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Abstract

Summary: Understanding the role of short-interfering RNA (siRNA) in diverse biolog-
ical processes is of current interest and often approached through small RNA sequencing.
However, analysis of these datasets is difficult due to the complexity of biological RNA
processing pathways, which differ between species. Several properties like strand specificity,
length distribution, and distribution of soft-clipped bases are few parameters known to guide
researchers in understanding the role of siRNAs. We present RAPID, a generic eukaryotic
siRNA analysis pipeline, which captures information inherent in the datasets and automat-
ically produces numerous visualizations as user-friendly HTML reports, covering multiple
categories required for siRNA analysis. RAPID also facilitates an automated comparison of
multiple datasets, with one of the normalization techniques dedicated for siRNA knockdown
analysis, and integrates differential expression analysis using DESeq2. RAPID is available
under MIT license at https://github.com/SchulzLab/RAPID.We recommend using it as a
conda environment available from https://anaconda.org/bioconda/rapid.

Introduction

Widespread availability of small RNA (sRNA) sequencing technologies drives the biological
community in unraveling the pivotal role of sRNA molecules. Micro RNA (miRNA), short
interfering RNA (siRNA), piwi-interacting RNA (piRNA), small nucleolar RNA (snoRNA),
and trans-acting RNA (taRNA) are some members of the sRNA family. In a wide range of
organisms, these sRNA molecules play crucial roles in gene regulation [3]. Although, miR-
NAs are the most widely studied sRNA molecules, a growing interest can be seen in other
sRNA classes, like siRNAs. With improved mechanistic understanding of siRNA function,
siRNAs are increasingly used as therapeutic agents in drug discovery [23]. Using siRNAs in
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therapy requires a solid understanding of siRNA biogenesis, and behavior.

Understanding siRNA biogenesis and function often involves the computation of vari-
ous sequence properties like length, strand of origin, and soft-clipped nucleotides of sRNA
molecules. A myriad of available sRNA analysis tools substantiate the complexity in ana-
lyzing sRNA data sets. Existing sRNA analysis tools can be broadly categorized into two
categories based on their function. (i) Tools which are dedicated to predict novel miRNAs,
piRNAs, etc. using diverse computational strategies. This list includes methods such as
Shortstack [1], miRDeep2 [9], iMir [10], Piano [32], etc. (ii) The secondary focus of many
sRNA analysis tools is to annotate, and perform Gene Ontology (GO) enrichment analysis of
known, or predicted sRNAs. Examples include miRTools2 [33], iSmart [22], and CPSS [31].
However, such annotation based tools lack user-flexibility as they are hardcoded to work
only in certain genomes like humans or mouse primarily. This hampers researchers working
with uncommon model organisms. Only very few tools, like sRNAtoolbox [28], Oasis [4],
and ncPRO-Seq [7], do not have a hard-coded genome constraint, but they lack diverse
graphical representation of data. In addition, existing tools are not tailored to compare
multiple samples in a systematic way, properly normalizing sRNA datasets, thus allowing
for an unbiased analysis. A non-exhaustive list of available sRNA analysis tools, and their
abilities in addressing various properties essential to understand sRNA biogenesis, and mech-
anisms are discussed in Table 1. Inspite of the diverse availability of sRNA analysis tools,
they have potential mishaps and do not capture all the qualitative, and quantitative proper-
ties (discussed in Table 1) while equipping the user with unbiased multi-sample comparisons.

Hence, we developed a generic sRNA analysis offline tool: Read Alignment, Analysis,
and Differential PIpeline (RAPID), primarily tailored to investigate eukaryotic siRNAs.
RAPID quantifies the basic alignment statistics with respect to read length, strand bias,
non-templated nucleotides, nucleotide content, sequencing coverage etc. for user-defined sets
of genes or regions of any reference genome. Once basic statistics are computed for multiple
sRNA datasets, our tool aids the user with versatile functionalities, ranging from general
quantitative analysis to visual comparison of multiple sRNA datasets.

Materials and Methods

Figure 1 shows an overview of the various modules of RAPID, which we discuss below.

Basic module

The first of four RAPID modules is rapidStats, which performs sequence (FastQ) alignment,
with or without contaminant removal, using Bowtie2 [17]. After alignment, RAPID ob-
tains read statistics such as read length distribution, soft-clipped nucleotides, strandedness,
and nucleotide content. RAPID can skip the alignment and directly use alignment files
(BAM/SAM) as well. To efficiently process, capture and store the aforementioned statis-
tics, RAPID uses SAMtools [18], BEDtools [26], and custom Perl, Shell, and R scripts. The
statistics captured by this module serve as input for other modules.

Normalization module for multi-sample comparison

RAPID aims to facilitate an unbiased comparison of genes or regions across multiple sRNA
samples. Other than the sequencing depth itself, sRNA studies pose an additional challenge
during normalization. For instance, to understand RNA interference (RNAi) mechanisms
and how the siRNA homeostasis is maintained, often a gene or siRNA region is knocked
down. One such knockdown strategy is to introduce large amounts of siRNAs, called pri-
mary siRNAs, against the knockdown gene or any siRNA region. Consequentially, secondary
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siRNA production is triggered by the primary siRNAs. These primary and secondary siR-
NAs, which are also sequenced, can add up to millions of reads in the total library size.

To our knowledge, there are no normalization methods specialized for knockdown based
small RNA-seq studies. However, many methods have been proposed to normalize mRNA-
seq data, which can be broadly categorized in two classes: (i) total count scaling (TCS)
methods and (ii) methods which utilize quantities like median log-fold change, among all
genes between mRNA-seq experiments. To be able to use the latter methods, sRNA loci
annotation should be available, and should assume that most of the sRNA loci between
samples are not differentially expressed. In model organisms like Paramecium tetraurelia,
little is known about the localization, and expression variability of endogenous small RNA
loci. Hence, the second class of methods may not be applicable. However, the disadvantage
of TCS methods is that the used normalization factors were shown to be biased by highly
expressed genes in the dataset [8]. In case of knockdown samples, TCS methods will be
heavily biased because of the millions of primary, and secondary siRNAs associated with
the knockdown gene or region.

In mRNA-seq data, a variant of TCS method [30] was introduced, where normalization
is achieved by scaling through a factor that estimates the difference in the number of reads
mapped between samples. We previously proposed a variant of the TCS method in a knock-
down based siRNA study [11]. Here, we term this variant as KnockDown Corrected Scaling
(KDCS) method, where we remove from the estimated total library size, all small RNA
reads that map against the knockdown genes, this quantity is denoted K below. Assume
read count R for a region of interest that we want to compare between samples. T is the
total number of reads mapping to the genome, and K is the number of small RNA reads
mapping to the knockdown gene. We compute the normalized read count R̂:

R̂ = R · M

T −K
, (1)

where M is the maximum over all values (T1 −K1), ..., (Tn −Kn) over all n samples.
RAPID uses the KDCS method, by default. Hence, in the absence of knockdown genes, the
normalization works as the normal TCS method. However, in order to provide flexibility
with the choice of normalization for knockdown free analysis,we have also incorporated size
factor-based normalization from DESeq2 [19]. If an user can safely assume that most of
the genes or regions between samples are not differentially expressed, in a small RNA based
study, then they can use the DESeq2 normalization.

Visualization module

As visualization enables better understanding of data, the rapidVis module of RAPID au-
tomatically generates insightful plots from the output of previous modules. RAPID makes
use of Rmarkdown (http://rmarkdown.rstudio.com) to create easily navigable HTML re-
ports. This module contains two modes: statistics and comparison mode. The statistics
mode accepts input from the rapidStats output file, and provides various single category
plots detailing on the distribution of read length, strandedness, soft-clipped nucleotides,
and coverage plots for each gene/region analyzed. In addition, this report also provides
combinations of the aforementioned properties. For instance, how does strandedness differ
across different read lengths. Comparison mode accepts the rapidNorm analysis output file,
to equip the user with qualitative reports (Heatmaps, PCA, MDS) of samples. Further,
sample and gene/region wise comparison plots of the properties inherent in the data. All
plots are shown both in normal and log scale such that the user can directly incorporate
them into publications.
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Differential analysis module

Differential Expression (DE) analysis is one of the common downstream analysis in compar-
ative studies. RAPID equips the user with this functionality by incorporating the DESeq2
package. Upon invoking the rapidDiff module, raw counts are utilized from the output of
the rapidStats module to perform DE analysis, with default parameters of DESeq2. Results
of the DE analysis include intuitive plots (such as MA Plot, Heatmap, PCA) and the list of
DE genes/regions.

Usage and availability

We strongly recommend using RAPID from https://anaconda.org/bioconda/rapid as a conda
recipe. However, it can also be freely accessed from https://github.com/SchulzLab/RAPID.
A detailed use case based documentation is provided at http://rapid-doc.readthedocs.io/en/latest/.

Definitions

Here we describe the formula used in the case studies. Coefficient of variation (CoV):
Coefficient of variation is the ratio of standard deviation to mean of the data set. For a gene
or region of interest, i, with n samples

CoVi =
σi

µi
, (2)

where σi, and µi are the standard deviation, and mean of the gene or region of interest i in
the n samples respectively.

AntiSense Ratio (ASR):
Antisense ratio is the ratio of the number of antisense reads to the total number of reads
in a gene or region. If R, and AS are the total, and antisense read counts of a region of
interest, i, respectively, antisense ratio is calculated as follows:

ASRi =
ASi

Ri
. (3)

DatasSets

We show the application of RAPID, using two different datasets which are briefly described
below.

Paramecium tetraurelia

We used four small RNA sequencing data sets (European Nucleotide Archive (ENA) Acces-
sion : PRJEB25903) from the wildtype serotypes (51A, 51B, 51D, and 51H) of P.tetraurelia.
We performed adapter-trimming, merged the replicates, and extracted reads of length 21-
25nt only from each dataset for this analysis. We analyzed only the rDNA cluster producing
17S, 5.8S, 25S ribosomal RNAs, External Transcribed Spacer (ETS), Internal Transcribed
Spacer 1(ITS1), and Internal Transcribed Spacer 2 (ITS2). The rDNA cluster sequence can
be obtained from GenBank Accession: AF149979.1 [24], with the additional annotation of
the 5.8S sequence from GenBank accession: AM072801.1 [2].

In addition, to demonstrate a simple effect of KDCS normalization, we utilized the five
available ICL knockdown data sets from this study (NCBI Accession ID: PRJEB13116) [11].
After preprocessing the data as mentioned in the study, we chose four small RNA regions as
examples (They are regions of ND169 gene, as shown in the study) to quantify, and compare
their sRNA accumulation across samples using RAPID.
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Schizosaccharomyces pombe

We explored the 24h time point datasets of WT, and three different knockdowns of S.pombe
The respective data sets can be obtained by the accession ids: GEO:GSE89151; GSM2359756
- wt 24h; GSM2359762 - ago1D 24h; GSM2359768 - clr4D 24h; GSM2359774 - dcr1D 24h.
We processed the data as mentioned in the corresponding download pages, before subjecting
them to RAPID. We restricted our analysis to the sRNA-enriched genes available from their
supplement [15] which can be accessed from https://bit.ly/2GSLcks. After pre-processing
we subjected each GSM dataset to rapidStats, and compared them using rapidNorm.

Results

We show the application of RAPID on two different datasets, highlighting some features
that can be investigated by doing a standard RAPID analysis.

Comparison of Paramecium tetraurelia serotypes

P.tetraurelia is a unicellular, free-living ciliate commonly found in fresh-water lakes. They
show nuclear dimorphism, and have a wide range of phenotypes. These phenotypes depend
on an epigenetically controlled, mutually exclusive expression of members of a multigene fam-
ily called serotypes [6]. With a dimorphic nucleus and more than 11 serotypes, P.tetraurelia
sRNAs are involved in regulatory mechanisms at the post-transcriptional, and epigenetic
level [11, 6, 5].

Our first example is an analysis on four sRNA-seq datasets (ENA:PRJEB25903) from
wildtype serotypes (51A, 51B, 51D, and 51H) of P. tetraurelia. We were interested in sRNAs
produced in the rDNA cluster producing 17S, 5.8S, 25S ribosomal RNAs. A simple genomic
visualization of the different components of rDNA cluster regions we quantified can be seen
in Figure 2. We can observe from the strand-specific read distribution plots in Figure 2
that the regions, namely External Transcribed Spacer (ETS), Internal Transcribed Spacer
1(ITS1), and Internal Transcribed Spacer 2 (ITS2), which get excised in the processing of
polycistronic pre-rRNA, accumulate 23nt antisense small RNAs. It is known from yeast, that
rRNA maturation involves co-transcriptional endonucleolytic cleavage and highly concerted
trimming events to subsequently process the final rRNAs [13]. Our data here suggests that
in P. tetraurelia these elimination processes are associated with antisense siRNAs, possibly
produced from RNA-dependent RNA Polymerase activity.

The commands, and visualization of the case studies, can be found in the readthedocs
pages of RAPID at https://rapid-doc.readthedocs.io/en/latest/UseCases.html, and figures
can be reproduced with the help of supplementary material.

Normalization case study in Paramecium tetraurelia knock-
downs

One of the unique features of RAPID is the KDCS normalization that can correct for the
excess of sRNAs introduced in knockdown experiments in experimental approaches utilized
in many diverse organisms. To demonstrate the effect of KDCS normalization, we utilized
the ICL knockdown data sets from the study by [11]. This study investigates the molecular
mechanisms of different sets of trans-acting RNAi components in P. tetraurelia. ICL is a
gene in P. tetraurelia, which is not involved in the RNAi machinery. In the original study,
as a control the ICL gene is knocked down by introducing primary siRNAs against ICL (see
Methods). In our work, we quantified the sRNA read counts of four example sRNA regions
(which are in the original study, different constructs of the ND169 gene) from the mentioned
datasets. In this setup we expect that all datasets behave the same, as these are biological
replicates of the same system.
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Figure 1: The Pipeline of our tool RAPID is depicted. Green boxes are executables, Blue, and
orange boxes represent input, and output files respectively. The executable RAPID modules
are: (i) rapidStats module performs reference alignment and quantifies the expression of user-
defined genes and/or regions. (ii) rapidNorm facilitates sample (or gene) wise comparison of
genes/regions (or samples) after appropriate normalization. (iii) The rapidVis module provides
multiple visualizations representing the information obtained from rapidStats and rapidNorm.
Selective screenshots from the output of our case studies are shown in the boxes. (iv) rapidDiff
is the differential expression analysis module implementing DESeq2.
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As described earlier, very little is known about the localization, and expression variability
of endogenous small RNA loci in P. tetraurelia. Therefore, in these sRNA knockdown sam-
ples, normalization methods, such as DESeq2, may be inappropriate, due to the assumption
that the majority of regions are unchanged. We compared the effect of the TCS, DESeq2
and KDCS normalization approaches to using no normalization. We used the coefficient
of variation (CoV) to measure the performance of the normalization method (see Methods;
Equation 2) as normalization should reduce the variance in read count per region. A smaller
CoV suggests a better performance of the normalization method.

Figure 3 shows the CoV values of the raw, and normalized sRNA read counts, for four
example regions that had been studied by [11]. We can observe from Figure 3, that the
KDCS method performs better in all the regions, compared to the generic TCS method. It
also performs as good or better than the normalization of DESeq2 for this example. All
normalization approaches are better than using no normalization, which strongly argues for
their use. This experiment suggests that our KDCS method is a better alternative to the
TCS method and is applicable when few regions are known.

Analysis of Schizosaccharomyces pombe knockdowns

The fission yeast, or Schizosaccharomyces pombe, is another widely studied unicellular eu-
karyotic model organism, where RNAi pathways are prevalent. We explored the time point
datasets of WT, and three different knockdowns of S.pombe from the study by [15]. In this
study, the authors investigated quiescence associated changes in small RNA transcriptomes
and epigenetic modifications to identify the key players involved in quiescence. They also
examined the role of RNAi proteins, by knocking down three of them, namely, Ago1, Clr4,
and Dcr1. One of the key findings was that during quiescence in S.pombe, a set of sRNA-
enriched genes were identified as crucial elements for the survival of the organism [15]. We
explored these sRNA-enriched genes using RAPID, to demonstrate the discovering potential
of RAPID.

With a simple RAPID analysis comparing the different knockdown samples, it was easy
to screen for interesting properties in the data. We discovered that a subset of these sRNA-
enriched genes have relatively higher antisense ratio (ASR, see Methods Equation 3) (Fig-
ure 4). This increased ASR was observed in different sets of genes in various knockdowns.
The subgroup of genes with higher ASR, could play a cis-regulatory role to silence the
genes. While further investigation is necessary, our RAPID analysis (Figure 4) suggests an
involvement of different sRNA mechanisms in ensuring the survival of S.pombe in quiescence.

Discussion

The long list of available sRNA analysis tools attributes to the complexity, and importance
of sRNAs in biological studies. However, most available tools only focus on identifying, and
annotating the different classes of sRNA. They fail to characterize and visually represent
the multitude of parameters crucial for understanding the sRNA world.

RAPID is designed to capture the diverse eukaryotic siRNA characteristics innately found
in sRNA sequencing data sets. Some of the properties captured during the basic analysis
of RAPID include read length, strand bias, non-templated nucleotides, nucleotide content,
sequencing coverage etc. for user-defined sets of genes (or regions) of any reference genome.
With a separate module for normalization, RAPID simplifies multi-sample comparison. We
have also included an alternative normalization technique, KDCS, specially designed to aid
the comparison of sRNA-based knockdown studies. KDCS normalization method can also
be helpful in correcting for the transcribed small RNAs from the non-insert RNA locations
of a vector. For instance, in RNAi vector constructs, like L4440 in Caenorhabditis elegans,
due to lack of specificity of the termination enzyme, the non-insert RNA locations will get
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Figure 2: The read length distribution of small RNAs mapping to different regions of the ribo-
somal DNA is shown. Top: IGV screenshots of genomic localization of ribosomal DNA. Bottom:
Each row corresponds to each wildtype serotype (51A, 51B, 51D, 51H respectively). Each col-
umn corresponds to ribosomal DNA regions in order: External Transcribed Spacer (ETS), 17S,
Internal Transcribed Spacer 1(ITS1), 5.8S, Internal Transcribed Spacer 2 (ITS2), and 25S
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Figure 3: The effect of different normalization methods on sRNA regions (x-axis) studied in [11]
are assessed using the coefficient of variation (y-axis; lower is better) of the read counts obtained
from RAPID. Raw - No normalization; KDCS - KnockDown Corrected Scaling; TCS - Total
Count Scaling; DESeq2 - size factor-based normalization from DESeq2
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Figure 4: A heatmap of the antisense read ratio in the sRNA enriched genes (y-axis) across all
samples (x-axis) analyzed. Accumulation of antisense sRNA can be observed in the lower part
of the heatmap, and an increase in antisense sRNA can also be seen in different knockdowns
compared to wildtype.
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transcribed [29]. These regions which contribute unwanted variation can be excluded by
specifying them as background in the RAPID analysis.

RAPID currently addresses many features which are crucial towards the understanding
of sRNA biogenesis, and function. In spite of RAPID’s diverse functionality, there are a
few shortcomings. RAPID depends on user supplied set of contaminants instead of auto-
detecting it from the sequence file. The visualizations provided by RAPID in the statistics
mode do not include sequence level properties, like over represented sequences or sequence
logos, etc. These are interesting additions for future releases. In the comparison mode of
our visualization module, the plots provided are non-exhaustive. For instance, one might
like to compare the nucleotide content, or strand-based distribution of genes (or regions)
across multiple samples, or vice-versa. Such special features can be requested by users in
GitHub, which could be incorporated in further releases.

Conclusion

RAPID is an offline, open-source, user-friendly, and automated pipeline designed to simplify
sRNA data analysis. RAPID is not an exhaustive sRNA analysis or annotation pipeline.
With an available set of sRNA localizations, our tool can be used to analyze single or multiple
sRNA samples at ease with the aid of different normalization techniques. The diverse set
of visualizations generated by RAPID will enhance the understanding of any sRNA-based
study. RAPID is available for free use and can be used over the command line. It is available
at the github repository (https://github.com/SchulzLab/RAPID). A detailed user-tutorial
can be accessed from this repository.
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RAPID 3 3 3 3 3 x 3 3 3 3 3 3 3 3 x x x
smallRNA toolkit[21] x x 3 NA x 3 x x x x x x x x x x 3

sRNA toolbox[28] x x 3 NA 3 x x x x x x x x 3 3 x 3

Oasis[4] x x x x x x 3 3 x x x x 3 3 3 3 3

CPSS[31] x 3 x NA x 3 x x x x x x x x 3 3 3

iSmart[22] x x x NA 3 3 3 3 x x x x x 3 3 3 3

iSRAP[25] x 3 x NA 3 x 3 3 3 x x x x 3 x x x
PiPipes[12] 3 3 x NA 3 x x x x 3 3 x x 3 x x 3

ncPRO-Seq[7] x 3 3 NA 3 x x x x x x x x x 3 x 3

UEA sRNAworkbench [20] 3 3 3 x 3 x x x x x x x 3 3 x 3 x
NGSToolbox [27] x x 3 NA 3 x x x x x x x x x x x 3

SePIA [14] x 3 x NA 3 x x x x x x x x 3 x x 3

SPAR [16] x 3 x NA x 3 3 x x x x x x x x 3 3

Table 1: Comparison of RAPID with other tools is shown. 3- Feature supported, x - Feature
not supported, NA - Feature is not in the scope of this tool. For instance, Knockdown corrected
normalization feature is NA for CPSS, because it does not support multiple sample comparison.
The full description of the column headers are listed in Table 2. Note: Tools whose primary
focus is on identifying/annotating different classes of small RNAs are not included.
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Supporting Feature Description
Contaminant removal Is there an option to remove set of contaminants (mi-

crobial, ribosomal, etc.) from the read files?
Supports other aligners Does the tool support alignment files from other

tools, instead of performing their own alignment?
User-defined gene/region Could the user specify a list of regions to perform

downstream analysis?
Knockdown corrected normalization Does the tool enable multiple-sample comparison

by facilitating normalization techniques specific to
sRNA knockdown studies?

Offline Can the tool be used offline?
Hardcoded genomes Is the tool generic? i.e. Is the tool’s ability somehow

limited to a set of pre-defined genomes?
Quantitative, and Qualitative Plots Does the tool support informative plots to gain

understanding of the analyzed data (MDS=multi-
dimensional scaling, PCA= principal component
analysis)

Multi-sample comparison plots Does the tool provide a comprehensive view of mul-
tiple samples (not just differential analysis)? For in-
stance, how does the read distribution vary across
multiple samples in different genes of interest?

Differential analysis Is the tool equipped with modules to perform pair-
wise differential analysis?

Enrichment analysis support Is there any support to perform functional enrich-
ment within the tool

Interactive interface Does the tool have an interactive interface, or plots?
miRNA or piRNA specific? Is the tool specific to analyze miRNA or piRNA

only?

Table 2: Table describing the supporting features of RAPID (Column headers in Table 1).
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efficient RNAi and Cas9-based auto-cloning systems for C. elegans research. Nucleic
Acids Research, 46(17):e105–e105, 06 2018.

[30] Marc Sultan, Marcel H. Schulz, Hugues Richard, Alon Magen, Andreas Klingenhoff,
Matthias Scherf, Martin Seifert, Tatjana Borodina, Aleksey Soldatov, Dmitri Parkhom-
chuk, Dominic Schmidt, Sean O’Keeffe, Stefan Haas, Martin Vingron, Hans Lehrach,
and Marie-Laure Yaspo. A global view of gene activity and alternative splicing by deep
sequencing of the human transcriptome. Science, 321(5891):956–960, 2008.

[31] Changlin Wan, Jianing Gao, Huan Zhang, Xiaohua Jiang, Qiguang Zang, Rongjun Ban,
Yuanwei Zhang, and Qinghua Shi. CPSS 2.0: A computational platform update for the
analysis of small RNA sequencing data. Bioinformatics, 33(20):3289–3291, 2017.

[32] Kai Wang, Chun Liang, Jinding Liu, Huamei Xiao, Shuiqing Huang, Jianhua Xu, and
Fei Li. Prediction of piRNAs using transposon interaction and a support vector ma-
chine. BMC Bioinformatics, 15:419, 2014.

[33] Jinyu Wu, Qi Liu, Xin Wang, Jiayong Zheng, Tao Wang, Mingcong You, Zhong Sheng
Sun, and Qinghua Shi. MirTools 2.0 for non-coding RNA discovery, profiling and
functional annotation based on high-throughput sequencing. RNA Biology, 10(7):1087–
1092, 2013.

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 20, 2019. ; https://doi.org/10.1101/303750doi: bioRxiv preprint 

https://doi.org/10.1101/303750
http://creativecommons.org/licenses/by-nc-nd/4.0/

