive 

RPL19 RPL15 RPL19 zero positive 

RPS6KB2 RPS6 RPS6KB2 positive zero 

SMARCC1 
ACTL6A SMARCC1 zero positive 

SMARCC1 SMARCD2 zero positive 

SUPT16H CSNK2A1 SUPT16H positive zero 

TRADD TRADD TRAF2 zero positive 

HNSC 
COG4 COG4 COG6 negative zero 

PRPF6 LSM3 PRPF6 positive zero 

KIRC BMS1 BMS1 RCL1 positive zero 

LUAD 

DIEXF 

DIEXF UTP14C zero positive 

DIEXF UTP3 zero positive 

DIEXF NOL6 zero positive 

MRPL14 MRPL14 MRPL22 zero positive 

STAM STAM UBC positive zero 

LUSC 

CKAP5 CKAP5 TACC2 positive zero 

IQGAP2 CDC42 IQGAP2 zero positive 

PRPF8 DHX15 PRPF8 zero positive 

XAB2 CWC22 XAB2 positive zero 
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SKCM RSRC1 RPS28 RSRC1 negative zero 

STAD 

GABARAPL1 

ATG4A 
GABARAPL

1 
negative zero 

BECN1 
GABARAPL

1 
negative zero 

MRPL16 

GFM1 MRPL16 positive zero 

MRPL16 MRPL34 zero positive 

MRPL16 MRPL43 zero positive 
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Figure S1. Weighting schemes for weighted correlation calculation. Barplots of sample weights for different types 

of weighting schemes, triangular, block and harmonic, for an example sample set of length 100, shown for a subset 

of weight vectors at 1, 10, 20, …, 100. Triangular and harmonic weighting schemes allow choice of span for the 

weights, shown at span 0.1, 0.5, and 0.7 for the triangular scheme and span of 0.1 for the block scheme. 
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Figure S2. Heatmap of weighted correlations for significant gene pairs using DCARS across thirteen TCGA 

cancers. Heatmaps display the weighted correlation vectors from low to high survival samples (rows), with red 

indicating positive weighted correlation and blue negative weighted correlation, for all significantly DCARS gene 

pairs with non-zero change in weighted correlation. Coloured bars along the sides indicate gene pairs for which the 

weighted correlation is identified as positive (red) or negative (blue) or zero (white) at either low or high end of 

survival, thus characterising each gene pair in terms of the direction of change of weighted correlation Gene pairs 

identified as zero at both the low or high end of survival were removed. 

  

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 18, 2018. ; https://doi.org/10.1101/303735doi: bioRxiv preprint 

https://doi.org/10.1101/303735
http://creativecommons.org/licenses/by-nc/4.0/


31 

 

 

Figure S3. Scatterplots of DCARS test statistics vs –log(p-value) of Fisher’s Z-transformation test for 13 TCGA 

cancers. Spearman correlation is given in top right corner. Horizontal and vertical lines correspond to unadjusted p-

value of 0.05. 
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Figure S4. Scatterplots of DCARS test statistics vs –log(p-value) of Linear model interaction test for 13 TCGA 

cancers. Spearman correlation is given in top right corner. Horizontal and vertical lines correspond to unadjusted p-

value of 0.05. 
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Figure S5. Line plots of the proportion of known cancer genes that appear in the top 1000 selected gene pairs using 

the DCARS (green solid), Fisher Z-transformation test (orange dotted) and linear model interaction test (grey 

dashed). A higher value indicates that a higher set of known cancer genes appear at least once in the top ranked list 

of gene pairs. 
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Figure S6. Observed test statistic and permutation based p-values for each cancer dataset. Once observed test 

statistics were calculated, a stratified sample of up to 500 gene pairs were taken to carry out permutation based 

testing with 100 permutations. A smoothed curve was fit for each cancer and the value associated with unadjusted p-

value of 0.05 was taken to be the critical value for further interrogation, where gene pairs with a higher observed test 

statistic than the critical value were considered significantly differentially correlated across survival time. 
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Figure S7. Comparison of critical test statistic values and number of samples.  

A. Number of samples and estimated test statistic critical value at P = 0.05 for the TCGA datasets. 

B. We took the TCGA dataset with the highest number of samples, OV, and successively took subsamples of this 

dataset, and calculated critical values as shown in Figure S1. This showed a monotonic trend of decrease in critical 

value as number of samples increased. Overlaying the graph from A and B shows the other cancers follow suit with 

the subsets of OV dataset. 

C. OV was subsampled and the DCARS test carried out with critical values found, but for a triangular weighting 

scheme with span of 0.1 (as opposed to 0.5), and the critical value appears to be parallel but lies above that of the 0.5 

span. 

D. We graphed the observed test statistics using a triangular weighting scheme with span 0.1 and 0.5 for the OV 

dataset and find they are largely monotonically related. 
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Figure S8. Observed test statistic and permutation based p-values for each subset of OV cancer dataset. For each 

subset of the 229 samples from the OV dataset, observed test statistics were calculated using a triangular weight 

matrix of span 0.5. Then, a stratified sample of up to 500 gene pairs were taken to carry out permutation based 

testing with 100 permutations. A smoothed curve was fit for each cancer and the value associated with unadjusted p-

value of 0.05 was taken to be the critical value for further interrogation, where gene pairs with a higher observed test 

statistic than the critical value were considered significantly differentially correlated across survival time.  

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 18, 2018. ; https://doi.org/10.1101/303735doi: bioRxiv preprint 

https://doi.org/10.1101/303735
http://creativecommons.org/licenses/by-nc/4.0/


37 

 

 

Figure S9. Observed test statistic and permutation based p-values for each subset of OV cancer dataset with 

triangular weight matrix with span 0.1. For each subset of the 229 samples from the OV dataset, observed test 

statistics were calculated using a triangular weight matrix of span 0.1. Then, a stratified sample of up to 500 gene 

pairs were taken to carry out permutation based testing with 100 permutations. A smoothed curve was fit for each 

cancer and the value associated with unadjusted p-value of 0.05 was taken to be the critical value for further 

interrogation, where gene pairs with a higher observed test statistic than the critical value were considered 

significantly differentially correlated across survival time. 
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Figure S10. Simulation results comparing DCARS against other statistical test. Barplots show the proportion of tests 

for simulated data that were considered significant with a p-value of 0.05 across a set of 100 data points where the 

first set of 10, 30, 50, 70 or 90 values were correlated at values of 0, 0.25, 0.5, 0.75 and 1. Grey dots show the ideal 

values associated with a false positive rate of 0 and statistical power of 1. Simulations with correlated values of 0 

adhered to the null model of no differential correlation across data points and thus estimate the false positive rate. 

DCARS methods perform similarly to other statistical tests in terms of estimated false positive rate. DCARS 

methods either perform similarly or outperform other statistical tests in other simulation scenarios, e.g. when the 

number of first values correlated is far from 50/100, and when simulated correlation values are 0.5 or less.  
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Figure S11. Boxplots of estimated false positive error rates in simulation study. Data were simulated to have no 

correlation and the proportion of ‘significant’ test results across 100 simulations are shown for DCARS methods and 

other statistical tests. All methods are similar in their estimated false positive rate. 
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Figure S12. Heatmap of proportions of correlations for pathway per cancer. Purple cells have a higher 

proportion of gene pairs with correlation in either the high or low survival groups per subnetwork per cancer. 
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Figure S13. Volcano plots of mutation association test. Wilcoxon rank sum tests were used to test for association 

with survival ranking and presence of a non-silent mutation in the gene. Direction (x-axis) is given as the median 

survival ranking of samples without mutations in the gene subtracted by the median survival ranking of samples with 

mutations in the gene, thus higher values associate with genes with mutations in low survival samples. Y-axis 

represents –log10(p-value) of the two-sided Wilcoxon Rank Sum test. 
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Supplementary files  

Supplementary files are located in https://github.com/shazanfar/DCARS.  

Supplementary File 1 – Zip file containing tab-separated text files for each tested gene pair across 13 cancer 

datasets, including the DCARS test statistic, Fisher Z-transform test, linear model interaction test as well as other 

information. 

Supplementary File 2 – Excel spreadsheet of gene pairs significant DCARS in two or more cancers. 

Supplementary File 3 – Excel spreadsheet of input gene list and output Biological Process Gene Ontology 

Enrichment Analysis performed by STRING database (v 10.5). 

Supplementary File 4 – PDF file of network diagrams of DCARS gene pairs for all 13 TCGA datasets. 
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