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Abstract 

The major depressive disorder (MDD) working group of the Psychiatric Genomics Consortium 

(PGC) has published a genome-wide association study (GWAS) for MDD in 130,664 cases, 

identifying 44 risk variants. We used these results to investigate potential drug targets and 

repurposing opportunities. We built easily interpretable bipartite drug-target networks integrating 

interactions between drugs and their targets, genome-wide association statistics and genetically 

predicted expression levels in different tissues, using our online tool Drug Targetor 

(drugtargetor.com). We also investigated drug-target relationships and drug effects on gene 

expression that could be impacting MDD. MAGMA was used to perform pathway analyses and 

S-PrediXcan to investigate the directionality of tissue-specific expression levels in patients vs. 

controls. Outside the major histocompatibility complex (MHC) region, 25 druggable genes were 

significantly associated with MDD after multiple testing correction, and 19 were suggestively 

significant. Several drug classes were significantly enriched, including monoamine reuptake 

inhibitors, sex hormones, antipsychotics and antihistamines, indicating an effect on MDD and 

potential repurposing opportunities. These findings require validation in model systems and 

clinical examination, but also show that GWAS may become a rich source of new therapeutic 

hypotheses for MDD and other psychiatric disorders that need new - and better - treatment 

options. 
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Introduction 

There is an urgent need for new drugs to better treat major depressive disorder (MDD), with new 

modes of action as well as fewer side effects. The Psychiatric Genomics Consortium (PGC) has 

conducted a genome-wide association study (GWAS) of more than 130,664 MDD and broader 

depression cases and 330,470 controls identifying 44 loci associated with depression.1 Much new 

biology is suggested by these findings and we hypothesize that the collection of loci discovered 

by GWAS may have the potential to restart largely paused drug development pipelines. This is 

not without considerable technical challenges. At the moment, time-consuming manual 

assessment by expert biologists and geneticists is required for each GWAS locus. Analyzing all 

genome-wide results together may allow better prioritization of potential drug or therapeutic 

hypotheses.2, 3 

GWAS associations between single nucleotide polymorphisms (SNPs) and MDD can be 

used to assess the association of each gene or sets of genes, such as those defined by biological 

pathways. Pathway analysis has also been used to suggest new drug hypotheses by mapping 

drugs to the proteins they bind, and defining the sets of genes that encode the proteins as “drug 

gene-sets” whose association with a phenotype of interest can be estimated.2, 4 This process is a 

type of drug repositioning analysis aimed at finding potential new uses for existing drugs.2 In this 

paper, we propose to mine drug-protein/gene interactions from two main sources: drug-target 

relationships or “activity profiles”2 and drug effects on gene expression or “perturbagen 

signatures”.5 Activity profiles can be derived from several databases such as PubChem 

BioAssays6 or ChEMBL,7 while the main source for perturbagen signatures is the CMAP 

database.5 Instead of using these resources separately, they can be used together to identify 
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relevant drugs. However, simply generating the association between drug gene-sets and 

phenotypes is not enough; each gene-set is a subnetwork with different interaction types between 

drugs and proteins. Visualising these interactions could allow better and more rapid prioritization 

of drug gene-sets. 

For this purpose, it may be useful to translate both activity profiles and perturbagen 

signatures into bipartite drug-target interaction networks. These can be constructed by linking 

drug nodes to targets nodes where the links or edges represent the type of drug-target interaction. 

Maggiora et al.8 suggested that these networks could be used to assess drug polypharmacology - 

the ability of drugs to interact with several targets - as well as target polyspecificity - the ability 

of targets to exhibit affinity towards multiple dissimilar molecular compounds.  

In this paper, we build drug-target networks relevant to a given phenotype (MDD), by 

using the results from a well-powered PGC MDD GWAS for imputation of tissue-specific 

expression levels in patients vs. controls, and to generate genetic associations of known drug 

targets with MDD. We also present a network visualization tool - available at drugtargetor.com - 

which provides the opportunity to build networks linking these genetic data with a large number 

of drugs and drug classes, allowing detailed assessment of drug action possibly impacting MDD. 
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Materials and Methods 

Genome-wide association study of major depressive disorder 

The PGC MDD phase 2 analysis1  was a combined analysis of an anchor cohort of traditionally 

ascertained MDD cases (16,823 MDD cases and 25,632 controls)1 and an expanded cohort of 

more diversely assessed depression cases (113,841 MDD cases and 304,838 controls). A 

combination of polygenic scoring and linkage disequilibrium (LD) score genetic correlation 

comparisons between the anchor and expanded cohorts and samples showed strong evidence for 

genetic homogeneity between these groups.1 SNPs, insertions and deletions were imputed using 

the 1000 Genomes Project multi-ancestry reference panel.10 Association analyses were 

performed within each cohort using imputed marker dosages and principal components as 

covariates to account for population stratification. Principal components analysis was used to 

determine ancestry from genotyped SNPs.11 Summary statistics for 10,468,942 autosomal SNPs 

were then available for the analyses we present. 

 

Gene-based test of association 

We used MAGMA v1.0612 to perform a gene-based test of association with the MDD GWAS 

summary statistics. Briefly, MAGMA generates gene-based p-values by combining adjacent 

SNP-based p-values within a defined gene window while accounting for LD. SNPs were mapped 

to genes if they were located 35 kb upstream or 10 kb downstream of a gene body including 

regulatory regions, and the gene p-value is obtained using the “multi=snp-wise” option, which 

aggregates mean and top SNP association models. A Bonferroni p-value threshold of 2.63 x 10-6, 
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accounting for 19,079 ENSEMBL genes, was used to account for multiple testing. We used 1000 

Genomes European data phase 3 as the reference LD set10.  

 

Transcriptome-wide association 

To assess the impact of genetic variation underlying MDD on gene expression, we performed a 

transcriptome-wide association study (TWAS) using the S-PrediXcan software13. This approach 

estimates gene expression weights by training a linear prediction model in samples with both 

gene expression and SNP genotype data. The weights are then used to predict gene expression 

from GWAS summary statistics, while incorporating the variance and covariance of SNPs from a 

LD reference panel. We used pre-computed gene expression weights for 10 brain tissues 

(anterior cingulate cortex, caudate nucleus, cerebellar hemisphere, cerebellum, cortex, frontal 

cortex, hippocampus, hypothalamus, nucleus accumbens, and putamen) generated from the 

Genotype-Tissue Expression (GTEx) Consortium,14 and whole blood using the Depression 

Genes and Networks (DGN) cohort.15 The 1000 Genomes European data phase 3 was used as the 

reference LD set.10 These data were processed with beta values and standard errors from the 

MDD GWAS summary statistics to estimate the expression-GWAS association statistic. A 

transcriptome-wide significance threshold of  P = 1.25 x 10-6, adjusting for all GTEx brain tissue 

and DGN associations (Bonferroni correction 0.05/39,936), was used to adjust for multiple 

testing. 

 

Definition of the druggable genome 
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We used 4,479 genes estimated to be “druggable” by Finan et al.16 (henceforth referred to as the 

“druggable genome”); they divided these genes into three “tiers” based on their importance in 

pharmaceutical development: tier 1 (targets of approved/clinical trial drugs), tier 2 (similar to tier 

1 proteins or targeted by drug-like molecules), and tier 3 (proteins with lower similarity to tier 1 

proteins, secreted or extracellular proteins, main druggable families). In the gene-based tests of 

association, genes were investigated regardless of their druggable status; however, we only used 

druggable genes to build drug-target networks. Information on genes with human or mouse 

phenotypes were also collected from the human-mouse disease connection database (HDMC), 

which gathers mouse data from Mouse Genome Informatics database (MGI)17 and human data 

from the National Center for Biotechnology Information (NCBI) and Online Mendelian 

Inheritance in Man (OMIM).18 

 

 

Definition of drug-target and drug-gene interactions 

We collected two types of drug interactions: activity profiles (drug-target interactions) and 

perturbagen signatures (drug-gene interactions). Drug-target interactions are defined as any type 

of interaction between a drug and a protein target. Drug-gene interactions are changes in gene 

expression induced by a drug. We built an annotation dataset using interaction profiles from the 

drug-gene interaction database DGIdb v2.0,19 ChEMBL v.237, 20, the psychoactive drug-gene 

database PDSP Ki DB,  PHAROS,21 NCBI PubChem BioAssay,22 and DSigDB16, 23 (downloaded 

in June 2017), which also contains CMAP data. We subset experimental data from the 

annotation dataset to generate a more reliable curated dataset, discarding data from textmining 
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approaches. The broad annotation set was used for all analyses and to annotate drug-target 

networks, while the curated subset was used to check which drug classes were enriched when 

restricting analyses to experimental data. A description of the bioactivities curation approach is 

provided in Supplementary Text 1.  

 

Enrichment of drug gene-sets and therapeutic classes  

Approved drugs and their Anatomical Therapeutic Chemical (ATC) codes were identified by 

mapping all drug names to their PubChem compound identifier (CID) using the PubChem 

synonym database (ftp.ncbi.nlm.nih.gov/pubchem/Compound/Extras/CID-Synonym-filtered.gz), 

then mapping each CID to the corresponding ATC codes. The drugs were merged by ATC name, 

which could correspond to several CID entries and ATC codes. Each drug was then mapped to a 

gene-set using the collected drug-gene and drug-target interactions, and assigned a p-value 

generated by competitive pathway analysis (MAGMA), assessing the association between drug 

gene-set and phenotype. For the annotation set, 1946 drugs corresponding to 1738 individual 

gene-sets were tested; for the more reliable curated set, 1547 drugs were mapped to 1282 gene-

sets. For each ATC hierarchical level, enrichment curves were drawn by ranking drug gene-sets 

by their association with MDD. The area under the enrichment curve (AUC) and associated p-

value from Wilcoxon rank tests were used to evaluate the enrichment of drug classes for both 

annotation and curated sets separately. 

 

Bipartite drug-target networks 
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Bipartite drug-target networks were built using our online tool Drug Targetor 

(drugtargetor.com), presented here for the first time. The tool builds networks using two input 

files: a drug table with drug-phenotype associations and a target table with target-phenotype 

associations (cf. Figure 1). The drug-phenotype associations were obtained using the MAGMA 

and S-PrediXcan results, and the target-phenotype interactions were collected as described in the 

data collection section (cf. “Definition of drug-target and drug-gene interactions”). The networks 

are comprised of drug nodes and target nodes, the edges of which are connected based on the 

type of interaction. Drug Targetor defines nine types of drug-target interactions: increasing gene 

expression, decreasing gene expression, mixed (increasing or decreasing) gene expression, 

agonist/activator/positive allosteric modulator, partial agonist, antagonist/inhibitor/negative 

allosteric modulator, modulator (neither negative nor positive), inverse agonist, and mixed 

bioactivities (unknown or both agonist and antagonist). The drug nodes and target nodes are 

respectively ordered by decreasing association with MDD in -log10(P) units, where P is the 

pathway analysis p-value for drugs (MAGMA pathway analysis) and the gene-level p-value for 

targets (MAGMA gene-wise analysis). The predicted effects on gene expression in ten brain 

regions and whole blood are provided for each target. 

 

 

RESULTS 

 

Gene-based tests of association 
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We used MAGMA to map SNP-level association to individual genes, and filtered the data based 

on druggability (cf. “Definition of the druggable genome”). A total of 41 druggable genes 

achieved genome-wide significance  (MAGMA P < 2.63 x 10-6), of which 25 were located 

outside the major histocompatibility complex (MHC) region (Table 1), and a further 21 genes 

(19 outside the MHC region) had suggestive significance (P < 2.63 x 10-5) (cf. Supplementary 

Tables 1-2).  

To gain insight into the potential functional consequences of DNA sequence variation 

underlying MDD, we imputed gene expression using S-PrediXcan. Overall, 35 protein-coding 

genes (16 outside the MHC) were significantly up- or downregulated in whole blood or brain 

(Supplementary Table 3). In whole blood, we found a significant association between MDD 

and the expression of two druggable genes outside the MHC region: NEGR1 (Z = 7.35, P = 2.03 

x 10-13) and ESR2 (Z = -5.43, P = 5.66 x 10-8). The expression of two additional MHC druggable 

genes in whole blood –BTN1A1 (Z = -5.91, P = 3.38 x 10-9) and BTN3A2 (Z = 5.31, P = 1.12 x 

10-7)– was also associated with MDD. Within GTEx brain tissues, the expression of the MHC 

druggable genes BTN3A2 (upregulation in all brain regions), its paralog BTN3A3 

(downregulation in cerebellar hemisphere), and HIST1H4I (downregulation in anterior cingulate 

cortex and nucleus accumbens) were significantly associated with MDD. We also found nominal 

evidence (cf. Supplementary Tables 1-2) for the upregulation of DRD2 and NEGR1 in brain 

cortex, HTR1D in the caudate and cortex, MARK3 in the cerebellar hemisphere and 

hippocampus, downregulation of LINGO1 in the cerebellum, and DHODH in the frontal cortex. 

S-PrediXcan predictions in different tissues are not always concordant - for example, MDD is 
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associated with decreased MARK3 expression in whole blood and increased expression in brain 

regions. 

 

Drug classes and their drug-target networks 

We tested for the enrichment of MDD GWAS association signals within major therapeutic 

classes defined by ATC code. To correct for multiple testing and allow us to explore more 

hypotheses, we used the Benjamini and Hochberg false discovery rate (FDR)24 to adjust p-

values. A total of 19 drug classes (FDR q-value < 0.05; Figure 2 and Supplementary Table 4) 

were enriched for MDD GWAS association signals, of which five remained FDR-significant 

after restricting the analyses to experimentally validated drug-target and drug-gene interaction 

data (curated set). These included targets of psycholeptics (ATC code N05, P = 4.05 x 10-7), 

antipsychotics (N05A, P = 7.44 x 10-6), and non-selective monoamine reuptake inhibitors 

(N06AA, P = 6.72 x 10-4), highlighting the potential utility of MDD GWAS data for drug 

compound discovery and repositioning, but also targets of antihistamines (R06A, P = 4.67 x 10-

6) and sex hormones and modulators of the genital system (G03, P = 1.98 x 10-3). 

Bipartite drug-target networks, which provide an insight into the mode of action for drugs 

and their putative targets, were built for each significant drug class (Supplementary Figures 1-

17), only including druggable genes which were FDR-significant for MDD. We prioritised 

targets with highly significant gene associations from MAGMA and annotated the results with 

phenotype information from the human-mouse disease connection (HDMC) database in Table 2. 

Four patterns occur most often among Bonferroni-significant drug classes: dopamine receptor 

D2 antagonism/agonism (DRD2), serotonin receptor 5-HT1D antagonism/agonism (HTR1D), 
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calcium channels (CACNA2D1 and CACNA1H, CACNA1C being only FDR-significant) 

modulation and antagonism, and estrogen receptor ER-β (ESR2) modulation. Other patterns seen 

for FDR-significant drug classes include: cholinergic/acetylcholine receptor M3 antagonism 

(CHRM3), estrogen receptor ER-α (ESR1) modulation, GABA-A receptor agonism and 

antagonism (subunits encoded by GABRA1, GABRG3, GABRA6), histamine H1 receptor 

antagonism (HRH1),  and glutamate receptor 1 antagonism (GRIA1). A detailed description of 

druggable targets and their interactions is provided in Supplementary Text 2. 

 

Potential repurposing candidates  

The top individual drugs from pathway analyses that have interaction with significant or 

suggestive targets (Figure 3) are pregabalin (N03A), nitrendipine (C08C), alizapride (A03F), 

quinagolide (G02C), cyclandelate (C04A), gabapentin (N03A), gepirone (N06A), mesoridazine 

(N05A), and levonorgestrel (G03A). Pregabalin and gabapentin are calcium channel modulators, 

nitrendipine is a calcium channel blocker, alizapride and mesoridazine are dopamine receptor D2 

antagonists, and quinagolide is a D2 agonist. Cyclandelate is a calcium channel inhibitor, 

gepirone (an antidepressant) targets D2, and levonorgestrel has an inhibitory effect on sex 

hormone binding globulin (SHBG). Other potentially more interesting candidates can be found 

by visualizing each enriched drug class in a bipartite drug-target interaction network (cf. 

Supplementary Figures 1-17 and Discussion). 
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Discussion 

Most antidepressants are only partially effective and not all patients respond to these treatments, 

which also have frequent side effects that contribute to reduced treatment adherence.25 Therefore, 

the antidepressant suitable for the individual patient is mostly chosen based on its efficacy and 

side effect profile in a strenuous and time-consuming process. Using the largest available 

GWAS, we conducted systematic analyses for associations of MDD with known drug targets and 

drug classes. We find that 19 drug classes based on the ATC classification are enriched for 

associations in the MDD GWAS data, amongst which are antidepressants, antipsychotics as well 

as sex hormones and antishistamines. We visualise and explore these drug classes using our new 

tool Drug Targetor (drugtargetor.com), which displays bipartite drug-target networks for MDD 

that integrate genetic association and imputed gene-expression information.  

 

We identified association patterns for MDD concentrated around key drug target hubs, including 

calcium channels, dopamine, serotonin, histamine and GABA receptors, as well as the 

predominantly female sex hormone estrogen. Many of the top druggable genes encode subunits 

of voltage-dependent calcium channels expressed in the brain (CACNA2D1, CACNA1H, 

CACNA1C), or are receptors of neurotransmitters and their subunits, such as GABA (GABRA1, 

GABRG3, GABRA6), acetylcholine (CHRM3), glutamate (GRIA1, GRM5, GRM8, GRIK5), 

serotonin (HTR1D) and dopamine (DRD2). These neurotransmitter receptors are targeted by 

many drugs included in the psycholeptics, psychoanaleptics, analgesics and anesthetics drug 

classes, many of which are already approved for the treatment of MDD.   
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The enrichment of calcium channels confirms that calcium channel blockers such as verapamil 

may provide repurposing opportunities for MDD,26 although their effects on blood pressure may 

prove problematic.27 Pregabalin and gabapentin, both calcium channel modulators, are also top 

ranked repurposing candidates. Pregabalin has been shown to be an effective adjunctive 

treatment for MDD28 and treatment-resistant bipolar disorder,29 and gabapentin is used off-label 

for bipolar disorder.30 The side effect profile of gabapentin includes increased suicidality within 

the first week of treatment,31 which is also seen with antidepressant use. The mood elevating 

effect of antidepressants is thought to occur after about 2-3 weeks, lagging the increase in 

motivational behaviour which could explain the higher risk for suicidal attempts.32, 33 It may be 

that administration of calcium channel modulators over a longer time period could lead to a 

decrease of depressive symptoms after overcoming an initial ineffective episode. 

 

The association of histamine receptor H1 with MDD may indicate an involvement of the 

histaminergic system in MDD and depressive symptoms. Brompheniramine, tripelennamine and 

chlorphenamine, which have very similar structures, are the top antihistamines associated with 

MDD. Interestingly, brompheniramine is the precursor of one of the first marketed 

antidepressant compounds, zimelidine, the first selective serotonin reuptake inhibitor (SSRI), 

patented in 1972,34 although no longer in use due to its side effect profile.35 All three medications 

are first-generation antihistamines which exhibit sedating effects of different intensities, which 

may help with disrupted sleep, a symptom common in MDD patients.36  
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A female preponderance in MDD is well-established,37, 38 making sex hormones interesting 

candidates for the treatment of MD. We saw significant associations between the estrogen 

receptors (ERs) ESR1 and ESR2 and MDD. Our finding was further supported by a significant 

association of decreased whole-blood ESR2 expression and MDD, indicating that ER-β agonism 

could be possibly beneficial. However, no significant associations with altered expression levels 

in brain regions were found - which could be due to a lack of power. Lasofoxifene was the top 

ranked selective estrogen receptor modulator (SERM) identified in our drug-target networks. 

SERMs are hypothesised to function as neuroprotective and antiinflammatory agents in the 

central nervous system39 and the SERM raloxifene has been reported to decrease anxiety40 and 

depression.41 Among sex hormones, levonorgestrel is one of our top repurposing candidates. The 

use of a levonorgestrel in intrauterine systems was associated with lower risk of postpartum 

depression;42 however, another study showed increased risk of antidepressant use and first 

diagnosis of MDD.43  

 

Ketamine, a member of the drug class of anesthetics, is used off-label for depression via 

intravenous infusions;44, 45 our results suggest that its D2 partial agonism might be one possible 

explanation for its antidepressant effect, together with its serotonin and glutamate receptor 

antagonism46 and interaction with other neurotransmitter systems.47 In our analyses of druggable 

genes, the dopamine receptor 2 (D2) gene (DRD2) is clearly associated with MDD. In addition, 

antipsychotics as well as antidepressants targeting D2 are usually antagonists; antipsychotics are 

used as augmentation therapies in patients with MDD if initial antidepressant therapies do not 

result in remission of symptoms.48 However, we note that mesoridazine, a neuroleptic and D2 
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antagonist in our top list for repurposing opportunities, was withdrawn from the US market due 

to major side effects.49 

 

We also identified an association between analgesics and MDD, including triptans which are 5-

HT1D agonists. Our analyses suggest that HTR1D overexpression in the caudate and cortex of 

the brain is nominally associated with MDD. This overexpression could either be leading to 

depressive symptoms, suggesting that 5-HT1D antagonism could counteract them, or it could be 

a compensatory mechanism due to low serotonin levels, suggesting a beneficial effect of 5-

HT1D agonists on depressive symptoms. The first hypothesis is supported by the 5-HT1D 

antagonist activity displayed by vortioxetine, an antidepressant and serotonin modulator.50 

 

These results, while interesting, have considerable caveats. Specifically, a key point when using 

GWAS data is the direction of effect. The relationship between a drug and a phenotype cannot 

easily be inferred; an association may reflect either a depression-inducing effect or an 

antidepressant effect. We partially address this issue via imputation and prediction of gene 

expression, but pharmacological, molecular and clinical validation will be needed before 

drawing definitive conclusions. However, we suggest that our findings may represent a source of 

new therapeutic hypotheses for MDD - a common and currently only partially treatable disorder.  
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Figure and Table legends 

 

Figure 1. Workflow to build phenotype-informed bipartite drug-target networks, illustrating the 

principle behind the online tool “Drug Targetor” (drugtargetor.com). 

 

Figure 2. 19 drug classes significantly enriched in major depressive disorder. Only G03, N05, 

N05A, N06AA and R06A (highlighted) are still significant after discarding data obtained from 

text mining approaches. 

 

Figure 3. Drug-target network from the online tool “Drug Targetor” (drugtargetor.com), 

showing the top drugs and their top-classified targets/genes, ordered by decreasing P-values. 

Expression z-scores obtained by S-PrediXcan for 10 brain regions and whole-blood are colored 

in green for positive effect, red for negative effect. Drug/target connections are colored by drug 

action type.  

 

Table 1. Druggable genes outside the major histocompatibility complex significant or suggestive 

in major depressive disorder. The -log10(p) column indicates the significance level as computed 

by MAGMA, the DGN whole blood and GTEx brain regions columns indicate the predicted 

change in expression level in the corresponding tissue. 

 

Table 2. Hub targets in drug-target networks, with human (H) or mouse (M) phenotypes 

identified in the HDMC (human-mouse disease connection database). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 18, 2018. ; https://doi.org/10.1101/304113doi: bioRxiv preprint 

https://doi.org/10.1101/304113


 
 

 
 
 
 
 
 

27 

 

Tables 

Table 1.  
Gene name -log10(p) DGN whole blood GTEx bain regions 

NEGR1 16.63 + (***) +(1)/-(1) 

OLFM4 15.06 + +(2) 
CACNA1E 10.90 -  

ESR2 9.32 - (***) -(1) 
PXDNL 8.88 -  
DRD2 8.86  +(1)/-(1) 

CHADL 8.36 + -(1) 
VRK2 8.32 + +(2) 
EP300 8.07 + -(1) 

CACNA2D1 8.00   
RPS6KL1 7.81 + +(1)/-(1) 

GRM5 7.50  +(2)/-(2) 
EMILIN3 7.41  -(2) 
ENOX1 7.35  -(1) 

HP 6.97 - +(6) 
PCDHA2 6.88  +(1)/-(3) 
KCNB1 6.79  -(1) 
GRIK5 6.41 - +(2)/-(2) 
FEN1 6.40 - -(1) 

PCSK5 6.15 + -(1) 
LINGO1 6.08  +(5)/-(2) 
HSPD1 5.98 -  
WDR1 5.75 +  
TOP1 5.75   
KMO 5.62 -  

HTR1D 5.44  +(4) 
MARK3 5.38 - +(3) 
DHODH 5.24 - +(2)/-(4) 
NCOR2 5.15 + +(1)/-(1) 
KLHL32 5.01 - +(1)/-(1) 
HDAC10 4.97  +(2) 

CACNA1H 4.93 + +(3) 
COL8A2 4.92 - +(1)/-(2) 
MARK2 4.84 - +(1)/-(1) 

PPIF 4.81 - -(1) 
ADK 4.81 + -(1) 
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MAPK12 4.78 - +(8)/-(1) 
CRB1 4.77  -(1) 

RSPO1 4.73  +(1) 
ABCC2 4.71 - -(1) 
GRM8 4.68   

MAPK11 4.66 - +(1)/-(1) 
NTRK2 4.65   
OTOA 4.62  +(1) 

***Bonferroni-significant S-PrediXcan results; +(1): predicted upregulation in one brain region; 
-(1): predicted downregulation in one brain region. 
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Table 2.  

Gene Target Significance Behavior, 
neurological Nervous system Drug classes 

DRD2 
dopamine receptor 

D2 
*** H/M H/M 

drugs for 
gastrointestinal 

disorders, 
psycholeptics, 
antipsychotics, 

psychoanaleptics 

HTR1D 
serotonin receptor 5-

HT1D 
** 

Normal mouse 
phenotype 

Normal mouse 
phenotype 

antipsychotics, 
analgesics (triptans) 

CACNA2D1 
calcium channel 

subunit 
*** M M 

calcium channel 
blockers/modulators 

CACNA1H 
calcium channel 

subunit 
** M H/M 

calcium channel 
blockers/modulators 

ESR2 
estrogen receptor ER-

β  
*** H/M H/M 

hormones and 
modulators of the 

genital system 

CHRM3 
cholinergic/acetylcho

line receptor M3 
* M H/M 

drugs for 
gastrointestinal 

disorders, 
antipsychotics, 

psychoanaleptics 

ESR1 
estrogen receptor ER-

α 
* H/M H/M 

hormones and 
modulators of the 

genital system 

GABRA1 
GABA-A receptor 

subunit 
* M H/M 

anesthetics, 
psycholeptics 

GABRG3 
GABA-A receptor 

subunit 
* - - 

anesthetics, 
psycholeptics 

GABRA6 
GABA-A receptor 

subunit 
* M M 

anesthetics, 
psycholeptics 

HRH1 
histamine H1 

receptor 
* M - 

antihistamines, 
antipsychotics, 

psychoanaleptics 
GRIA1 glutamate receptor 1 * M M anesthetics 

CACNA1C 
calcium channel 

subunit 
* M H/M 

calcium channel 
blockers/modulators 

***Bonferroni-significant MAGMA results (-log10(p) > 5.58), **Bonferroni-suggestive (-
log10(p) > 4.58), *FDR-sgnificant (q-value < 0.05), H: Human, M: Mouse 
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