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ABSTRACT 

 

Sleep is an essential human function but its regulation is poorly understood. 

Identifying genetic variants associated with quality, quantity and timing of sleep will 

provide biological insights into the regulation of sleep and potential links with 

disease. Using accelerometer data from 85,670 individuals in the UK Biobank, we 

performed a genome-wide association study of 8 accelerometer-derived sleep traits, 

5 of which are not accessible through self-report alone. We identified 47 genetic 

associations across the sleep traits (P<5x10-8) and replicated our findings in 5,819 

individuals from 3 independent studies. These included 26 novel associations for 

sleep quality and 10 for nocturnal sleep duration. The majority of newly identified 

variants were associated with a single sleep trait, except for variants previously 

associated with restless legs syndrome that were associated with multiple sleep 

traits. Of the new associated and replicated sleep duration loci, we were able to fine-

map a missense variant (p.Tyr727Cys) in PDE11A, a dual-specificity 3',5'-cyclic 

nucleotide phosphodiesterase expressed in the hippocampus, as the likely causal 

variant. As a group, sleep quality loci were enriched for serotonin processing genes 

and all sleep traits were enriched for cerebellar-expressed genes. These findings 

provide new biological insights into sleep characteristics.   
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INTRODUCTION 

 

Sleep is an essential human function, but many aspects of its regulation remain 

poorly understood. Adequate sleep is important for health and wellbeing, and 

changes in sleep quality, quantity and timing are strongly associated with several 

human diseases and psychiatric disorders1-5. Identifying genetic variants influencing 

sleep traits will provide new insights into the molecular regulation of sleep in humans 

and help to establish the genetic contribution to causal links between sleep and 

associated chronic diseases, such as diabetes and obesity6-10. 

 

Genome-wide association studies (GWAS) are an important first step towards the 

discovery of new biological mechanisms of complex traits. Previous large-scale 

genetic studies of sleep traits have relied on self-reported measures. For example, 

using questionnaire data from 47,180 individuals, the CHARGE consortium identified 

the first common genetic variant, near PAX8, robustly associated with sleep 

duration11. Subsequent studies in up to 128,286 individuals using the interim data 

release of the UK Biobank identified two additional sleep duration loci12,13 and a 

parallel analysis of the full UK Biobank release of 446,118 individuals identified a 

total of 78 associated loci (Dashti et al., BioRxiv 2018, 

https://doi.org/10.1101/274977). Genetic associations have also been identified for 

other self-reported sleep traits including chronotype12,14,15, insomnia, and daytime 

sleepiness13,16-18 (Jansen et al. BioRxiv 2018, https://doi.org/10.1101/214973 and 

Lane et al. BioRxiv 2018: https://doi.org/10.1101/257956). 

 

Although the reported associations revealed relevant pathways related to 

mechanisms underlying sleep regulation, in large scale studies self-report measures 

are typically based on a limited number of questions that only approximate a limited 

number of sleep traits and may be subject to bias related to an individual’s 

perception and recall of sleeping patterns19-23. Polysomnography (PSG) is regarded 

as the “gold standard” method of quantifying nocturnal sleep traits, but it is 

impractical to perform in large cohorts. Additionally, PSG is relatively burdensome for 

the participant making it less suitable for measuring sleep over multiple nights and 

capturing inter-daily variability. Research-grade activity monitors (accelerometers), 

also known as actigraphy devices, provide cost-effective estimates of sleep using 

validated algorithms24,25. However, accelerometer-based studies have often involved 

much smaller sample sizes than those required for GWAS and have generally 

focussed on day-time activity26,27. The UK Biobank study is a unique resource 
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collecting vast amounts of clinical, biomarker, and questionnaire data on ~500,000 

UK residents. Of these, 103,000 participants wore activity monitors continuously for 

up to 7 days. This provides an unprecedented opportunity to derive accelerometer-

based estimates of sleep quality, quantity and timing and to assess the genetics of 

sleep traits.  

 

In this study we identify genetic variants associated with objective measures of sleep 

and rest-activity patterns and use them to further understand the biology of sleep. 

We used accelerometer data from the UK Biobank to extract estimates of sleep 

characteristics using a heuristic method previously validated using independent PSG 

datasets28,29. We analysed a total of 8 accelerometer-based measures of sleep 

quality (sleep efficiency and the number of nocturnal sleep episodes), timing (sleep-

midpoint, timing of the least active 5 hours (L5), and timing of the most active 10 

hours (M10)), and duration (diurnal inactivity and nocturnal sleep duration and 

variability) by performing a GWAS in 85,670 UK Biobank participants and assess 

replication of the findings in 3 independent studies. Our analysis primarily focuses on 

traits that cannot be captured, or are unavailable, from self-report sleep measures, 

and are likely to be underpowered for GWAS in studies with PSG data due to limited 

sample sizes.  

 

RESULTS 

 

Measures of sleep quality and quantity are not correlated with sleep timing 

Descriptive statistics and correlations between the eight accelerometer-derived 

phenotypes are shown in Supplementary Tables 1 and 2. We observed little 

observational correlation (R) between measures of sleep timing and measures of 

nocturnal sleep duration and quality (-0.10 ≤ R ≤ 0.12). These negligible or limited 

correlations between timing and duration are consistent with data from chronotype 

and self-report sleep duration measures (R = -0.01). We also observed limited 

correlation between sleep duration and sleep quality as represented by the number 

of nocturnal sleep episodes (R = 0.14) but observed a stronger correlation between 

sleep duration and sleep efficiency (R = 0.57). The correlations between self-reported 

sleep duration and accelerometer-derived sleep duration was 0.19 and between self-

reported chronotype (“morningness”) and L5 timing was -0.29. 

 

Accelerometer-derived estimates of sleep patterns are heritable 
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To estimate the proportion of variance attributable to genetic factors for a given trait, 

we used BOLT-REML to estimate SNP-based heritability (h2
SNP) (Table 1). h2

SNP
 

estimates ranged from 2.8% (95% CI 2.0%, 3.6%) for variation in sleep duration 

(defined as the standard deviation of accelerometer-derived sleep duration across all 

nights), to 22.3% (95% CI 21.5%, 23.1%) for number of nocturnal sleep episodes. 

For sleep duration, we observed higher heritability using the accelerometer-derived 

measure (h2
SNP

 = 19.0%, 95% CI 18.2%, 19.8%) in comparison to self-report sleep 

duration (h2
SNP

 = 8.8%, 95% CI 8.6%, 9.0%). The heritability estimates for sleep and 

activity timings (maximum h2
SNP = 11.7%, 95% CI 10.9%, 12.5%) were lower than for 

self-report chronotype (h2
SNP = 13.7%, 95% CI 13.3%, 14.0%) (Jones et al. BioRxiv 

2018, https://doi.org/10.1101/303941). 

 

Low genetic correlation between self-reported and accelerometer-derived 

sleep duration 

To quantify the genetic contribution, overlap between accelerometer-derived and 

self-reported sleep traits, we performed genetic correlation analyses using LD-score 

regression as implemented in LD-Hub30. We observed strong genetic correlations 

between L5, M10 and sleep midpoint timing and chronotype (rG>0.79) and weaker 

genetic correlation between objective versus self-reported sleep duration (rG=0.43). 

This observation suggests differences in the genetic contribution to variation in self-

reported versus objective sleep duration. 

 

Forty-seven genetic associations identified across the accelerometer-derived 

sleep traits  

To identify genetic loci associated with accelerometer-derived sleep traits, we 

performed a genome-wide association analysis of 11,977,111 variants in up to 

85,670 individuals for the 8 accelerometer-derived sleep traits. We identified 47 

genetic associations across 7 of the phenotypes at the standard GWAS threshold 

(P<5x10-8). Among these associations, 20 reached a more stringent threshold of 

P<8x10-10. We estimate that this threshold reflects a better type 1 error rate to 

account for the approximate number of independent genetic variants analysed 

(Jones et al. BioRxiv 2018, https://doi.org/10.1101/303941) against all 8 

accelerometer-based traits (Table 2 and Supplementary Figs 1-2). Twenty-six 

associations were observed for sleep quality measures, including 21 variants 

associated with number of nocturnal sleep episodes and 5 associated with sleep 

efficiency (8 and 2 at P<8x10-10, respectively). An additional 8 genetic associations 

were identified for sleep and activity timing. These included 6 associated with L5 
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timing, 1 associated with M10 timing, and 1 associated with mid-point sleep. Only 3 

associations with L5 timing were detected at P<8x10-10. Finally, for sleep duration we 

observed 13 associations – 11 for sleep duration and 2 associated with diurnal 

inactivity (6 and 1 at P<8x10-10, respectively). Of these 47 associations reaching 

P<5×10-8 and the 20 associations reaching P<8×10-10, 31 and 9 were not previously 

reported in studies based on self-report measures, respectively (Table 2). The 

variance explained by all the discovered loci ranged from 0.04% for sleep midpoint 

timing to 0.8% for number of nocturnal sleep episodes. The lambda GC observed 

across these analyses ranged from 1.03 (sleep duration variability) to 1.14 (number 

of nocturnal sleep episodes), while LD-Score intercepts ranged from 1.03 (diurnal 

inactivity) to 1.07 (sleep midpoint timing). These results suggest that any inflation of 

test statistics observed is more likely to due to the polygenicity of the phenotype 

tested over and above population stratification. 

 

Replication of 47 genetic associations in 5,819 individuals 

We attempted to replicate our findings in up to 5,819 adults from the Whitehall 

(N=2,144), CoLaus (N=2,257), and Rotterdam Study (subsample from RS-I, RS-II 

and RS-III, N=1,418) who had worn similar wrist-worn tri-axial accelerometer devices 

for a comparable duration as the UK Biobank participants. Individual study and meta-

analysis results for the three replication studies are presented in Supplementary 

Table 3. Of the 20 associations reaching P<8x10-10, 18 were directionally consistent 

in the replication cohort meta-analyses (Pbinomial = 3x10-4). Of the additional 27 

signals, 18 were directionally consistent in the replication meta-analysis (Pbinomial = 

0.03). For traits with more than one SNP associated at P<5×10-8 in the UK Biobank, 

we combined the effects of each SNP (aligned to the trait increasing allele) and 

tested them in the replication data. In the combined effects analysis, we observed 

overall associations with sleep duration (P=0.008), sleep efficiency (P=3×10-4), 

number of nocturnal sleep episodes (P=2×10-6), and sleep timing (P=0.034) 

(Supplementary Tables 3 and 4). 

 

Variants associated with sleep quality include known restless legs syndrome, 

sleep duration, and cognitive decline associated variants  

Of the 5 variants associated with sleep efficiency, one was the strongly associated 

PAX8 sleep duration signal11 and one was a restless legs syndrome/insomnia 

associated signal (MEIS1)17,31. Of the 20 loci associated with number of nocturnal 

sleep episodes, one is represented by the APOE variant (rs429358). This variant is a 
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proxy for the APOE ε4 risk allele that is strongly associated with late-onset 

Alzheimer’s disease and cognitive decline32. The ε4 allele is associated with a 

reduced number of nocturnal sleep episodes (-0.13 sleep episodes; 95% CI: -0.16, -

0.11; P=4x10-8). This finding is strengthened by additional analyses of the ε2, ε3 and 

ε4 APOE Alzheimer’s disease risk alleles, with an overall reduction in the number of 

nocturnal sleep episodes observed with higher risk haplotypes (F(5, 72578)=5.36, 

P=0.001)  (Supplementary Table 5). This finding is inconsistent with the 

observational association between cognitive decline in older age and poorer sleep 

quality33-36. We also noted that the APOE ε4 risk allele was nominally associated 

(P<0.05) with sleep timing (L5, -1.8 minutes per allele, P=4x10-6; sleep-midpoint (-0.6 

minutes per allele; P=0.002), sleep duration (-1.1 minutes per allele, P=7x10-4), and 

diurnal inactivity (-1.0 minutes per allele, P=2x10-5). Apart from the APOE variant 

(rs429358), which had double the effect size in the older half of the cohort 

(Supplementary Table 5), there were minimal differences in effect sizes in a range 

of sensitivity analyses, including removing individuals on sleep or depression 

medication, adjustments for BMI and lifestyle factors, and splitting the cohort by 

median age (Supplementary Table 6 and Supplementary Methods). 

 

Six association signals identified for accelerometer-derived measures of sleep 

timing  

We identified 6 loci associated with L5 timing, of which 3 have not previously been 

associated with self-report chronotype but have been associated with restless legs 

syndrome31. The index variants at these 3 loci are in strong to modest LD with the 

previously reported variants associated with restless legs syndrome (rs113851554, 

MEIS1, LD r2 = 1.00; rs12991815, C1D, LD r2 = 0.96; rs9369062, BTBD9, LD r2 = 

0.49). The three variants that reside in loci previously associated with self-report 

chronotype are in strong to modest linkage disequilibrium with those previously 

reported12,14,15 (rs1144566, RSG16, LD r2 > 0.91; rs12927162 TOX3, LD r2 = 1.00; 

rs4882315, ALG10B, LD r2 = 0.58). The variant rs1144566 is a missense coding 

change (p.His137Arg) in exon 5 of RSG16, a known circadian rhythm gene which 

contains the variants strongly associated with self-report chronotype12. In a parallel 

self-report chronotype study in the UK Biobank, rs1144566 represented the strongest 

association, with the T allele having a morningness odds ratio of 1.26 (P=2x10-95) 

(Jones et al. BioRxiv 2018, https://doi.org/10.1101/303925). In addition, variants in 

the region of TOX3 have previously been associated with restless legs syndrome31. 

However, our lead SNP (rs12927162) was not in LD with the previously reported 
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index variant at this locus (rs45544231, LD r2 = 0.004). There were minimal 

differences in effect sizes when we performed a range of sensitivity analyses, 

including removing individuals on depression medication, adjustments for BMI and 

lifestyle factors and splitting the cohort by median age (Supplementary Table 6 and 

Supplementary Methods). 

 

Ten novel sleep duration loci identified from accelerometer-derived sleep 

duration GWAS 

We identified 11 loci associated with accelerometer-derived sleep duration, including 

ten not previously reported to be associated with self-report sleep duration, despite 

the 5-fold increase in sample size available for a parallel self-report sleep duration 

GWAS study (Dashti et al. BioRxiv 2018, https://doi.org/10.1101/274977; Figure 1 

and Supplementary Table 7). This lower overlap in signals is consistent with the 

lower genetic correlation between self-reported and objective sleep duration than 

between chronotype and objective measures of sleep and activity timing. The lead 

variants representing the ten new sleep duration loci all had the same direction and 

larger effects in the accelerometer data compared to self-report data, with effect 

sizes ranging from 1.3 to 5.9 minutes compared to 0.1 to 0.8 minutes (self-report 

P<0.05), with the MEIS1 locus having the strongest effect. Two of the ten new sleep 

duration signals (rs113851554 in MEIS1 and rs9369062 in BTBD9) have previously 

been associated with restless legs syndrome. The one variant previously detected 

based on self-report sleep duration, near PAX8, was the first variant to be associated 

with sleep duration through GWAS11. The minor PAX8 allele effect size was 

consistent across accelerometer-derived measures of sleep duration (2.7 minutes 

per allele, 95% CI: 2.1 to 3.3, P=3x10-21) and self-report sleep duration (2.4 minutes 

per allele, 95% CI: 2.1 to 2.8, P=7x10-49). We observed similar effect sizes in a 

subset of 72,510 unrelated Europeans from the UK Biobank, when removing 

individuals on depression medication and after adjusting for BMI and lifestyle factors. 

To confirm that associations were not influenced by age-related differences in sleep, 

we confirmed that there was also no difference in effect sizes between younger and 

older individuals (above and below the median age of 63.7 years) (Supplementary 

Table 6).  

 

Fine-mapping analysis identifies multiple likely causal variants 

To identify credible SNP sets likely to contain causal variants within 500Kb of lead 

SNPs (log10 Bayes Factor > 2) for each trait with a genetic association (P<5x10-8) we 

used FINEMAP37 (Supplementary Table 8). Two loci contained a coding variant with 
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a probability greater than 80% for being the causal variant. The first variant 

(rs17400325, MAF = 4.2%) was a missense variant (p.Tyr727Cys) in PDE11A, a 

phosphodiesterase highly expressed in the hippocampus that was associated with 

sleep duration and sleep efficiency. The other was the missense APOE variant 

representing the e4 allele, known to predispose to Alzheimer’s disease, which was 

associated with the number of nocturnal sleep episodes. Of the remaining loci, 5 fine-

mapped variants are eQTLs in the Genotype-Tissue Expression (GTEx) project38. Of 

these only the fine-mapped variant at the CLUAP1 locus was the lead variant for the 

corresponding eQTL (Supplementary Table 8). CLUAP1 is a gene previous 

associated with photoreceptor maintenance that is associated with number of 

nocturnal sleep episodes39. 

 

Associated loci are enriched for genes expressed in the cerebellum and 

serotonin pathway-related genes 

We used MAGMA40 to assess tissue enrichment of genes at associated loci across 

the sleep traits. All traits showed an enrichment of genes in the cerebellum 

(Supplementary Figures 3 and 4). Loci associated with number of nocturnal sleep 

episodes were enriched for genes involved in serotonin pathways (PBonferroni=0.0003) 

(Supplementary Table 9).  

 

Multiple sleep traits have genetic variants previously associated with restless 

legs syndrome 

We observed most variants to be associated with either sleep quality, duration, or 

timing, but not combinations of these sleep characteristics. However, the variant 

rs113851554 at the MEIS1 locus was associated with sleep quality (sleep efficiency), 

duration, and timing (L5). In addition, the variant rs9369062 at the BTBD9 locus was 

associated with both sleep duration and L5 timing. Both variants have previously 

been reported as associated with restless legs syndrome (Figure 2). To follow up 

this observation, we performed Mendelian Randomisation using 20 variants 

associated with restless legs syndrome in the discovery stage of the most recent and 

largest genome-wide association study31. We tested these 20 variants against all 8 

activity-monitor derived sleep traits and showed a clear causative association of 

restless legs syndrome with all sleep traits. We also observed a causative 

association of restless legs syndrome with self-report sleep duration and chronotype, 

suggesting that variants associated with restless legs syndrome were not artefacts of 

the accelerometer-derived measures of sleep (Supplementary Table 10). 
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Waist-hip-ratio (adjusted for BMI) and educational attainment causally 

influence sleep outcomes. 

Given genetic correlations are generally similar to observational correlations41, we 

used genetic correlations to prioritise traits for subsequent Mendelian Randomisation 

analyses. Using LD-Hub30 we tested for genetic correlation between the 8 activity 

monitor derived measures and 234 published GWAS studies across a range of 

diseases and traits. After adjustment for the number of genetic correlations tested (8 

x 234), we observed genetic correlations between sleep traits and obesity and 

educational attainment related traits (Supplementary Table 11). After adjusting for 

the number of tests in the bi-directional MR analysis (99), we observed evidence that 

higher waist-hip-ratio (adjusted for BMI) is causally associated with lower sleep 

duration (PIVW = 5x10-6) and lower sleep efficiency (PIVW = 3x10-4). In addition, we 

observed higher educational attainment to be causally associated with lower sleep 

duration (PIVW = 5x10-5) (Supplementary Table 12). We observed no evidence of 

causal effects of accelerometer-based sleep traits on outcomes tested 

(Supplementary Table 13). 

 

Estimates of the effects on accelerometer-derived and self-report-derived sleep 

traits are correlated 

We compared effects of variants associated with self-reported sleep duration and 

chronotype identified in parallel GWAS analyses. Overall, we observed directional 

consistency with the accelerometer-derived measures. In a parallel GWAS of self-

reported sleep duration in 446,118 individuals from the UK Biobank, we identified 78 

associated loci at P<5x10-8 (Dashti et al. BioRxiv 2018, 

https://doi.org/10.1101/274977). Sixty-seven (85.9%) of these SNPs were 

directionally consistent between the self-report and activity monitor derived sleep 

duration GWAS (Pbinomial = 6x10-11; Figure 3 and Dashti et al. BioRxiv 2018, 

https://doi.org/10.1101/274977). Furthermore, in a parallel report (Jones et al. 

BioRxiv 2018, https://doi.org/10.1101/303925) we have shown that of the 341 lead 

variants at self-reported chronotype loci, 310 (90.9%) had a consistent direction of 

effect for accelerometer-derived midpoint-sleep (Pbinomial = 5x10-59), 316 (92.7%) with 

L5 timing (Pbinomial = 3x10-65) and 310 (90.9%) with M10 timing (Pbinomial = 5x10-59; 

Jones et al. BioRxiv 2018, https://doi.org/10.1101/303925). Figure 4 shows a scatter 

plot of self-reported associated chronotype effects against L5 timing effects.  

 

DISCUSSION 
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Our analysis presents the first large-scale GWAS of multiple sleep traits estimated 

from accelerometer data using our validated activity-monitor sleep algorithm28,29. We 

have identified 47 genetic associations at P<5×10-8 across 7 traits representing sleep 

duration, quality and timing. These loci included 10 novel variants for sleep duration 

and 26 for sleep quality not detected in larger studies of self-reported sleep traits.  

 

 

Of the novel associated loci, a low frequency (MAF=4.2%) missense variant 

(p.Tyr727Cys) at the PDE11A locus (rs17400325) was associated with sleep 

duration and sleep efficiency. The variant was associated with sleep duration 

(P=0.004) in the meta-analysis of the replication cohort. Fine-mapping provided a 

high probability (>90%) that this is the causal variant at the locus. This variant has 

previously been associated with migraine and near-sightedness in a scan of 42 traits 

from 23andMe42. In the UK Biobank the variant was not associated with migraine 

(P=0.44), consistent with the latest migraine meta-analysis where it was not amongst 

the associated loci43, but was associated with myopia (P=9x10-10). The allele which 

associates with reduced risk of myopia is associated with increased sleep efficiency 

and duration. Protein truncating variants in PDE11A have been suggested to cause 

adrenal hyperplasia44; however, one of these variants (R307X, rs76308115) is 

present at 0.5% frequency in the UK Biobank (with 11 rare allele homozygotes) and 

is not associated with sleep efficiency (P=0.99) or duration (P=0.54). This suggests 

that if Tyr727Cys PDE11A is the causal variant at this locus then it is an activating 

mutation. PDE11A is expressed in the hippocampus and it has been suggested as a 

potential biological target for interventions in neuropsychiatric disorders45.  

 

Our analysis identified variants in loci that were enriched for genes involved in the 

serotonin pathway - the strongest pathway associated with sleep quality. 

Serotonergic transmission plays an important role in sleep cycles46,47. High levels of 

serotonin are associated with wakefulness and lower levels with sleep. Furthermore, 

serotonin is synthesized by the pineal gland as a processing step for melatonin 

production, a key hormone in circadian rhythm regulation and sleep timing. Melatonin 

is frequently taken as a dietary supplement in the United States with its use more 

than doubling between 2007 and 201248, although clinical trial results for sleep and 

circadian rhythm disorders are mixed49. In addition, excess melatonin levels can also 

lead to disturbed sleeping and other health issues with the American Academy of 

Sleep Medicine recommending avoiding melatonin for chronic insomnia50. 
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A subset of variants previously associated with restless legs syndrome were 

associated with sleep duration, quality and timing measures. This observation is 

unlikely to be an artefact caused by limb movements during sleep because we found 

that the same variants are associated with self-report measures of sleep duration, 

chronotype and insomnia. Therefore, it seems likely that we are detecting how 

restless legs syndrome can influence sleep. In the UK Biobank, restless legs 

syndrome was only identified through the Hospital Episodes Statistics (HES) data 

using the ICD-10 code “G25.8” (“Other specified extrapyramidal and movement 

disorders”), the parent category of the more specific “G25.81” code (“Restless legs 

syndrome”). Under the assumption that all individuals reporting “G25.8” had restless 

legs, we observed 38 individuals within our accelerometer subset. Removing these 

individuals did not change our conclusions. Studies with more in-depth phenotyping 

of sleep disorders are needed to more fully evaluate the contribution of RLS to sleep 

traits. 

 

Our Mendelian Randomization analysis also provides some evidence of a causative 

effect of higher waist-hip-ratio (adjusted for BMI) on lower sleep duration and lower 

sleep efficiency. This suggests that fat distribution plays a role in sleep, although 

there was also a nominal causative association with BMI which also suggests a 

general role of overall adiposity. We also observed evidence of a causative 

association between higher educational attainment and lower sleep duration. Both 

the adiposity and educational attainment MR results were robust to a range of MR 

sensitivity analyses (Supplementary Table 12). We did not observe evidence of a 

causal effect of accelerometer-derived sleep variables on genetically correlated 

traits. This may be due to the relatively limited power because of the relatively small 

number of genetic instruments available. 

 

Our data provide strong evidence that some accelerometer-derived measures of 

sleep provide higher precision than self-report measures, whilst for others there is 

little gain through objective measurement with questionnaire data being just as 

effective. For example, of the 11 accelerometer-based sleep duration loci we 

identified, only one (the PAX8 variant) had been previously identified in self-reported 

sleep duration GWAS despite these studies having much larger sample sizes. 

Variants with nominal evidence of association with self-reported sleep duration had 

weaker effects. This difference may be due to reporting biases related to the UK 

Biobank questionnaire (e.g. response was in hourly increments) and due to asking 

participants to include nap-time in their sleep duration. In contrast the accelerometer 
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derived estimates of L5 timing, the least active 5 hours of the day, correlated well 

with self-report estimates. These data suggest that the answer to the very simple 

question “are you a morning or evening person” provides similar power as wearing 

accelerometers for 7 days and nights. In a parallel GWAS analysis, the PAX8 variant 

was also associated with self-report insomnia (Lane et al. BioRxiv 2018: 

https://doi.org/10.1101/257956). In addition, five of the loci were nominally 

associated (P<0.05) with either self-report sleep-duration or insomnia. At least two of 

the sleep duration signals have been previously associated with mental health 

disorders including schizophrenia and migraine42,51.  

 

The Alzheimer’s disease risk allele at the APOE locus was seen to have apparently 

paradoxical associations with sleep related traits. Given the well-established 

association between the ε4 allele and greater risk of Alzheimer’s disease, we would 

not expect associations between this allele and higher sleep quality considering 

previously observed associations of sleeping patterns with cognitive decline and 

Alzheimer’s disease4. A similar paradoxical association was also reported recently in 

a study of over 2,300 men aged over 65 with overnight PSG data that showed the 

total time in stage N3 sleep was higher for individuals carrying two copies of ε4 

compared with those carrying one or zero copies52. Furthermore, a recent genetic 

study of physical activity also identified a paradoxical association between the ε4 

allele and increased levels of physical activity (Klimentidis et al, BioRxiv 2017, 

https://doi.org/10.1101/179317). The more likely explanations for these associations 

we suggest are ascertainment and survival bias. The UK Biobank participants ranged 

from 44 to 79 years of age when wearing the accelerometer devices. Older UK 

Biobank participants, with the highest risk of cognitive decline with an ε4/ε4 

haplotype and agreeing to an accelerometer-based experiment could be protected 

from cognitive decline because of selection bias due to other factors53. Consistent 

with this potential bias, the ε4 allele association with reduced numbers of nocturnal 

sleep episodes is stronger in older age. For example, when splitting individuals by 

median age, the per allele effect on number of sleep episodes was twice that of the 

older versus younger group. 

 

There are some limitations to this study. First, a sleep diary was not collected by the 

UK Biobank participants, a traditional tool to guide the start and end timing of 

nocturnal sleep episodes, commonly used in actigraphy studies. We have developed 

and used an open source method to overcome the lack of a sleep diary that has 
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been validated against polysomnography28,29 to estimate sleep onset and waking up 

time. However, as no sleep diary data exists it is hard to define bedtime prior to 

sleep, resulting in the inability to characterise phenotypes such as sleep onset 

latency (the time between going to bed and falling asleep). Second, the activity 

monitors were worn up to 10 years from when baseline data was collected. Despite 

this, the correlation between self-report and activity measures of sleep duration was 

consistent with previous studies, and the correlation did not differ based on time 

between baseline (self-report time) and accelerometer wear when splitting by time-

difference deciles (r = -0.03, P = 0.94). Third, due to relatively small sample sizes of 

replication studies, we had limited power to replicate associations identified in the UK 

Biobank. The variance explained by individual variants in the UK Biobank ranged 

from 0.03% to 0.19%, for which we had <63% power to detect at a statistical 

threshold of P=0.001 (accounting for 47 tests) in the meta-analysis of 4,401 

individuals. However, we observed an enrichment for directional consistency in effect 

estimates in the replication meta-analysis and in combined-effects analyses identified 

associations for sleep duration, sleep efficiency, number of nocturnal sleep episodes 

and sleep timing. Finally, the UK Biobank participants are not representative of the 

UK population, as participants had a higher socio-economic status overall and were 

healthier, on average, given the prevalence of diseases amongst the participants53,54. 

This was particularly true of the participants who took part in the activity monitor 

study. 

 

In conclusion, we have performed the first large-scale GWAS of objective sleep 

measures. We demonstrate that self-report measures are good proxies for objective 

sleep measures, but use of objectively measures of sleep quality allowed us to 

identify additional loci not identified by previous self-report GWAS studies including 

potential new therapeutic targets for poor sleep. 
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METHODS 
 
Data availability 

The full set of GWAS summary statistics for all eight accelerometer-based measures 

are available at http://www.t2diabetesgenes.org/data/. 

 

UK Biobank participants  

The study population was drawn from the UK Biobank study – a longitudinal 

population-based study of individuals living in the UK54. Analyses were based on 

individuals estimated to be of European ancestry. European ancestry was defined 

through the projection of UK Biobank individuals into the principal component space 

of the 1000 Genomes Project samples55 and subsequent clustering based on a K-

means approach, centering on the means of the first 4 principal components.  

 

Genetic Data 

Imputed genetic data was downloaded from the UK Biobank (Bycroft, et al. BioRxiv 

2017, https://doi.org/10.1101/166298). We limited our analysis to 11,977,111 genetic 

variants imputed using the Haplotype Reference Consortium imputation reference 

panel with a minimum minor allele frequency (MAF) > 0.1% and imputation quality 

score (INFO) > 0.3.  

 

Activity-monitor Devices 

A triaxial accelerometer device (Axivity AX3) was worn between 2.8 and 9.7 years 

after study baseline by 103,711 individuals from the UK Biobank for a continuous 

period of up to 7 days. Details of data collection and processing have been 

previously described56. Of these 103,711 individuals, we excluded 11,067 individuals 

based on activity-monitor data quality. This included individuals flagged by UK 

Biobank as having data problems (field 90002), poor wear time (field 90015), poor 

calibration (field 90016), or unable to calibrate activity data on the device worn itself 

requiring the use of other data (field 90017). Individuals were also excluded if 

number of data recording errors (field 90182), interrupted recording periods (field 

90180), or duration of interrupted recoding periods (field 90181) was greater than the 

respective variable’s 3rd quartile + 1.5×IQR. Phenotypes determined using the SPT-

window (all phenotypes except L5 and M10 timing) had additional exclusions based 

on short (<3 hours) and long (>12 hours) mean sleep duration and too low (<5) or too 

high (>30) mean number of sleep episodes per night (see below). These additional 

exclusions were to ensure that individuals with extreme (outlying), and likely 
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incorrect, sleep characteristics were not included in any subsequent analyses. A 

maximum of 85,670 individuals remained for our analyses.  

 

Accelerometer data processing and sleep measure derivations 

We derived 8 measures of sleep quality, quantity and timing. All measures were 

derived by processing raw accelerometer data (.cwa). We first converted the .cwa 

files available from the UK Biobank to .wav files using “omconvert” for signal 

calibration to gravitational acceleration56,57 and interpolation56. The .wav files were 

processed with the open source R package GGIR29 

(http://doi.org/10.5281/zenodo.1175883 (Version v1.5-17)) to infer accelerometer 

non-wear time58, and extract the z-angle across 5-second epochs from the time-

series data for subsequent use in estimating the sleep period time window29 and 

sleep episodes within it28.  

 

Sleep period time window (SPT-window). The SPT-window was estimated using a 

validated algorithm previously described29 and implemented in the GGIR R package. 

Briefly, for each individual, median values of the absolute change in estimated z-

angle (representing the dorsal-ventral direction when the wrist is in the anatomical 

position) across 5-minute rolling windows were calculated across a 24-hour period, 

chosen to make the algorithm insensitive to accelerometer orientation. The 10th 

percentile was incorporated into the threshold distinguishing movement from non-

movement. Bouts of inactivity lasting ≥30 minutes are recorded as inactivity bouts. 

Inactivity bouts that are <60 minutes apart are combined to form inactivity blocks. 

The start and end of the longest block defined the start and end of the SPT-window. 

  

Sleep duration and variability. Sleep episodes within the SPT-window were defined 

as periods of at least 5 minutes with no change larger than 5° associated with the z-

axis of the activity-monitor, as motivated and described in van Hees et al. (2015). 

The summed duration of all sleep episodes was used as indicator of sleep duration 

within the SPT-window. The total duration over the activity-monitor wear-time was 

averaged. Individuals with an average sleep duration <3 hours or >12 hours were 

excluded from all analyses. In addition, the standard deviation of sleep duration was 

also calculated and put forward for statistical analysis for individuals with 7 days of 

accelerometer wear. 
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Sleep efficiency. This was calculated as sleep duration (defined above) divided by 

the time elapsed between the start of the first inactivity bout and the end of the last 

inactivity bout (which equals the SPT-window duration).  

 

Number of nocturnal sleep episodes within the SPT-window.  

This was defined as the number of sleep episodes within the SPT-window. 

Individuals with an average number of nocturnal sleep episodes ≤5 or ≥30 were 

excluded from all analyses. 

 

Least active 5 hours (L5) timing. The mid-point of the least-active 5 hours (L5) of 

each day were defined as the 5-hour period with the minimum average acceleration. 

These periods were estimated using a rolling 5-hour time window. The midpoint was 

defined as the number of hours elapsed since the previous midnight (for example, 

7pm = 19 and 2am = 26). Days with <16 hours of valid-wear time (as estimated by 

GGIR) were excluded from L5 estimates. 

 

Most-active 10 hours (M10) timing. The mid-point of the most-active 10 hours (M10) 

of each day were defined as the 10-hour period with the maximum average 

acceleration. These periods were estimated using a rolling 10-hour time window. The 

midpoint was defined as the number of hours elapsed since the previous midnight. 

Days with <16 hours of valid-wear time (as estimated by GGIR) were excluded from 

M10 estimates. 

 

Sleep-midpoint timing. Sleep midpoint was calculated for each sleep period as the 

midpoint between the start of the first detected sleep episode and the end of the last 

sleep episode used to define the overall SPT-window (above). This variable is 

represented as the number of hours from the previous midnight.  

 

Diurnal inactivity. Diurnal inactivity was estimated by the total daily duration of 

estimated bouts of inactivity that fell outside of the SPT-window. This measure 

captures very inactive states such as napping and wakeful rest but not inactivity such 

as sitting and reading or watching television, which are associated with a low but 

detectable level of movement. 

 

Comparison against self-reported sleep measures 

We performed analyses of self-reported measures of sleep. Self-reported measures 

analysed included a) the number of hours spent sleeping over a 24-hour period 
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(including naps); b) insomnia; c) chronotype – where “definitely a ‘morning’ person”, 

“more a ‘morning’ than ‘evening’ person”, “more an ‘evening’ than a ‘morning’ 

person”, “definitely an ‘evening’ person” and “do not know”, were coded as 2, 1, -1, -2 

and 0 respectively, in our continuous variable. 

 

Statistical Analysis 

Genome-wide association analyses. We performed all association tests in the UK 

Biobank using BOLT-LMM v2.359, which applies a linear mixed model (LMM) to 

adjust for the effects of population structure and individual relatedness, and enables 

the inclusion of all related individuals in our white European subset, boosting our 

power to detect associations. This meant a sample size of up to 85,670 individuals, 

as opposed to a maximal set of 72,696 unrelated individuals. Prior to association 

testing, phenotypes were first adjusted for age at accelerometry, sex, study centre, 

and season when activity monitor worn (categorical). All phenotypes except sleep 

duration variation were also adjusted for the number of measurements used to 

calculate each participant’s measure (number of L5/M10 measures for L5/M10 

timing, number of days for diurnal inactivity and number of nights for all other 

phenotypes). At runtime, association tests included genotyping array (categorical; 

UKBileve array, UKB Axiom array interim release and UKB Axiom array full release) 

as a covariate. 

 

SNP-based heritability analysis. We estimated the pseudo-heritability of the eight 

derived accelerometer traits using BOLT-REML (version 2.3.1)59. We used 524,307 

high-quality genotyped single nucleotide polymorphisms (SNPs) (bi-allelic; MAF 

≥1%; HWE P>1x10-6; non-missing in all genotype batches, total missingness <1.5% 

and not in a region of long-range LD60) to build the relatedness model and thus to 

estimate heritability. For LD structure information, we used the default 1000 

Genomes ‘LD-Score’ table provided with the BOLT-REML software. 

 

Gene-set, tissue expression enrichment, and overlap with GWAS-catalog analyses.  

Gene-set analyses and tissue expression analyses were performed using MAGMA40 

as implemented in the online Functional Mapping and Annotation of Genome-Wide 

Association Studies (FUMA) tool61. Analysis of differentially expressed genes was 

based on data from GTEx v6 RNA-seq data62. Enrichment analyses of the overlap 

with associations previously reported through GWAS was also implemented 

through FUMA. Enrichment P-values for the proportion of overlapping genes 

present was based on the NIH GWAS catalog63. 
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Fine-mapping association signals 

Fine-mapping analyses were performed using FINEMAP v1.237 using the 

software’s shotgun stochastic search function and by setting the maximum number 

of causal SNPs at each locus to 20. At each locus, we included only those with 

P<0.01 and within 500Kb either side of the index variant to limit the number of 

SNPs in the analysis. We constructed the LD matrix by calculating the Pearson 

correlation coefficient for all SNP-SNP pairs using SNP dosages derived from the 

unrelated European subset of the full UK Biobank imputed genotype probabilities 

(N=379,769). We considered a SNP to be causal if it’s log10 Bayes factor was 

greater than 2, as recommended in the FINEMAP manual 

(http://www.christianbenner.com/index_v1.2.html). 

 

Alamut annotation and eQTL mapping 

We performed variant annotation of our fine-mapped loci using Alamut Batch v1.8 

(Interactive Biosoftware, Rouen, France) using all default options and genome 

assembly GRCh37. For each annotated variant, we retained only the canonical 

(longest) transcript and reported the variant location, coding effect and the 

predicted local splice site effect. To investigate whether the fine-mapped SNPs 

were eQTLs, we searched for our SNPs in the single-tissue cis-eQTL dataset (v7), 

available at the GTEx portal (https://www.gtexportal.org/home/datasets) for 

significant SNP-gene eQTL associations. We reported a SNP as an eQTL for a 

gene if the SNP-gene association was significant for at least one tissue. 

 

Replication of findings. Associations reaching P<5x10-8 were followed up in the 

CoLaus, Whitehall and Rotterdam studies. The GENEActiv accelerometer was 

used by the CoLaus and Whitehall studies and worn on the wrist by the 

participants. In the CoLaus study, 2,967 individuals wore the accelerometer for up 

to 14 days. Of these, 10 were excluded because of insufficient data, 234 excluded 

as non-European, and a further 148 were excluded due to an average sleep 

duration of less than 3 hours or more than 12 hours. A total of 2,575 individuals 

remained for analysis of which 2,257 had genetic data. In the Whitehall study, 

2,144 were available for analysis, with the GENEActiv accelerometer worn for up 

to 7 days having performed the same exclusions. The Rotterdam Study used the 

Actiwatch AW4 accelerometer device (Cambridge Technology Ltd.). Genetic 

association analysis was based on imputed data (where available) and performed 

using standard multiple linear regression. Overall summary statistics were 
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obtained through inverse-variance based meta-analysis implemented in METAL64. 

Combined variant effects on respective traits were subsequently calculated using 

the ‘metan’ function in STATA using the betas and standard errors obtained 

through the primary meta-analysis of the three replication studies. 

 

Sensitivity Analysis. To assess whether stratification was responsible for any of the 

individual variant associations in a subset of the cohort, we performed multiple 

sensitivity analyses in unrelated European subsets of the UK Biobank using STATA. 

The sensitivity analyses carried out were: 1) males only, 2) females only 3) 

individuals younger than the median age (at start of the activity monitor wear period), 

4) individuals older than the median age, 5) adjustment for body mass index (BMI) 

(UK Biobank data field 21001), 6) adjusting for BMI and lifestyle factors and 7) 

excluding individuals working shifts, taking medication for sleep or psychiatric 

disorders, self-reporting a mental health or sleep disorder, or diagnosed with 

depression, schizophrenia, bipolar disorder, anxiety disorders or mood disorder in 

the HES data (see Supplementary Methods). The sensitivity analyses were 

performed by regressing the phenotype against the variant dosage, adjusting for the 

same covariates as described for the BOLT-LMM GWAS and additionally adjusting 

for the first 5 principal components to account for population structure. All exclusions 

and adjustments were made using baseline records (taken at the assessment 

centre). 

 

Mendelian Randomisation (MR). We performed two-sample MR, using the inverse 

variance weighted approach65 as our main analysis method, and MR-Egger65, 

weighted median estimation66 and penalised weighted median estimation66 as 

sensitivity analyses in the event of unidentified pleiotropy of our genetic instruments. 

MR results may be biased by horizontal pleiotropy, i.e. where the genetic variants 

that are robustly related to the exposure of interest independently influence the 

outcome, through association with another risk factor for the outcome. IVW assumes 

that there is either no horizontal pleiotropy (under a fixed effect model) or, if 

implemented under a random effects model after detecting heterogeneity amongst 

the causal estimates, that (i) the strength of association of the genetic instruments 

with the risk factor is not correlated with the magnitude of the pleiotropic effects, and 

(ii) the pleiotropic effects have an average value of zero. MR-Egger provides 

unbiased causal estimates if just the first condition above holds, by estimating and 

adjusting for non-zero mean pleiotropy. The weighted median approach is valid if 

less than 50% of the weight in the analysis stems from variants that are pleiotropic 
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(i.e. no single SNP that contributes 50% of the weight or a number of SNPs that 

together contribute 50% should be invalid because of horizontal pleiotropy). Given 

these different assumptions, if all methods are broadly consistent, our causal 

inference is strengthened. 

 

In an effort to reduce the number of genetic instruments violating the above 

assumptions, we used a newly-described method (Bowden et al. BioRxiv 2017, 

http://dx.doi.org/10.1101/159442) to quantify, using a new iterative weighting method, 

each instrument’s contribution to heterogeneity of the causal IVW estimate. High 

heterogeneity in Cochran’s Q statistic, which should follow a ����
�  distribution for n 

instruments, indicates that either invalid (horizontally-pleiotropic) instruments have 

been included or that MR modelling assumptions have been violated. We therefore 

excluded variants with an extreme Cochran’s Q greater than the Bonferroni corrected 

threshold (���� �  ����.�
/�,�
� � prior to performing MR analysis. 
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Tables and Figures 

 

Table 1. Pseudo-heritability estimates of derived sleep variables from BOLT-

REML 

 

Sleep variable h2 95% CI 

Sleep duration 0.190 0.182 – 0.198 

Sleep duration variability (SD) 0.028 0.020 – 0.036 

Number of nocturnal sleep episodes 0.223 0.215 – 0.231 

Sleep efficiency  0.130 0.122 – 0.138 

L5 timing 0.117 0.109 – 0.125 

M10 timing 0.087 0.079 – 0.095 

Sleep midpoint timing 0.101 0.093 – 0.109 

Diurnal Inactivity 0.148 0.134 – 0.161 
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Table 2. Summary statistics for 47 genetic associations identified in the UK Biobank reaching P<5×10-8 

 

TRAIT SNP Chr BP (hg19) 
E/O 

Allele 
EA 

Freq BETA SE P Gene Region 
L5 timing rs1144566 1 182,569,626 C/T 0.970 0.096 0.014 8E-12 RGS16/RNASEL 
L5 timing rs113851554 2 66,750,564 T/G 0.057 0.133 0.011 2E-35 MEIS1* 
L5 timing rs12991815 2 68,071,990 C/G 0.424 0.029 0.005 2E-09 C1D* 
L5 timing rs9369062 6 38,437,303 A/C 0.708 0.039 0.005 9E-14 BTBD9* 
L5 timing rs4882315 12 38,458,906 T/C 0.507 0.027 0.005 2E-08 CPNE8/ALG10B 
L5 timing rs12927162 16 52,684,916 G/A 0.277 0.029 0.005 3E-08 TOX3* 
M10 timing rs1973293 12 38,679,575 C/T 0.481 0.029 0.005 1E-09 CPNE8/ALG10B 
Sleep duration rs2660302 1 98,520,219 A/T 0.811 0.041 0.006 9E-12 DPYD 
Sleep duration rs113851554 2 66,750,564 G/T 0.943 0.110 0.011 2E-25 MEIS1* 
Sleep duration rs62158170 2 114,082,175 G/A 0.217 0.054 0.006 3E-21 PAX8 
Sleep duration rs17400325 2 178,565,913 T/C 0.958 0.066 0.012 2E-08 PDE11A 
Sleep duration rs72828540 6 19,102,286 T/C 0.752 0.041 0.005 1E-13 LOC101928519 
Sleep duration rs9369062 6 38,437,303 C/A 0.292 0.033 0.005 2E-10 BTBD9* 
Sleep duration rs2975734 8 10,090,097 C/G 0.561 0.027 0.005 1E-08 MSRA 
Sleep duration rs13282541 8 41,723,550 C/T 0.739 0.032 0.005 4E-09 ANK1 
Sleep duration rs2880370 8 105,987,057 A/T 0.670 0.028 0.005 2E-08 LRP12/ZFPM2 
Sleep duration rs800165 12 67,645,219 C/T 0.343 0.028 0.005 3E-08 CAND1 
Sleep duration rs10138240 14 63,353,479 G/C 0.514 0.029 0.005 7E-10 KCNH5 
Sleep midpoint rs11892220 2 231,691,067 T/A 0.339 0.029 0.005 3E-08 CAB39 
Sleep efficiency rs113851554 2 66,750,564 G/T 0.943 0.101 0.011 5E-22 MEIS1* 
Sleep efficiency rs62158169 2 114,081,827 T/C 0.216 0.032 0.006 2E-08 PAX8 
Sleep efficiency rs17400325 2 178,565,913 T/C 0.958 0.074 0.012 2E-10 PDE11A 
Sleep efficiency rs13094687 3 52,450,043 G/A 0.315 0.029 0.005 1E-08 PHF7 
Sleep efficiency rs13080973 3 138,596,050 G/A 0.202 0.032 0.006 3E-08 FOXL2 
No. sleep episodes rs12714404 2 282,462 T/G 0.283 0.037 0.005 1E-12 ACP1/SH3YL1 
No. sleep episodes rs310727 3 4,336,589 T/C 0.475 0.026 0.005 3E-08 SUMF1/SETMAR 
No. sleep episodes rs55754932 3 87,847,754 C/A 0.284 0.037 0.005 2E-12 HTR1F 
No. sleep episodes rs9864672 3 137,076,353 T/C 0.522 0.029 0.005 2E-10 IL20RB/SOX14 
No. sleep episodes rs4974697 4 2,473,092 T/A 0.390 0.026 0.005 5E-08 RNF4 
No. sleep episodes rs7377083 4 102,708,997 A/C 0.430 0.029 0.005 2E-09 BANK1 
No. sleep episodes rs749100 5 63,307,862 A/G 0.582 0.033 0.005 9E-12 HTR1A/RNF180 
No. sleep episodes rs9341399 6 73,773,644 C/T 0.936 0.066 0.010 6E-12 KCNQ5 
No. sleep episodes rs1889978 6 124,771,233 C/T 0.485 0.027 0.005 5E-09 NKAIN2 
No. sleep episodes rs2141277 7 39,099,178 A/G 0.478 0.026 0.005 1E-08 POU6F2 
No. sleep episodes rs10233848 7 103,122,645 G/A 0.293 0.035 0.005 2E-11 RELN 
No. sleep episodes rs1124116 10 99,371,147 A/G 0.730 0.031 0.005 2E-09 HOGA1/MORN4 
No. sleep episodes rs4755731 11 43,685,168 G/A 0.431 0.028 0.005 3E-09 HSD17B12 
No. sleep episodes rs3751837 16 3,583,173 C/T 0.781 0.033 0.006 4E-09 CLUAP1 
No. sleep episodes rs8045740 16 20,262,776 G/T 0.868 0.052 0.007 6E-14 GPR139 
No. sleep episodes rs11078917 17 37,746,359 A/C 0.279 0.029 0.005 3E-08 NEUROD2 
No. sleep episodes rs11082030 18 35,501,739 T/C 0.725 0.030 0.005 8E-09 CELF4 
No. sleep episodes rs8098424 18 52,458,218 G/A 0.619 0.027 0.005 1E-08 RAB27B 
No. sleep episodes rs76753486 19 42,684,264 T/C 0.084 0.047 0.008 2E-08 DEDD2/ZNF526 
No. sleep episodes rs429358 19 45,411,941 T/C 0.848 0.036 0.007 4E-08 APOE 
No. sleep episodes rs12479469 20 61,145,196 A/G 0.342 0.031 0.005 4E-10 MIR133A2 
Diurnal inactivity rs17805200 9 13,764,434 C/T 0.272 0.031 0.005 5E-09 MPDZ/NFIB 
Diurnal inactivity rs7155227 14 63,365,094 T/G 0.523 0.033 0.005 2E-12 KCNH5 

 

CHR=chromosome; BP=base-pair position (GRCh37/hg19); EA/OA=effect allele/other allele, EA Freq=effect allele frequency; 

SE=standard error; L5 timing=midpoint of least active 5 hours; M10 timing=midpoint of most active 10 hours; No. sleep 

episodes=number of nocturnal sleep episodes; * locus previously reported for Restless Legs Syndrome31. 

  

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 13, 2018. ; https://doi.org/10.1101/303925doi: bioRxiv preprint 

https://doi.org/10.1101/303925
http://creativecommons.org/licenses/by/4.0/


 

Figure 1. Comparisons of betas for 11 genetic variants associated with 

accelerometer-derived sleep duration against betas from a parallel GWAS of self-

report sleep duration.  
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Figure 2. Comparison of betas for genetic variants associated with a) either L5 

timing or sleep duration, b) either sleep duration or the number of nocturnal sleep 

episodes, and c) either L5 timing or sleep quality (number of nocturnal sleep 

episodes or sleep efficiency). Variants previously associated with restless legs 

syndrome are highlighted in red. Betas represent standard deviations of the inverse-

normal distribution of each trait. 
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Figure 3. Comparisons of betas for 78 genetic variants associated with self-report 

sleep duration in a parallel GWAS effort (Dashti et al, BioRvix, 2018, 

https://doi.org/10.1101/274977). 
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Figure 4. Correlations of genetic effect estimates based on self-report chronotype 

meta-analysis versus activity monitor midpoint sleep estimated from L5 timing for a) 

351 variants identified from self-report chronotype GWAS and b) 6 variants identified 

for L5 timing from accelerometer derived estimates 
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Supplementary Tables 

 

Supplementary Table 1. Descriptive statistics of sleep and activity measures 

derived from accelerometer data. Units for L5 timing, M10 timing, sleep duration, 

sleep duration variation (SD), sleep midpoint and diurnal inactivity are in hours. Sleep 

efficiency is a ratio and number of sleep episodes is a count. 

 

Supplementary Table 2: Spearman’s rank correlation statistics for activity monitor 

derived sleep traits and self-report hours slept and self-report chronotype (coded for 

increased morningness). 

 

Supplementary Table 3. Association statistics for the 47 signals discovered in UKB 

Biobank in the Whitehall and CoLaus and Rotterdam I, II, and III replication cohorts. 

Meta-analysis of the results across the studies are also provided. Grey cells indicate 

data unavailable from particular study.  

 

Supplementary Table 4. Analysis of the combined genetic effects from 

Supplementary Table 3 within the Whitehall, CoLaus and Rotterdam replication 

studies. 

 

Supplementary Table 5. Averages of the mean number of nocturnal sleep episodes 

detected within individuals in the UK Biobank split by APOE Alzheimer's disease risk 

haplotypes and lower/upper age groups. 

 

Supplementary Table 6. Results from sensitivity analyses performed for the 47 

signals reaching P<5x10-8 in the UK Biobank. All analyses were performed in a set of 

unrelated European where individuals from related pairs were removed at random. 

Association tests were carried out for all phenotypes on both the raw scale and 

inverse-normalised scale. Sensitivity analysis included: 1) in males only, 2) in 

females only, 3) in those lower than median age at actigraphy (63.7 years), 4) in 

those greater than or equal to the median age, 5) in all European unrelated but 

adjusting for BMI in addition to standard adjustments, 6) in all European unrelated 

but also adjusting for BMI and lifestyle factors, and 7) excluding those reporting shift 

work, having self-report or hospital-recorded mental health or sleep disorders, and 

those taking anxiolytic, antipsychotic, antidepressant or sleep medication. Lifestyle 

adjustments for analysis (6) and exclusions for analysis (7) are described in greater 

detail in the Supplementary Methods. 
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Supplementary Table 7. Association result cross-tabulation against other traits for 

the 47 SNPs representing genetic associations reaching P<5×10-8 in UK Biobank. 

Cross-tabulation also includes results based on the latest self-report chronotype 

meta-analyses (Jones et al., BioRxiv 2018, https://doi.org/10.1101/303925), self-

report Insomnia GWAS (Lane et al., BioRxiv 2018, https://doi.org/10.1101/257956) 

and sleep duration GWAS in UK Biobank are also provided. 

 

Supplementary Table 8. Fine-mapped loci with at least one "plausible" variant 

(log10 Bayes' Factor > 2) with variant annotations from GTEx and Alamut. 

 

Supplementary Table 9. MAGMA Gene-Set Analysis for SNPs associated with 

disturbed sleep based on number of nocturnal sleep episodes reaching Bonferroni 

significance. 

 

Supplementary Table 10. Results from Mendelian Randomization (MR) analyses of 

Restless Legs Syndrome exposure against multiple outcomes using 4 methods: 1) 

using Inverse-variance (IV) weighted MR, 2) Egger MR, 3) Weighted Median (WM) 

MR. 4) Penalised-weighted mean (PWM).  

 

Supplementary Table 11. Genetic correlation results for the 8 accelerometer-

derived sleep traits against 234 LD Hub phenotypes, ordered by P-value. P-values 

reaching Bonferroni significance (P<0.05/(8*234)) in bold. 

 

Supplementary Table 12. Mendelian Randomization analyses testing causality of 

seven genetically correlated traits on accelerometer-based sleep outcomes. 

 

Supplementary Table 13. Mendelian Randomization analyses testing causality of 

four accelerometer-based sleep exposures on genetically correlated traits. Sleep 

exposures with <3 genome-wide associations at P<5x10-8 or with <3 genetic 

instruments available in published datasets (highlighted grey) were excluded from 

this analysis. 
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