Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Gene regulatory network reconstruction incorporating 3D chromosomal architecture reveals key transcription factors and DNA elements driving neural lineage commitment

Valeriya Malysheva, Marco Antonio Mendoza-Parra, Matthias Blum, View ORCID ProfileMikhail Spivakov, Hinrich Gronemeyer
doi: https://doi.org/10.1101/303842
Valeriya Malysheva
1Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Equipe Labellisée Ligue Contre le Cancer, Centre National de la Recherche Scientifique UMR 7104, Institut National de la Santé et de la Recherche Médicale U964, University of Strasbourg, Illkirch, France
2Regulatory Genomics Group, Nuclear Dynamics Programme, Babraham Institute, Cambridge CB22 3AT, UK
3Functional Gene Control Group, Epigenetics Section, MRC London Institute of Medical Sciences, London W12 0NN, UK
4Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London W12 0NN, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: v.malysheva@lms.mrc.ac.uk hg@igbmc.u-strasbg.fr
Marco Antonio Mendoza-Parra
1Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Equipe Labellisée Ligue Contre le Cancer, Centre National de la Recherche Scientifique UMR 7104, Institut National de la Santé et de la Recherche Médicale U964, University of Strasbourg, Illkirch, France
5UMR 8030 Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, University of Evry-val-d’Essonne, University Paris-Saclay, 91057 Évry, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Matthias Blum
1Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Equipe Labellisée Ligue Contre le Cancer, Centre National de la Recherche Scientifique UMR 7104, Institut National de la Santé et de la Recherche Médicale U964, University of Strasbourg, Illkirch, France
6European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mikhail Spivakov
2Regulatory Genomics Group, Nuclear Dynamics Programme, Babraham Institute, Cambridge CB22 3AT, UK
3Functional Gene Control Group, Epigenetics Section, MRC London Institute of Medical Sciences, London W12 0NN, UK
4Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London W12 0NN, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Mikhail Spivakov
Hinrich Gronemeyer
1Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Equipe Labellisée Ligue Contre le Cancer, Centre National de la Recherche Scientifique UMR 7104, Institut National de la Santé et de la Recherche Médicale U964, University of Strasbourg, Illkirch, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: v.malysheva@lms.mrc.ac.uk hg@igbmc.u-strasbg.fr
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

Abstract

Lineage commitment is a fundamental process that enables the morphogenesis of multicellular organisms from a single pluripotent cell. While many genes involved in the commitment to specific lineages are known, the logic of their joint action is incompletely understood, and predicting the effects of genetic perturbations on lineage commitment is still challenging. Here, we devised a gene regulatory network analysis approach, GRN-loop, to identify key cis-regulatory DNA elements and transcription factors that drive lineage commitment. GRN-loop is based on signal propagation and combines transcription factor binding data with the temporal profiles of gene expression, chromatin state and 3D chromosomal architecture. Applying GRN-loop to a model of morphogen-induced early neural lineage commitment, we discovered a set of driver transcription factors and enhancers, some of them validated in recent data and others hitherto unknown. Our work provides the basis for an integrated understanding of neural lineage commitment, and demonstrates the potential of gene regulatory network analyses informed by 3D chromatin architecture to uncover the key genes and regulatory elements driving developmental processes.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted April 24, 2019.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Gene regulatory network reconstruction incorporating 3D chromosomal architecture reveals key transcription factors and DNA elements driving neural lineage commitment
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Gene regulatory network reconstruction incorporating 3D chromosomal architecture reveals key transcription factors and DNA elements driving neural lineage commitment
Valeriya Malysheva, Marco Antonio Mendoza-Parra, Matthias Blum, Mikhail Spivakov, Hinrich Gronemeyer
bioRxiv 303842; doi: https://doi.org/10.1101/303842
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Gene regulatory network reconstruction incorporating 3D chromosomal architecture reveals key transcription factors and DNA elements driving neural lineage commitment
Valeriya Malysheva, Marco Antonio Mendoza-Parra, Matthias Blum, Mikhail Spivakov, Hinrich Gronemeyer
bioRxiv 303842; doi: https://doi.org/10.1101/303842

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Molecular Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (4224)
  • Biochemistry (9101)
  • Bioengineering (6749)
  • Bioinformatics (23935)
  • Biophysics (12086)
  • Cancer Biology (9491)
  • Cell Biology (13728)
  • Clinical Trials (138)
  • Developmental Biology (7614)
  • Ecology (11656)
  • Epidemiology (2066)
  • Evolutionary Biology (15476)
  • Genetics (10615)
  • Genomics (14292)
  • Immunology (9456)
  • Microbiology (22773)
  • Molecular Biology (9069)
  • Neuroscience (48840)
  • Paleontology (354)
  • Pathology (1479)
  • Pharmacology and Toxicology (2562)
  • Physiology (3822)
  • Plant Biology (8307)
  • Scientific Communication and Education (1467)
  • Synthetic Biology (2289)
  • Systems Biology (6170)
  • Zoology (1297)