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Abstract
Post-transcriptional RNA editing may regulate transcript expression and diversity in cells,
with potential impacts on various aspects of physiology and environmental adaptation.
A small number of recent genome-wide studies in Drosophila, mouse, and human have
shown that RNA editing can be genetically modulated, highlighting loci that quanti-
tatively impact editing of transcripts. The potential gene expression and physiological
consequences of these RNA editing quantitative trait loci (edQTL), however, are almost
entirely unknown. Here, we present analyses of RNA editing in a large domestic mammal
(Bos taurus), where we use whole genome and high depth RNA sequencing to discover,
characterise, and conduct genetic mapping studies of novel transcript edits. Using a
discovery population of nine deeply-sequenced cows, we identify 2,001 edit sites in the
mammary transcriptome, the majority of which are adenosine to inosine edits (97.4%).
Most sites are predicted to reside in double-stranded secondary structures (85.7%), and
quantification of the rates of editing in an additional 355 cows reveals editing is nega-
tively correlated with gene expression in the majority of cases. Genetic analyses of RNA
editing and gene expression highlights 67 cis-regulated edQTL, of which seven appear
to co-segregate with expression QTL effects. Trait association analyses in a separate
population of 9,988 lactating cows also shows nine of the cis-edQTL coincide with at least
one co-segregating lactation QTL. Together, these results enhance our understanding of
RNA editing dynamics in mammals, and suggest mechanistic links by which loci may
impact phenotype through RNA-editing mediated processes.

Introduction
The process of gene expression involves transcribing the information stored in DNA
into messenger RNA (mRNA). In Eukaryotes, most mRNA sequences differ to those
of DNA, primarily due to RNA splicing. However, the process of RNA editing can
add additional diversity, whereby bases in the transcript are altered in-situ by direct
enzymatic modification. In metazoan cells, the most common form of RNA editing is
deamination of adenosine (A) nucleotides, forming inosine (I), catalysed by enzymes from
the adenosine deaminase acting on RNA (ADAR) family (Savva et al., 2012).

Depending on the location of edits within the pre-mRNA transcript, the potential
consequences of RNA editing can include changes to the coding sequence, the creation or
destruction of splice sites (Nishikura, 2010), triggering of nuclear retention mechanisms
of edited transcripts (Zhang and Carmichael, 2001; Prasanth et al., 2005), or the creation
or destruction of miRNA binding sites within the 3′-UTR (Liang and Landweber, 2007;
Wang et al., 2013). These changes in turn can affect gene expression, either as part
of normal regulation (Goldstein et al., 2017), in a pathogenic context such as cancer
(Zhang et al., 2016; Baysal et al., 2017), or as a mechanism to regulate alternative splicing
(Solomon et al., 2013).

Genetic regulation of gene expression, whether operating through polymorphic vari-
ation in cis or trans regulatory elements, or through other mechanisms such as DNA
methylation, is thought to account for the majority of genetic variance in phenotypic
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traits (Nicolae et al., 2010). Identification of expression quantitative trait loci (eQTL),
therefore, provides insight into causative mechanisms for co-locating QTL for more
broadly defined physiological traits, where these methods have been applied to identify
causative genes for various characters and diseases in humans (Zhu et al., 2016; Li et al.,
2015; Li and Huang, 2017), model species (Parks et al., 2013, 2015), and agricultural
and domestic species (Li et al., 2013; Littlejohn et al., 2016; Lopdell et al., 2017).

Since numerous regulatory effects have been attributed to RNA editing, genetic regu-
lation of editing poses another potential mechanism to explain impacts on physiological
traits. In three recent studies conducted in Drosophila (Ramaswami et al., 2015), mice
(Gu et al., 2016), and humans (Park et al., 2017), researchers demonstrated the application
of QTL mapping approaches to reveal widespread genetic modulation of RNA-editing.
In the current study, we aimed to build on these studies by characterising the genetic
landscape of RNA-editing in cattle, and more specifically, use these data to investigate
potential regulatory effects of identified loci on gene expression and complex quantitative
traits. Utilising whole genome sequencing, high depth mammary RNA sequencing, and
genome-wide association approaches in outbred cattle populations, we report the de
novo discovery of RNA edits, RNA editing QTL (edQTL), and a number of co-locating,
co-segregating gene expression and lactation impacts as potential consequences of these
modifications.

Results
Discovery and molecular context of edited sites
To identify candidate RNA editing sites, we performed whole genome sequencing of nine
animals for which high depth RNAseq data was also available. Animals were sequenced
at an average 22-fold read depth for genomic sequence and 104 million read pairs for
RNAseq, with variants called for both DNA and RNA sequence alignments (Materials
and Methods). Variants that were identified from RNA data but found to be absent
from DNA data for the same animal were considered candidate sites. After applying
further quality filtering to the variants (including visual inspection of alignments, see
Materials and Methods) a total of 2,001 edited sites were identified. Edits mapped to
a total of 314 genes (median 4.0 sites per gene, mean 6.4) with the majority of sites
(85.1%) contained in intronic sequences (Table 1). Edits locating to the 3′ UTR were
the next most common class (11.2%), with comparatively few edited sites in the 5′ UTR
or coding exons. Relatively few sites were predicted to impact protein sequences (25
missense, 30 synonymous). These distributions are in broad agreement with previous
reports of the distribution of edits in the human transcriptome (Chen, 2013).

Of the different classes of base substitutions, A-to-I edits were by far the most common,
(97.4% of sites; Table 2). Interestingly, however, the A-to-I edit class was much less
dominant when only exonic sites are considered (32.7%, similar to the 40.7% reported
elsewhere for a much larger sample (Chen, 2013)). In fact, 37 of the 52 non-A-to-I edited
sites identified were exonic, raising the possibility that reads containing these edits arise
from the expression of near-duplicate genes or pseudogenes, and have been incorrectly
mapped. The most prevalent non A-to-I edits were G-to-A and C-to-U, concordant
with previous literature for both humans (Chen, 2013) and cattle (Chen et al., 2016).
As A-to-I edits are catalysed by the ADAR1 and ADAR2 enzymes, we confirmed the
expression of the corresponding genes in mammary tissue, where the ADAR1 gene was
approximately 1.6-fold more highly expressed than ADAR2 (Table 3). Minimal levels of
expression were observed for homologues to human APOBEC genes, which have been
implicated in non-A-to-I edits.

Non-uniform base usage was seen for bases directly adjacent to RNA editing sites
(Table 4). In particular, guanosine was significantly under-represented at the position
immediately upstream from edit sites (5.8% of bases; p = 3.63× 10−87), but significantly
enriched at positions immediately downstream (49.3% of bases; p = 7.68×10−137). Similar
patterns of upstream under-representation and downstream enrichment for guanosine
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have been reported in the literature (Bazak et al., 2014; Porath et al., 2014; Ramaswami
et al., 2013). No motifs were observed at positions more distant than one nucleotide
(Figure 1), an observation reported previously (Peng et al., 2012).

Predicted edit sites occur predominantly in double-stranded re-
gions
Since the ADAR1 and ADAR2 enzymes target double-stranded sections of RNA (Lehmann
and Bass, 1999, 2000) it is expected that most edited sites will map to sequences able
to form double-stranded structures. To test this hypothesis, double stranded regions of
pre-mRNA transcripts were computationally predicted using R (R Core Team, 2017) to
produce dot-plots. Figure 2 shows an example structure for ABCG2, a gene that encodes
a transporter protein important to lactation and milk production ((Cohen-Zinder et al.,
2005); plots for other structures are displayed in Figure S1). Visual examination of the
predicted structures confirmed that the majority of candidate edited sites (85.1%; 1,703
of 2,001) are located within regions of RNA with the potential to form double-stranded
helices. When only A-to-I edits were considered, an even higher percentage (87.1%; 1,698
of 1,949) were predicted to occur in such regions. Although some proportion of the 15%
of sites not observed to reside in double stranded regions could be assumed to be false
positive edit sites, these inconsistencies could arise from failure to accurately identify
base-paired structures, or where the paired strand was more than 1,500 base pairs from
any edit sites within the gene and therefore not included within the plotted region (see
Materials and Methods for a description of double stranded prediction methodology).
Images of the predicted double-stranded secondary structures are displayed in Figure S2.

Within double-stranded regions, almost two-thirds of sites (n=1,127; 66.2%) were
predicted to base-pair with a uridine residue, in accordance with standard Watson-Crick
base-pairing rules (assuming an adenosine reference allele). The majority of the remaining
sites were situated opposite to a cytidine residue (n=504; 29.7%), that would allow wobble
base-pairing between the cytidine and inosine nucleotides after editing. The non A-to-I
edit sites were much more sparsely represented within double-stranded regions, with only
9.6% (5 of 52) of the sites situated within these regions. This suggests that either the
non A-to-I sites are edited by mechanisms which do not require double-stranded RNA,
and/or that these sites have a considerably higher false positive rate than the A-to-I
edits.

Proportions of Reads Edited
To provide a quantitative assessment of editing in a larger population of animals, the
base composition of candidate sites identified in the nine ‘discovery’ animals was assessed
in 355 additional animals for which RNAseq data was available. The proportion of
reads edited in these ‘quantification’ animals was defined as phi (Φ; (Park et al., 2017)).
Phi values varied widely across sites: from 0.03% to 90.04% for A-to-I reads (median
12.81, mean 17.89). A significant association was observed between the upstream
nucleotide at an editing site and the proportion of reads edited (p = 3.94 × 10−13,
see Figure 3A). This was due primarily to an increase in editing where the upstream
nucleotide is uridine (mean=21.72%), with a decrease observed for upstream guanosine
(mean=13.33%). In contrast, no association was observed for the downstream adjacent
nucleotide (p = 0.291, Figure 3B). Considering both the upstream and downstream bases
simultaneously (Figure 3C), the highest rates of editing were observed at U.G and U.U
sites, and the lowest at G.G and G.C sites, where the dot represents the editing site.
Mean and median Φ values are displayed in Table S1 for all A-to-I edit sites.

Within double-stranded regions, lower values of Φ were observed (diff = −0.09,
p = 0.018) where the predicted base pair of the edit site was a guanosine compared
to other bases. These edit sites are also the least frequently observed, with only 15
observations among the 1,703 within double-stranded regions. Conversely, the most
stable modification is expected when the paired base is a cytosine, and a significantly
higher average Φ value was observed for these sites (diff = +0.05, p = 4.77× 10−10).

3

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 19, 2018. ; https://doi.org/10.1101/304220doi: bioRxiv preprint 

https://doi.org/10.1101/304220
http://creativecommons.org/licenses/by/4.0/


Relationship between RNA-editing and transcript abundance
Given the observation of widespread editing across diverse mammary transcripts, we
wondered what physiological effects might be attributable to these modifications. Since
editing has previously been proposed as a mechanism to modulate gene expression through
microRNA-based mechanisms (Liang and Landweber, 2007; Wang et al., 2013; Brümmer
et al., 2017), or through nuclear-retention (Zhang and Carmichael, 2001; Prasanth et al.,
2005), we looked at the relationship between Φ-values and transcript abundance by
calculating Pearson correlation coefficients for each implicated gene. For this analysis,
we were particularly interested in the impacts on mRNA, so to best represent spliced
transcripts, transcript abundance was quantified using reads that either mapped wholly
within exons, or mapped across exon-exon boundaries (see Methods and Materials).
Strikingly, we noted significant correlations for a large proportion of edited transcripts
(N=177 after Bonferroni adjustment; Figure 4), with the distribution of effects showing a
strong bias towards genes whose expression was negatively correlated with Φ (Figure 4).
Although it is unknown whether editing is driving these effects, these observations
highlight a potential mechanism by which RNA editing may be impacting lactation
phenotypes through modulation of mRNA abundance.

Genome-wide association analysis of RNA edits
Having defined Φ values for all animals and all curated sites, we next used these data as
phenotypes for genome-wide association studies (GWAS), with the aim of discovering
RNA editing QTL. These models comprised generalised least squares (GLS) models,
modelling the covariance between animals using a numerator relationship matrix based on
pedigree records to account for underlying population structure and relatedness between
animals (Materials and Methods). Using 630,774 genotypes from the Illumina BovineHD
marker panel and logit-transformed Φ-values as phenotypes, 186 of the 2,001 RNA editing
sites exhibited edQTL that were significant after Bonferroni adjustment for multiple
testing (threshold 0.05/630, 774 = 7.93×10−8). Of these 186 edQTL, 131 sites harboured
the top associated variant within 500 kbp of the editing site, and could therefore be
assumed to be regulated in cis. These sites mapped to a total of 67 genes, with the CSN3,
ELF5, and PFKFB2, each containing five or more associated sites. The full list of 131
sites is detailed in Table S2. Low levels of inflation in the test statistics were observed
across the 2,001 edQTL GWAS (mean = 1.03, median = 1.02; ideal value 1.0), indicating
that the generalised least squares models were adequately controlling for relatedness
between the animals.

We next aimed to fine-map signals using imputed whole-genome sequence (WGS)
data. Imputation was conducted using methods analogous to those previously described
((Lopdell et al., 2017); Materials and Methods). The 131 sites with cis-edQTL were
remapped at WGS resolution for 1 Mbp windows in the 355 quantification set animals,
with intervals centred on the most significant marker identified on the BovineHD panel
for each site. Associations were conducted as per the analysis using the BovineHD panel.
Thirty of 131 sites had at least one strongly associated WGS marker (exceeding the
Bonferroni threshold) that mapped within the double-stranded region containing that
site. Figure 5 shows example plots for the HOOK3 gene.

Examination of RNA phase and complementarity relationships
between edit sites and candidate modulatory variants
Since base substitutions within double stranded RNA transcripts could be assumed
to modify the structure and stability of such molecules, we reasoned that collocated,
RNA-editing-associated WGS variants would make strong candidate causal variants
for the observed edQTL. To investigate these relationships, edit sites that exhibited
significant cis-edQTL were further analysed in the following two ways. First, read pair
information was used to derive individual transcript haplotypes between edited bases and
candidate causative alleles, with consistency of these phase relationships then assessed
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for heterozygous animals. Although we assumed such relationships would be due to
impacts on base complementarity in double stranded RNA molecules, phase analysis was
not restricted to regions predicted to form these structures, since the distance between
edited bases and WGS variants was relatively short, and necessarily limited to the read
fragment length (median unspliced length = 150 bp). Variant pairs were also filtered to
exclude those that had fewer than five reads encompassing both sites. This yielded 48
pairs of edited bases and WGS variants, representing 26 distinct edit sites in 15 genes
(where the reduced number of edits compared to pairs reflected sites that were paired
with multiple variants). Association analysis revealed strong phase enrichment for the
majority of pairs, with 43 of 48 significant at the Bonferroni threshold of P<0.001042
(see Materials and Methods).

The second analysis focused only on pairs of edited bases and edit-associated WGS
variants collocating to double stranded structures (N=127 pairs; where double-stranded
regions were predicted as previously described). We hypothesised that WGS alleles
that were complementary to the base on the opposite, paired strand would increase the
substrate affinity for ADAR enzymes, thus leading to increased editing for these sites
(Figure 6). To test this, we removed all editing-associated variants for which neither allele
paired with the opposite base on the complementary strand (N=109 pairs remaining).
Using a one-sided t-test to assess whether the anticipated sign of effect between edits
and complementary and non-complementary alleles was different than zero, a modest,
but significant effect was observed (P=0.047). This observation, and the allele-specific
editing results described above, supports the hypothesis that the mechanism of genetic
modulation of editing at least partly derives from the impact of these variants on RNA
secondary structures.

Correlations with expression and lactation QTL
RNA editing has previously been reported (Goldstein et al., 2017) to regulate levels of
gene expression, so we hypothesised that edQTL may also influence expression, where
these relationships should manifest as co-segregating edQTL and eQTL. To test this,
we first analysed the 67 genes with cis-edQTL for the presence of cis-eQTL at WGS
resolution. The methods used were analogous to those applied for detection of cis-edQTL,
with gene expression phenotypes calculated from exonic read counts and normalised using
the variance stabilising transformation in the DESeq R package (Anders and Huber,
2010, see Materials and Methods for further detail). This analysis revealed that 30 of
the 67 genes had significant cis-eQTL with significance defined as having at least one
variant with p < 1× 10−8. This list included genes with protein products known to be
secreted in milk (CSN3: kappa-casein; LPO: lactoperoxidase; LTF: lactoferrin), along
with several genes for which genetic impacts on milk composition or production have
previously been published: MARC1 (Lopdell et al., 2017), SLC37A1 (Kemper et al.,
2016), STAT5B (He et al., 2011).

To test for shared genetic architecture between the eQTL and collocated edQTL,
Spearman correlations were calculated using the association χ2 statistics of each pair of
QTL, in an approach similar to that previously described (Littlejohn et al., 2014b, 2016;
Lopdell et al., 2017). This method highlights co-segregation patterns for QTL, where,
assuming a common causal variant and haplotype structure between signals, the rank-
order of associated markers should be similar for effects that are genetically co-regulated.
Table S2 shows results for the 131 edits with cis-edQTL, alongside eQTL results and
Spearman correlations between QTL pairs. At seven A-to-I edited sites (Table 5 and
examples in Figure 7), correlations of greater than 0.7 were observed between edQTL
and eQTL, potentially suggesting a gene expression consequence of the observed edQTL
effects. These seven sites mapped to six discrete genes, with two sites impacting the
CSN3 gene.

Given the bias towards negatively correlated gene expression and editing per se (see
‘Relationship between RNA-editing and transcript abundance’ section above), we also
wondered whether cis-edQTL/eQTL pairs would reflect this relationship, where we could
anticipate allelic effects to show antagonistic signs of effect between edQTL and eQTL.
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To test this, pairs of eQTL and edQTL that were significantly correlated were identified
(N=24; P<2.62× 10−5) following Bonferroni adjustment), and subsequently classified
as to whether the effect of the top edQTL variant had the same or opposite sign of
effect to the eQTL. Given our prior hypothesis that the sign of effects would be reversed,
we conducted a one-sided t-test that the mean sign of these effects was negative. This
yielded a non-significant p-value of 0.114; however, repeating the analysis with a more
conservative list of eQTL/edQTL pairs (100-fold smaller correlation p-value threshold
of 2.62× 10−7; N=15), yielded a highly significant P=0.007. This observation suggests
that, at least for the loci for which eQTL/edQTL pairs are most strongly correlated (and
thus most likely to represent a common genetic signal), increased levels of editing leads
to decreases in mRNA expression.

Since edQTL might have further effects on lactation traits such as milk yield and
milk component concentration phenotypes, we conducted association analysis on these
phenotypes using imputed WGS genotypes and the GLS models described above. To
perform association analysis of lactation traits, herd test data for 9,988 cows was used to
test for the presence of fat, protein, lactose, and milk yield QTL that were collocated
to each of the 131 cis-edQTL intervals. Examining co-segregation signals using the
same methods applied to analysis of eQTL data, nine edited sites exhibited edQTL
that were strongly correlated (r > 0.7) with at least one production QTL (Table 6 and
examples in Figure 8). These effects were distributed across five genes, with three of
these sites (in the HPSE, STAT5B, and HOOK3 genes) also showing correlations with
eQTL (compare Figure 8C and Figure 8D). Additional sites with correlations greater
than 0.5 were observed in the CSN3 and LTF genes (see Table S3).

Discussion
We report the discovery of 2,001 RNA editing sites in the bovine mammary transcriptome,
and subsequently explore the genomic context and properties of these sites. We note
strong correlations between the extent of RNA editing and the overall abundance of these
transcripts, and we further report genome-wide association analyses of editing to identify
genetic modulators of these effects. Association analysis of gene expression and lactation
phenotypes for variants mapping to edQTL intervals reveals a number of overlapping
signals at these locations, providing a potential mechanistic linkage between the editing
of transcripts and mammary and lactation physiology. We discuss some of these findings
in more detail, below.

Editing site frequencies
The majority of editing sites discovered were A-to-I edits (1,941 of 2,001). This percentage
(97.4%) is higher than the 80% reported previously for the cattle transcriptome (Chen
et al., 2016), but is similar to results reported in human transcriptomes (97.25% (Porath
et al., 2014); 93.8–99.2% (Chen, 2013)). In the cattle study referenced above (Chen et al.,
2016), several tissues were examined, identifying between 180 and 404 edits per tissue.
Studies conducted on human samples, by contrast, report far higher numbers of edit
sites, where the numbers have increased over time due to the growing availability of large
data sets: 14,500 in 2004 (Athanasiadis et al., 2004), 22,700 in 2012 (Peng et al., 2012),
to over 100 million in 2013 (Bazak et al., 2014). The bulk of these edits occur in Alu
repeat elements, where almost all adenosines are edited (Bazak et al., 2014). However,
because these elements are primate-specific (Bazak et al., 2014), the observation of far
fewer edits can be anticipated for cattle.

Previous work in mice (Gu et al., 2016) has reported the majority of edited sites
falling in UTR regions. Here, in contrast, we found that the majority of sites (1,561 of
2,001) were intronic. This contrast may be partially attributable to differences between
tissues and bovine and murine transcriptomes, though one important distinction between
our study and that of Gu et al. (2016) is that we targeted much higher read depths
(>200M reads per sample, versus 10M). The extreme read depth targeted in this study
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reflects a strategy to overcome expression biases that are a feature of secretory organs
such as the lactating mammary gland (that present a limited diversity of highly expressed
transcripts). It is fair to assume, however, that despite these biases, the increased read
depth better represents intronic sequences in the current study.

The number of edited sites identified was also likely affected by the variant caller used
to identify these sites, given the impact of allelic balance on calling variants. Edited sites,
while resembling heterozygous SNPs, will in general not approximate the 50% allelic
balance expected for variants in a diploid genome, with the balance dependent instead on
the proportion of edited reads (Φ). Variant callers which are sensitive to allelic balance,
including HaplotypeCaller (GATK RNAseq Best Practices), may fail to identify sites
with low Φ values, so the results reported here likely under-represent sites with low levels
of editing.

Non A-to-I edits
In total, 52 (2.6%) of the 2,001 edited sites reported in this study were not canonical
A-to-I edits. The three most common non-canonical edit types previously reported
for cattle are C-to-U, G-to-A, and U-to-C (Chen et al., 2016), while G-to-A is also
reported as the most common in humans (Porath et al., 2014). In the data reported here,
the most common non-canonical edit type is also G-to-A. Functional edit sites of this
type have been reported for humans in the hnRNPK, (Klimek-Tomczak et al., 2006),
TPH2 (Grohmann et al., 2010) and WT1 (Niavarani et al., 2015) genes. These sites are
hypothesised to be edited by the APOBEC3A enzyme in humans (Niavarani et al., 2015);
however, the homologous cattle gene showed little or no expression in the mammary
gland in the current study.

Twelve non-canonical edit sites exhibited C-to-U edits. This type of edit has been
attributed in humans to the actions of the APOBEC1 enzyme (Siriwardena et al., 2016).
The homologous bovine gene also shows minimal levels of transcription in the current
study. Previous work has reported an over-representation of A and U nucleotides in the
immediate vicinity of C-to-U edit sites in mice (Rosenberg et al., 2011), however, this
was not observed for the sites detected in this study. Considering the minimal expression
levels of APOBEC1, these observations suggest this class of edits may be enriched for
false positive sites, and interpretation of these results should be considered accordingly
in our analysis.

Relationships between editing, double-strandedness, and tran-
script abundance
The majority of edited sites were located within regions for which double-stranded
secondary structures were predicted. Of these sites, over 66% were adenosine nucleotides
base-paired to uridine nucleotides, in accordance with Watson-Crick pairing rules. When
these sites are edited, the stability of the resulting structure is likely to be reduced,
though it is noteworthy that I-U base pairs are valid under wobble base-pairing rules
(Murphy and Ramakrishnan, 2004). Conversely, almost 30% of sites were predicted
A-C pairs, which we expect to be unstable until edited into the I-C wobble base-pair.
Therefore, we hypothesise that RNA editing is contributing to modulation of the stability
of folded pre-mRNA secondary structures. Lower editing frequencies (Φ) were observed
in double-stranded regions where the predicted base pair of the edit site was a guanosine.
This observation can be explained by wobble base pairing (Murphy and Ramakrishnan,
2004), as guanosine is the only standard RNA base which does not pair with inosine,
resulting in lower stability in the double-stranded region after editing at these sites
compared to sites paired with other nucleotides.

We also noted that for many genes, the proportion of editing was significantly
correlated with transcript abundance. These correlations were largely negative, where
increased editing was associated with decreased mRNA expression. A biological cause
and effect relationship is difficult to establish here, given that RNA editing may be
a consequence (as opposed to cause) of reduced mRNA production, and other biases
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relating to library preparation or sequencing (Harcourt et al., 2017) could conceivably
lead to spurious, negative correlation. However, these findings are similar to those
reported in other analyses of global RNA editing profiles (Hwang et al., 2016), where a
broadly negative relationship between editing and transcript abundance also fits with a
mechanism by which mRNA expression is controlled through preferential retention of
edited transcripts in the nucleus (Zhang and Carmichael, 2001; Prasanth et al., 2005).

RNA edited genes and QTL
A number of the editing sites we detected mapped to genes that are involved in lactation.
These genes include the major milk protein components (caseins) encoded by the CSN1S1,
CSN2, and CSN3 genes, as well as the antimicrobial LPO and LTF proteins. Edited
sites were also observed in STAT5A and STAT5B, comprising transcription factors with
critical roles in mammary differentiation and lactation (Liu et al., 1995; Cui et al., 2004).
A number of other edited genes are important mediators of milk fat synthesis (LPL,
ACACA, GPAM (Bionaz and Loor, 2008)) and secretion (XDH, PLIN3 (Bionaz and
Loor, 2008)), or are involved in the transport of small molecules in milk: SLC37A1
(Pan et al., 2011), ABCG2 (Otero et al., 2016). Together, these genes represent some
of the most prominent and well-published genes in lactation biology, and include many
of the largest effect loci implicated in genetic regulation of these traits (He et al., 2011;
Khatib et al., 2008; Bionaz and Loor, 2008; Kemper et al., 2016; Olsen et al., 2007).
This suggests, at a minimum, that RNA editing may functionally moderate aspects of
mammary and lactation physiology, and further presents RNA editing as one of the
mechanisms that may underpin milk and lactation QTL.

To investigate this hypothesis, GWAS was conducted for all 2,001 edited sites, treating
the RNA editing proportion (Φ) as a phenotype. This analysis yielded significant cis-
edQTL at 131 sites. Further analysis of these edQTL suggested that highly associated
variants tend to be in phase with the corresponding edit sites, implying a consistency of
phase within individual pre-mRNA molecules. We also found evidence that, when edit
sites are predicted to be located within the same double-stranded secondary structure as
a significant variant, alleles which increase the stability of the structure tend to increase
editing, and alleles which destabilise the structure tend to decrease editing. These
results are concordant with a mechanism whereby cis-edQTL causal variants act within
each pre-mRNA transcript to stabilise or destabilise secondary structures, potentially
modifying the substrate affinity of these molecules to RNA editing enzymes. These
findings broadly support an analysis of the genetic impacts of RNA editing in humans,
where the authors similarly looked at aspects of allele-specific editing (Park et al., 2017).
This human study (Park et al., 2017), and two other studies in mouse (Gu et al., 2016)
and Drosophila (Ramaswami et al., 2015), similarly propose allelic effects on folded RNA
structures as the likely mechanism driving edQTL.

To look for potential impacts of edQTL on gene expression and lactation phenotypes,
we conducted association mapping using intervals of WGS-resolution variants highlighted
from RNA-editing analyses. Of the 67 genes highlighted with cis-edQTL, we identified
30 with significant cis-eQTL, seven of which also showed strong correlation of association
statistics (r > 0.7). We also assessed correlations between edQTL and collocated
lactation QTL, determined in a separate population of 9,988 outbred cows. Correlations
greater than 0.7 were observed for A-to-I sites in the CD36, FBXW8, HOOK3, HPSE,
and STAT5B genes. Two sites in the CD36 gene were correlated with collocated fat
concentration and milk yield QTL, with lower correlations also observed for the lactose
yield and protein concentration phenotypes. This gene encodes a glycoprotein that
has been implicated in fatty acid transport (Ibrahimi and Abumrad, 2002), and in
mammary gland cell proliferation and involution (Spitsberg et al., 1995). The HOOK3
gene contained three sites with edQTL that were strongly correlated with QTL for lactose
concentration or fat yield. HOOK3 encodes a microtubule tethering protein involved in
intracellular vesicle trafficking (Xu et al., 2008), and is broadly analogous in function
to the gene PICALM that has previously been associated with lactose concentration
in milk (Lopdell et al., 2017). Of the five genes with strong correlations with lactation
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QTL, CD36 and FBXW8 had relatively modest edQTL/eQTL correlations, whereas
HPSE, HOOK3, and STAT5B showed correspondingly strong correlations with eQTL.
For these latter genes, our findings present a potential chain of causality from variants
modulating the editing of pre-mRNA transcripts, to consequent mRNA expression and
lactation effects. Although the mechanism linking mRNA expression to physiological
impacts is straightforward, the understanding of the impacts of RNA editing on gene
expression is comparatively poor, though can be expected to advance in accordance with
the rapidly growing body of literature regarding RNA editing biology. Together, these
results improve our understanding of RNA editing in mammals, and our understanding
of the link between genotypes and phenotypes in lactation.

Materials and Methods
DNA and RNA sequencing
Potential RNA editing sites were detected by comparing variant calls from mammary
RNAseq to whole-genome DNA sequence calls. A total of 364 cows of mixed Holstein-
Friesian, Jersey and cross-bred ancestry were divided into two non-overlapping sets.
A discovery set composed of nine F2 Holstein-Friesian/Jersey cross-bred animals was
sequenced using both RNAseq and whole-genome approaches, to enable discovery of
edited sites within the RNA. The second set of 355 animals (the quantification set) was
sequenced using RNAseq only, and used to quantify the level of editing at the sites first
identified in the discovery set. The quantification animals were used to generate editing
proportion phenotypes (Φ) for use in edQTL mapping.

RNA sequencing was performed on mammary biopsies from all 364 animals, as
reported previously (Littlejohn et al., 2016). Briefly, high-depth mammary RNAseq was
conducted on tissue obtained via mammary biopsy, sampled at several points in time.
Following library preparation, samples were sequenced using the Illumina HiSeq 2000
instrument to produce 100 bp paired-end reads. RNASeq reads were mapped to the
UMD 3.1 reference genome using Tophat2 (version 2.0.12) (Kim et al., 2013), mapping
an average of 207.9 million reads per sample. Duplicate reads were marked using the
MarkDuplicates command in the Picard software package (version 1.89; Broad Institute).

Whole genome sequencing was performed for the animals in the discovery set using
methods we have described previously (Littlejohn et al., 2014b, 2016). All animals
were sequenced using 100 bp paired-end reads on the Illumina HiSeq 2000 instrument,
followed by mapping to the UMD 3.1 bovine reference, using BWA MEM 0.7.8 (Li and
Durbin, 2009). This yielded mean and median mapped read depths of 22.1× and 22.2×
respectively.

Identifying edited sites in the RNA
Variant calling was performed on the discovery set animals, for both the DNA and RNA
alignments, using GATK HaplotypeCaller version 3.2 (DePristo et al., 2011). Reads
that had been marked as duplicates, or with mapping quality scores below twenty,
were excluded. Variants present in the dbSNP database (build 146) were also excluded.
Additional filters were subsequently applied to the RNAseq variant calls, excluding
variants with quality scores less than 100, cumulative read depth less than 135 (average
15 reads per animal), and any variants with five or fewer observed alternative alleles. Less
stringent filters were applied to the WGS-called variants, excluding those with quality
scores less than 50 or cumulative read depths less than fifty. Due to the difficulty in
accurately calling indel variants, these were excluded from both variant sets.

Variants present in the RNA-called set but absent from the DNA-called set formed the
initial set of potential RNA edits. This set was filtered further by removing any variants
which had been called from WGS in a separate larger study (Littlejohn et al., 2016),
yielding a set of 3,280 candidate RNA editing sites. These sites were further subjected to
manual evaluation to remove sites where, for example, no read coverage was available in
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the DNA sequence, or where alignments in the RNA sequence appeared anomalous. This
resulted in a conservative subset of 1,171 sites. During this process, we also observed
numerous additional sites present in close proximity to manually inspected sites. These
bases had not been annotated by the variant caller, likely as a consequence of under
representation of the non-reference ‘allele’ (mean Φ = 0.22 and 0.17 for GATK-annotated
and un-annotated sites respectively). These sites were also added to the curated set,
providing that at least one edited read was present at the site in at least five of the nine
discovery animals. Using these criteria yielded a final set of 2,001 manually appraised
sites. Due to the conservative process for identifying and manually curating sites, and
the subsequent incorporation of sites discovered by virtue of collocation with highly
edited bases, our dataset is likely biased towards the most highly edited transcripts.
Although use of an alternative variant caller that was less sensitive to allele biases may
have enabled discovery of larger numbers of RNA edits genome-wide, this would have
represented a compromise given the lack of unity between different variant callers, and
consequent increased false positive rates. An example region comparing DNA and RNA
sequencing data for three animals is illustrated in Figure S3.

Editing proportions for each of the 2,001 verified sites were calculated for each cow in
the quantification set by reporting the base composition of reads in the RNA alignments.
Edit sites were allocated to genes using the Ensembl Variant Effect Predictor (McLaren
et al., 2016), requiring genes to map on the correct strand. Because UTR regions in the
released annotations often appeared to be considerably shorter than those evident in the
RNA sequence data, variants labelled as upstream or downstream were considered to sit
in 5′ and 3′ UTRs respectively, given that they were discovered in RNA (i.e. expressed)
data.

Predicting two-dimensional mRNA structure
Local mRNA secondary folding structure was predicted for each editing site. Within each
gene, sequence was extracted for an interval that included 1.5 kbp of sequence upstream
and downstream of the most 5′ and 3′ edited sites. In cases where the total sequence
extracted for a gene exceeded 15 kbp, multiple, shorter sub-sequences were used.

Each sequence was then plotted against its complement to generate dot-plots (Figure 2
and Figure S1). Dots were placed where at least 11 of the 15 nucleotides, centred on
each pair of positions, were complementary. Diagonal lines appearing in the plots are
indicative of long strands of complementary sequence, highlighting potential double-
stranded regions for examination, by manual observation, for the presence of edited sites.
These regions were also processed using the bifold-smp program from the RNAstructure
software package (Reuter and Mathews, 2010) to generate candidate secondary folded
structures.

Genotyping and RNA QTL discovery
To enable the discovery of edQTL via GWAS, all 355 animals in the quantification
data set were genotyped using the BovineHD SNP-chip (Illumina). Variants with minor
allele frequencies < 1% were removed. As a filter for erroneous SNP assays, tests were
conducted for Hardy-Weinberg equilibrium (Graffelman and Moreno, 2013) using PLINK
software (Chang et al., 2015; Purcell et al., 2007) (version 1.9b3i), with variants yielding
p-values less than 1.0×10−30 excluded. The final variant set, containing 630,774 variants,
was used for edQTL and eQTL.

As described above, the base composition of RNA editing sites was determined in the
quantification set of animals to determine the proportions of edited reads for each animal
and site (Φ, (Park et al., 2017)). To satisfy the normality requirement for phenotypes used
in the generalised least-squares model, the proportions of edited reads were transformed
using the logit function. For each edited site, logit-transformed Φ values (y) were fitted
to a generalised least-squares model to identify edQTL. The numerator relationship (A)
matrix was used to account for any covariances between animals that were due to shared
ancestry.
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Each genotyped variant was fitted individually using the generalised least-squares
(GLS) model described in (Lopdell et al., 2017). Briefly, the model used was y = Xβ + ε,
where the error term (ε) has the conditional mean E(ε|X) = 0 and covariance Var(ε|X) =
W, where W = σ2

P × (0.3 ·A + 0.7 · I), I is the identity matrix and σ2
P is the phenotypic

variance.
To confirm that shared ancestry was not inflating the GLS results, the statistic

χ2 =
(

β̂

se(β̂)

)2
was calculated for each variant using the estimate of the slope (β̂). For

each edited site, the median of the χ2 statistic was calculated, with the ratio of the
observed median and the expected median (0.4549) yielding the inflation statistic for
that edited site. Inflation is indicated when the value of this statistic exceeds unity.

As part of a previous study (Littlejohn et al., 2016), gene expression phenotypes were
derived for a larger set of 375 animals, of which the 355 animals in the quantification set
formed a subset. Gene expression, measured in fragments per kilobase of transcript per
million mapped reads (FPKM), and in transcripts per million (TPM) (Wagner et al.,
2012), was quantified for genes containing RNA editing sites using Stringtie software
(version 1.2.4) (Pertea et al., 2015), with annotations from Ensembl genebuild release 81.
Additional gene expression phenotypes were also derived by applying the “variance
stabilising transformation” (VST) function from DESeq (Anders and Huber, 2010) to
read counts for each gene, resulting in phenotypes with a distribution closer to the normal
distribution, and therefore more suitable for analysis with linear models. The read counts
used here consisted of only those reads that either a), mapped entirely within a single
exon; or b), spliced across one or more annotated exon junctions, according to the exon
boundaries defined by the Ensembl annotations (release 81). Reads that spliced at a site
not recorded in the Ensembl annotations were excluded.

WGS imputation and fine mapping
To map variants at a higher resolution around identified edQTL, WGS variants were im-
puted into the quantification animal set using a previously described reference population
of 565 animals (Littlejohn et al., 2014a, 2016), comprising Holstein-Friesians, Jerseys,
and cross-bred cattle. Briefly, these cattle were sequenced using the Illumina HiSeq 2000
instrument, yielding 100 bp paired-end reads. Mapping was conducted using BWA MEM
0.7.8 (Li and Durbin, 2009), resulting in mean and median mapped read depths of
15× and 8× respectively. Variant calling was conducted using GATK HaplotypeCaller
(version 3.2) (DePristo et al., 2011) with base quality score recalibration, followed by
phasing using Beagle 4 (Browning and Browning, 2009). Variants with phasing allelic R2

< 0.95 were excluded for quality filtering purposes.
1 Mbp intervals, centred on the top cis-edQTL markers, were imputed to whole-

genome sequence resolution using Beagle 4 (Browning and Browning, 2009) with the
reference population described above, excluding variants with minor allele frequencies
below 0.05. Across all 131 intervals, this process resulted in a total of 659,199 variants
(mean 5,032; min 2,102; max 10,870 per interval). Although we have no truth set with
which to directly determine the imputation accuracy for these animals, previous work
we have performed (Littlejohn et al., 2016) indicates accuracies of around 98–99% when
imputing BovineHD-resolution genotypes to WGS. Association analysis was conducted
using the same GLS model described for SNP-chip based GWAS. Within the same
intervals, gene expression phenotypes (described above) were used analogously to discover
eQTL.

Phase and complementarity relationships
To investigate phase relationships between edited sites and variants on the same transcript,
WGS variants for each site with a significant edQTL were extracted. These analyses
were restricted to animals heterozygous for the implicated site, and only variants that
were correlated R2 > 0.95 with the most significant variant, and were within 150 bases of
the edit site, were included in these analyses. These criteria yielded 59 pairs of edit sites
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and WGS variants. Read pairs were then extracted from RNAseq BAM files where the
read pairs contained both the edit and variant positions. Reads meeting these criteria
were subsequently counted to yield 2× 2-contingency tables for the number edited / not
edited for the edit site, and the number reference / alternative for the variant allele.
Contingency tables of expected counts under independence were generated, and any pairs
where at least one cell in either the observed or expected contingency table was less than
six were excluded. This yielded 48 pairs that were then tested for independence using a
χ2 test. Results where P < 0.001 were considered significant, applying a multiple testing
threshold of P = 0.05/48.

Complementarity relationships were investigated by extracting pairs of edit sites that
exhibited significant edQTL, and WGS variants that collocated to the same double-
stranded secondary structure. Structures were determined using dot-plots and the
RNAstructure software package (Reuter and Mathews, 2010) as described above. Only
WGS variants within 8 kbp of the edited site were considered. Additive allelic substitution
effects (β) for the non-complementary allele were extracted from the WGS-resolution
edQTL analysis for each edit site / variant pair. As we hypothesised that decreased
complementarity would decrease editing, a one-sample t-test was performed for the
one-sided alternative hypothesis that mean β < 0.

Milk phenotypes and QTL
To examine the effect of RNA editing on milk production traits, milk fat, protein
and lactose phenotypes were derived for 9,988 cows from measurements taken as part
of standard herd-testing procedures. Milk samples were processed by LIC Testlink
(Newstead, Hamilton, New Zealand) using Fourier transform infrared spectroscopy on
Milkoscan FT6000 (FOSS, Hillerød, Denmark) and Bentley FTS (Bentley, Chaska, USA)
instruments. Individual phenotypic measurements for each animal were estimated using
repeated measures models in ASReml-R as described in (Lopdell et al., 2017).

These 9,988 cows had previously been genotyped on a mix of bovine SNP platforms:
Illumina Bovine SNP50 (N=6,481), BovineHD (N=62), and GeneSeek Genomic Profiler
BeadChip (N=3,949; GeneSeek/Illumina). Five hundred and one cows had been geno-
typed on multiple panels. All cows were imputed to WGS resolution for the 131 edQTL
intervals using Beagle 4 as described above. These genotypes were subsequently used
with the milk-sample-derived phenotypes to explore QTL at each of these intervals, using
the GLS model described above.

Acknowledgements
The authors would like to acknowledge S. Morgan and staff at DairyNZ Ltd. (Hamilton,
New Zealand), and Phil McKinnon, Ali Cullum and staff at AgResearch (Hamilton, New
Zealand) for facilitating mammary tissue sampling of lactating animals. We also wish to
acknowledge New Zealand Genomics Limited (NZGL) and the University of Auckland
Centre for Genomics, Proteomics, and Metabolomics for RNA preparation and sequencing,
as well as both the Australian Genome Research Facility (AGRF) and Illumina FastTrack
for both RNA and genomic DNA sequencing. This work was supported by the Ministry
for Primary Industries (Wellington, New Zealand), who co-funded the work through the
Primary Growth Partnership.

Declarations
List of abbreviations
edQTL: RNA editing quantitative trait locus; eQTL: gene expression quantitative trait
locus; FPKM: fragments per kilobase of transcript per million mapped reads; GWAS:
genome-wide association study; miRNA: micro-RNA; TPM: transcripts per million; UTR:
untranslated region; WGS: whole genome sequence

12

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 19, 2018. ; https://doi.org/10.1101/304220doi: bioRxiv preprint 

https://doi.org/10.1101/304220
http://creativecommons.org/licenses/by/4.0/


Ethics approval
All animal experiments in this study were conducted in accordance with all rules and
guidelines in the New Zealand Animal Welfare Act 1999. As the majority of data
were generated as part of routine commercial activities, formal committee assessment
and ethical approval (as defined by the above guidelines) were not required. Samples
were obtained for the mammary tissue biopsy experiment in accordance with protocols
approved by the Ruakura Animal Ethics Committee, Hamilton, New Zealand (approval
number AEC 12845). No animals were sacrificed for this study.

Data Availability
Sequence (BAM) files containing the WGS and RNAseq reads sequenced from the nine
discovery set cows, have been uploaded to the NCBI sequence read archive (SRA).
BioProject accession number PRJNA446068 (SRP136662), BioSample accession numbers
SAMN08810150 to SAMN08810167.

Competing interests
T.J.L., C.C., K.T., S.R.D., B.L.H. and M.D.L. are employees of Livestock Improvement
Corporation, a commercial provider of bovine germplasm. The remaining authors declare
that they have no competing interests.

References
S. Anders and W. Huber. Differential expression analysis for sequence count data.

Genome biology, 11(10):1, 2010. doi: 10.1186/gb-2010-11-10-r106.

A. Athanasiadis, A. Rich, and S. Maas. Widespread A-to-I RNA editing of Alu-containing
mRNAs in the human transcriptome. PLoS biology, 2(12):e391, 2004. doi: 10.1371/
journal.pbio.0020391.

B. E. Baysal, S. Sharma, S. Hashemikhabir, and S. C. Janga. RNA editing in patho-
genesis of cancer. Cancer research, 77(14):3733–3739, 2017. doi: 10.1158/0008-5472.
CAN-17-0520.

L. Bazak, A. Haviv, M. Barak, J. Jacob-Hirsch, P. Deng, R. Zhang, F. J. Isaacs,
G. Rechavi, J. B. Li, E. Eisenberg, et al. A-to-I RNA editing occurs at over a hundred
million genomic sites, located in a majority of human genes. Genome research, 24(3):
365–376, 2014. doi: 10.1101/gr.164749.113.

M. Bionaz and J. J. Loor. Gene networks driving bovine milk fat synthesis during the
lactation cycle. BMC genomics, 9(1):366, 2008. doi: 10.1186/1471-2164-9-366.

B. L. Browning and S. R. Browning. A unified approach to genotype imputation and
haplotype-phase inference for large data sets of trios and unrelated individuals. The
American Journal of Human Genetics, 84(2):210–223, 2009. doi: 10.1016/j.ajhg.2009.
01.005.

A. Brümmer, Y. Yang, T. W. Chan, and X. Xiao. Structure-mediated modulation of
mRNA abundance by A-to-I editing. Nature communications, 8(1):1255, 2017. doi:
10.1038/s41467-017-01459-7.

C. C. Chang, C. C. Chow, L. C. Tellier, S. Vattikuti, S. M. Purcell, and J. J. Lee. Second-
generation PLINK: rising to the challenge of larger and richer datasets. Gigascience, 4
(1):7, 2015. doi: 10.1186/s13742-015-0047-8.

L. Chen. Characterization and comparison of human nuclear and cytosolic editomes.
Proceedings of the National Academy of Sciences, 110(29):E2741–E2747, 2013. doi:
10.1073/pnas.1218884110.

13

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 19, 2018. ; https://doi.org/10.1101/304220doi: bioRxiv preprint 

https://doi.org/10.1101/304220
http://creativecommons.org/licenses/by/4.0/


Z. Chen, D. E. Hagen, J. Wang, C. G. Elsik, T. Ji, L. G. Siqueira, P. J. Hansen,
and R. M. Rivera. Global assessment of imprinted gene expression in the bovine
conceptus by next generation sequencing. Epigenetics, 11(7):501–516, 2016. doi:
10.1080/15592294.2016.1184805.

M. Cohen-Zinder, E. Seroussi, D. M. Larkin, J. J. Loor, A. Everts-van der Wind, J.-H.
Lee, J. K. Drackley, M. R. Band, A. Hernandez, M. Shani, et al. Identification of
a missense mutation in the bovine ABCG2 gene with a major effect on the QTL
on chromosome 6 affecting milk yield and composition in Holstein cattle. Genome
Research, 15(7):936–944, 2005. doi: 10.1101/gr.3806705.

Y. Cui, G. Riedlinger, K. Miyoshi, W. Tang, C. Li, C.-X. Deng, G. W. Robinson, and
L. Hennighausen. Inactivation of Stat5 in mouse mammary epithelium during pregnancy
reveals distinct functions in cell proliferation, survival, and differentiation. Molecular
and cellular biology, 24(18):8037–8047, 2004. doi: 10.1128/MCB.24.18.8037-8047.2004.

M. A. DePristo, E. Banks, R. Poplin, K. V. Garimella, J. R. Maguire, C. Hartl, A. A.
Philippakis, G. Del Angel, M. A. Rivas, M. Hanna, A. McKenna, T. J. Fennell, A. M.
Kernytsky, A. Y. Sivachenko, K. Cibulskis, S. B. Gabriel, D. Altshuler, and M. J.
Daly. A framework for variation discovery and genotyping using next-generation DNA
sequencing data. Nature genetics, 43(5):491–498, 2011. doi: 10.1038/ng.806.

B. Goldstein, L. Agranat-Tamir, D. Light, O. B.-N. Zgayer, A. Fishman, and A. T.
Lamm. A-to-I RNA editing promotes developmental stage-specific gene and lncRNA
expression. Genome research, 27(3):462–470, 2017. doi: 10.1101/gr.211169.116.

J. Graffelman and V. Moreno. The mid p-value in exact tests for Hardy-Weinberg
equilibrium. Statistical Applications in Genetics and Molecular Biology, 12(4):433–448,
2013. doi: 10.1515/sagmb-2012-0039.

M. Grohmann, P. Hammer, M. Walther, N. Paulmann, A. Büttner, W. Eisenmenger,
T. C. Baghai, C. Schüle, R. Rupprecht, M. Bader, B. Bondy, P. Zill, J. Priller, and D. J.
Walther. Alternative splicing and extensive RNA editing of human TPH2 transcripts.
PloS one, 5(1):e8956, 2010. doi: 10.1371/journal.pone.0008956.

T. Gu, D. M. Gatti, A. Srivastava, E. M. Snyder, N. Raghupathy, P. Simecek, K. L.
Svenson, I. Dotu, J. H. Chuang, M. P. Keller, et al. Genetic architectures of quantitative
variation in RNA editing pathways. Genetics, 202(2):787–798, 2016. doi: 10.1534/
genetics.115.179481.

E. M. Harcourt, A. M. Kietrys, and E. T. Kool. Chemical and structural effects of
base modifications in messenger RNA. Nature, 541(7637):339, 2017. doi: 10.1038/
nature21351.

Y. He, Q. Chu, P. Ma, Y. Wang, Q. Zhang, D. Sun, Y. Zhang, Y. Yu, and Y. Zhang.
Association of bovine CD4 and STAT5b single nucleotide polymorphisms with somatic
cell scores and milk production traits in Chinese Holsteins. Journal of dairy research,
78(2):242–249, 2011. doi: 10.1017/S0022029911000148.

T. Hwang, C.-K. Park, A. K. Leung, Y. Gao, T. M. Hyde, J. E. Kleinman, A. Rajpurohit,
R. Tao, J. H. Shin, and D. R. Weinberger. Dynamic regulation of RNA editing in
human brain development and disease. Nature neuroscience, 19(8):1093, 2016. doi:
10.1038/nn.4337.

A. Ibrahimi and N. A. Abumrad. Role of CD36 in membrane transport of long-chain
fatty acids. Current Opinion in Clinical Nutrition & Metabolic Care, 5(2):139–145,
2002.

K. Kemper, M. Littlejohn, T. Lopdell, B. Hayes, L. Bennett, R. Williams, X. Xu,
P. Visscher, M. Carrick, and M. Goddard. Leveraging genetically simple traits to
identify small-effect variants for complex phenotypes. BMC genomics, 17(1):858, 2016.
doi: 10.1186/s12864-016-3175-3.

14

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 19, 2018. ; https://doi.org/10.1101/304220doi: bioRxiv preprint 

https://doi.org/10.1101/304220
http://creativecommons.org/licenses/by/4.0/


H. Khatib, R. Monson, V. Schutzkus, D. Kohl, G. Rosa, and J. Rutledge. Mutations
in the STAT5A gene are associated with embryonic survival and milk composition in
cattle. Journal of dairy science, 91(2):784–793, 2008. doi: 10.3168/jds.2007-0669.

D. Kim, G. Pertea, C. Trapnell, H. Pimentel, R. Kelley, and S. L. Salzberg. TopHat2:
accurate alignment of transcriptomes in the presence of insertions, deletions and gene
fusions. Genome biology, 14(4):1, 2013. doi: 10.1186/gb-2013-14-4-r36.

K. Klimek-Tomczak, M. Mikula, A. Dzwonek, A. Paziewska, J. Karczmarski, E. Hennig,
J. M. Bujnicki, P. Brągoszewski, O. Denisenko, K. Bomsztyk, and J. Ostrowski. Editing
of hnRNP K protein mRNA in colorectal adenocarcinoma and surrounding mucosa.
British journal of cancer, 94(4):586, 2006. doi: 10.1038/sj.bjc.6602938.

K. A. Lehmann and B. L. Bass. The importance of internal loops within RNA substrates of
ADAR1. Journal of molecular biology, 291(1):1–13, 1999. doi: 10.1006/jmbi.1999.2914.

K. A. Lehmann and B. L. Bass. Double-stranded RNA adenosine deaminases ADAR1
and ADAR2 have overlapping specificities. Biochemistry, 39(42):12875–12884, 2000.
doi: 10.1021/bi001383g.

H. Li and R. Durbin. Fast and accurate short read alignment with burrows-wheeler
transform. Bioinformatics, 25(14):1754–1760, 2009. doi: 10.1093/bioinformatics/
btp324.

H. Li, Z. Peng, X. Yang, W. Wang, J. Fu, J. Wang, Y. Han, Y. Chai, T. Guo, N. Yang,
et al. Genome-wide association study dissects the genetic architecture of oil biosynthesis
in maize kernels. Nature genetics, 45(1):43–50, 2013. doi: 10.1038/ng.2484.

J. Li and T. Huang. Predicting and analyzing early wake-up associated gene expressions by
integrating GWAS and eQTL studies. Biochimica et Biophysica Acta (BBA)-Molecular
Basis of Disease, 2017. doi: 10.1016/j.bbadis.2017.10.036.

X. Li, A. T. Hastie, G. A. Hawkins, W. C. Moore, E. J. Ampleford, J. Milosevic,
H. Li, W. W. Busse, S. C. Erzurum, N. Kaminski, S. E. Wenzel, D. A. Meyers,
and E. R. Bleecker. eQTL of bronchial epithelial cells and bronchial alveolar lavage
deciphers GWAS-identified asthma genes. Allergy, 70(10):1309–1318, 2015. doi:
10.1111/all.12683.

H. Liang and L. F. Landweber. Hypothesis: RNA editing of microRNA target sites in
humans? RNA, 13(4):463–467, 2007. doi: 10.1261/rna.296407.

M. D. Littlejohn, K. M. Henty, K. Tiplady, T. Johnson, C. Harland, T. Lopdell, R. G.
Sherlock, W. Li, S. D. Lukefahr, B. C. Shanks, D. J. Garrick, R. G. Snell, R. J.
Spelman, and S. R. Davis. Functionally reciprocal mutations of the prolactin signalling
pathway define hairy and slick cattle. Nature communications, 5:5861, 2014a. doi:
10.1038/ncomms6861.

M. D. Littlejohn, K. Tiplady, T. Lopdell, T. A. Law, A. Scott, C. Harland, R. Sherlock,
K. Henty, V. Obolonkin, K. Lehnert, A. MacGibbon, R. J. Spelman, S. R. Davis,
and R. G. Snell. Expression variants of the lipogenic AGPAT6 gene affect diverse
milk composition phenotypes in Bos taurus. PloS one, 9(1):e85757, 2014b. doi:
10.1371/journal.pone.0085757.

M. D. Littlejohn, K. Tiplady, T. A. Fink, K. Lehnert, T. Lopdell, T. Johnson, C. Couldrey,
M. Keehan, R. G. Sherlock, C. Harland, A. Scott, R. G. Snell, S. S. Davis, and R. J.
Spelman. Sequence-based association analysis reveals an MGST1 eQTL with pleiotropic
effects on bovine milk composition. Scientific reports, 6, 2016. doi: 10.1038/srep25376.

X. Liu, G. W. Robinson, F. Gouilleux, B. Groner, and L. Hennighausen. Cloning and
expression of Stat5 and an additional homologue (Stat5b) involved in prolactin signal
transduction in mouse mammary tissue. Proceedings of the National Academy of
Sciences, 92(19):8831–8835, 1995.

15

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 19, 2018. ; https://doi.org/10.1101/304220doi: bioRxiv preprint 

https://doi.org/10.1101/304220
http://creativecommons.org/licenses/by/4.0/


T. J. Lopdell, K. Tiplady, M. Struchalin, T. J. J. Johnson, M. Keehan, R. Sherlock,
C. Couldrey, S. R. Davis, R. G. Snell, R. J. Spelman, and M. D. Littlejohn. DNA and
RNA-sequence based GWAS highlights membrane-transport genes as key modulators
of milk lactose content. BMC Genomics, 18, 2017. doi: 10.1186/s12864-017-4320-3.

W. McLaren, L. Gil, S. E. Hunt, H. S. Riat, G. R. Ritchie, A. Thormann, P. Flicek, and
F. Cunningham. The Ensembl variant effect predictor. Genome biology, 17(1):122,
2016. doi: 10.1186/s13059-016-0974-4.

F. V. Murphy, IV and V. Ramakrishnan. Structure of a purine-purine wobble base pair
in the decoding center of the ribosome. Nature structural & molecular biology, 11(12):
1251–1252, 2004. doi: 10.1038/nsmb866.

A. Niavarani, E. Currie, Y. Reyal, F. Anjos-Afonso, S. Horswell, E. Griessinger, J. L.
Sardina, and D. Bonnet. APOBEC3A is implicated in a novel class of G-to-A mRNA
editing in WT1 transcripts. PloS one, 10(3):e0120089, 2015. doi: doi:10.1371/journal.
pone.0120089.

D. L. Nicolae, E. Gamazon, W. Zhang, S. Duan, M. E. Dolan, and N. J. Cox. Trait-
associated SNPs are more likely to be eQTLs: annotation to enhance discovery from
GWAS. PLoS genetics, 6(4):e1000888, 2010. doi: 10.1371/journal.pgen.1000888.

K. Nishikura. Functions and regulation of RNA editing by ADAR deaminases. Annual
review of biochemistry, 79:321, 2010. doi: 10.1146/annurev-biochem-060208-105251.

H. G. Olsen, H. Nilsen, B. Hayes, P. R. Berg, M. Svendsen, S. Lien, and T. Meuwissen.
Genetic support for a quantitative trait nucleotide in the ABCG2 gene affecting milk
composition of dairy cattle. BMC genetics, 8(1):32, 2007. doi: 10.1186/1471-2156-8-32.

J. Otero, V. Miguel, L. González-Lobato, R. García-Villalba, J. Espín, J. Prieto,
G. Merino, and A. Álvarez. Effect of bovine ABCG2 polymorphism Y581S SNP
on secretion into milk of enterolactone, riboflavin and uric acid. animal, 10(2):238–247,
2016.

C.-J. Pan, S.-Y. Chen, H. S. Jun, S. R. Lin, B. C. Mansfield, and J. Y. Chou. SLC37A1
and SLC37A2 are phosphate-linked, glucose-6-phosphate antiporters. PloS one, 6(9):
e23157, 2011. doi: 10.1371/journal.pone.0023157.

E. Park, J. Guo, L. Lin, L. Demirdjian, S. Shen, Y. Xing, and Y. N. Wu. Population
and allelic variation of A-to-I RNA editing in human transcriptomes. Genome biology,
18(1):143, 2017. doi: 10.1186/s13059-017-1270-7.

B. W. Parks, E. Nam, E. Org, E. Kostem, F. Norheim, S. T. Hui, C. Pan, M. Civelek, C. D.
Rau, B. J. Bennett, et al. Genetic control of obesity and gut microbiota composition in
response to high-fat, high-sucrose diet in mice. Cell metabolism, 17(1):141–152, 2013.
doi: 10.1016/j.cmet.2012.12.007.

B. W. Parks, T. Sallam, M. Mehrabian, N. Psychogios, S. T. Hui, F. Norheim, L. W.
Castellani, C. D. Rau, C. Pan, J. Phun, et al. Genetic architecture of insulin resistance
in the mouse. Cell metabolism, 21(2):334–346, 2015. doi: 10.1016/j.cmet.2015.01.002.

Z. Peng, Y. Cheng, B. C.-M. Tan, L. Kang, Z. Tian, Y. Zhu, W. Zhang, Y. Liang, X. Hu,
X. Tan, J. Guo, Z. Dong, Y. Liang, L. Bao, and J. Wang. Comprehensive analysis
of RNA-Seq data reveals extensive RNA editing in a human transcriptome. Nature
biotechnology, 30(3):253–260, 2012. doi: 10.1038/nbt.2122.

M. Pertea, G. M. Pertea, C. M. Antonescu, T.-C. Chang, J. T. Mendell, and S. L.
Salzberg. StringTie enables improved reconstruction of a transcriptome from RNA-seq
reads. Nature biotechnology, 33(3):290–295, 2015. doi: 10.1038/nbt.3122.

16

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 19, 2018. ; https://doi.org/10.1101/304220doi: bioRxiv preprint 

https://doi.org/10.1101/304220
http://creativecommons.org/licenses/by/4.0/


H. T. Porath, S. Carmi, and E. Y. Levanon. A genome-wide map of hyper-edited RNA
reveals numerous new sites. Nature communications, 5:4726, 2014. doi: 10.1038/
ncomms5726.

K. V. Prasanth, S. G. Prasanth, Z. Xuan, S. Hearn, S. M. Freier, C. F. Bennett, M. Q.
Zhang, and D. L. Spector. Regulating gene expression through RNA nuclear retention.
Cell, 123(2):249–263, 2005. doi: DOI:10.1016/j.cell.2005.08.033.

S. Purcell, B. Neale, K. Todd-Brown, L. Thomas, M. A. Ferreira, D. Bender, J. Maller,
P. Sklar, P. I. De Bakker, M. J. Daly, et al. PLINK: a tool set for whole-genome
association and population-based linkage analyses. The American Journal of Human
Genetics, 81(3):559–575, 2007. doi: 10.1086/519795.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2017. URL https://www.R-project.org.

G. Ramaswami, R. Zhang, R. Piskol, L. P. Keegan, P. Deng, M. A. O’Connell, and J. B.
Li. Identifying RNA editing sites using RNA sequencing data alone. Nature methods,
10(2):128–132, 2013. doi: 10.1038/nmeth.2330.

G. Ramaswami, P. Deng, R. Zhang, M. A. Carbone, T. F. Mackay, and J. B. Li. Genetic
mapping uncovers cis-regulatory landscape of RNA editing. Nature communications,
6:8194, 2015. doi: 10.1038/ncomms9194.

J. S. Reuter and D. H. Mathews. RNAstructure: software for RNA secondary
structure prediction and analysis. BMC bioinformatics, 11(1):129, 2010. doi:
10.1186/1471-2105-11-129.

B. R. Rosenberg, C. E. Hamilton, M. M. Mwangi, S. Dewell, and F. N. Papavasiliou.
Transcriptome-wide sequencing reveals numerous APOBEC1 mRNA-editing targets in
transcript 3′ UTRs. Nature structural & molecular biology, 18(2):230–236, 2011. doi:
10.1038/nsmb.1975.

Y. A. Savva, L. E. Rieder, and R. A. Reenan. The ADAR protein family. Genome
biology, 13(12):1, 2012. doi: 10.1186/gb-2012-13-12-252.

T. D. Schneider and R. M. Stephens. Sequence logos: a new way to display consensus
sequences. Nucleic acids research, 18(20):6097–6100, 1990. doi: 10.1093/nar/18.20.
6097.

T. D. Schneider, G. D. Stormo, L. Gold, and A. Ehrenfeucht. Information content of
binding sites on nucleotide sequences. Journal of molecular biology, 188(3):415–431,
1986. doi: 10.1016/0022-2836(86)90165-8.

S. Siriwardena, K. Chen, and A. S. Bhagwat. The functions and malfunctions of
AID/APOBEC family deaminases: the known knowns and the known unknowns.
Chemical reviews, 116(20):12688, 2016. doi: 10.1021/acs.chemrev.6b00296.

O. Solomon, S. Oren, M. Safran, N. Deshet-Unger, P. Akiva, J. Jacob-Hirsch, K. Cesarkas,
R. Kabesa, N. Amariglio, R. Unger, et al. Global regulation of alternative splicing
by adenosine deaminase acting on RNA (ADAR). RNA, 19(5):591–604, 2013. doi:
10.1261/rna.038042.112.

V. L. Spitsberg, E. Matitashvili, and R. C. Gorewit. Association and coexpression of
fatty-acid-binding protein and glycoprotein CD36 in the bovine mammary gland. The
FEBS Journal, 230(3):872–878, 1995. doi: 10.1111/j.1432-1033.1995.0872g.x.

G. P. Wagner, K. Kin, and V. J. Lynch. Measurement of mRNA abundance using
RNA-seq data: RPKM measure is inconsistent among samples. Theory in biosciences,
131(4):281–285, 2012. doi: 10.1007/s12064-012-0162-3.

17

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 19, 2018. ; https://doi.org/10.1101/304220doi: bioRxiv preprint 

https://www.R-project.org
https://doi.org/10.1101/304220
http://creativecommons.org/licenses/by/4.0/


Q. Wang, H. Hui, Z. Guo, W. Zhang, Y. Hu, T. He, Y. Tai, P. Peng, and L. Wang. ADAR1
regulates ARHGAP26 gene expression through RNA editing by disrupting miR-30b-3p
and miR-573 binding. RNA, 19(11):1525–1536, 2013. doi: 10.1261/rna.041533.113.

L. Xu, M. E. Sowa, J. Chen, X. Li, S. P. Gygi, and J. W. Harper. An FTS/Hook/p107FHIP
complex interacts with and promotes endosomal clustering by the homotypic vacuolar
protein sorting complex. Molecular biology of the cell, 19(12):5059–5071, 2008. doi:
10.1091/mbc.E08-05-0473.

L. Zhang, C.-S. Yang, X. Varelas, and S. Monti. Altered RNA editing in 3′ UTR perturbs
microRNA-mediated regulation of oncogenes and tumor-suppressors. Scientific reports,
6:23226, 2016. doi: 10.1038/srep23226.

Z. Zhang and G. G. Carmichael. The fate of dsRNA in the nucleus: a p54nrb-containing
complex mediates the nuclear retention of promiscuously A-to-I edited RNAs. Cell,
106(4):465–476, 2001. doi: 10.1016/S0092-8674(01)00466-4.

Z. Zhu, F. Zhang, H. Hu, A. Bakshi, M. R. Robinson, J. E. Powell, G. W. Montgomery,
M. E. Goddard, N. R. Wray, P. M. Visscher, and J. Yang. Integration of summary data
from GWAS and eQTL studies predicts complex trait gene targets. Nature genetics,
48(5):481–487, 2016. doi: 10.1038/ng.3538.

Tables

Table 1. Locations of unambiguous edit sites
5′UTR Intron Synonymous Missense 3′UTR
13 1561 30 25 205

Variant Effect Predictor results for 1,834 edited sites with unambiguous results, i.e.,
excluding those with alternative transcripts where multiple effects were predicted, and
those where no gene on the correct strand was assigned. Variants for which the
predictions were upstream_gene_variant or downstream_gene_variant were included in
the 5′ or 3′ UTR respectively, due to imprecise annotation of these features for most
bovine genes.

Table 2. Observed numbers and frequencies of RNA edits by base
All Sites Exonic Only

Edit Class Number Percent Number Percent
A-to-I 1,949 97.4 18 32.7
G-to-A 18 0.9 12 21.8
C-to-U 12 0.6 9 16.4
U-to-C 8 0.4 5 9.1
Other 14 0.7 11 20.0
Total 2,001 55

The numbers and percentages of edited sites by observed edit classes. The second and
third columns present the numbers for all edited sites presented, while the fourth and
fifth columns are restricted to those where VEP predicted a missense or synonymous
change.

18

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 19, 2018. ; https://doi.org/10.1101/304220doi: bioRxiv preprint 

https://doi.org/10.1101/304220
http://creativecommons.org/licenses/by/4.0/


Table 3. Expression of ADAR genes in bovine mammary RNAseq
Gene FPKM TPM
ADAR1 (ADAR) 3.311± 0.054 4.081± 0.082
ADAR2 (ADARB1) 2.300± 0.041 2.824± 0.057
ADAR3 (ADARB2) 0.013± 0.001 0.016± 0.001
APOBEC3A 0.007± 0.001 0.009± 0.001
APOBEC1 0.001± 0.000 0.001± 0.001

FPKM and TPM measures of gene expression in the lactating bovine mammary gland,
for the 355 quantification animals. Values are shown as mean± SEM. Gene names are
given using both the traditional and HGNC (in brackets) nomenclatures. Expression
levels are also displayed for the homologues of two human APOBEC genes that have
been implicated in non-A-to-I editing: APOBEC3A (homologue ENSBTAG00000037800)
in G-to-A editing, and APOBEC1 (homologue ENSBTAG00000014683) in C-to-U
editing.

Table 4. Upstream and downstream nucleotide frequencies
A C G U Total

Upstream
All sites 686 (34.3%) 605 (30.2%) 116 (5.8%) 594 (29.7%) 2,001
A-to-I sites 675 (34.6%) 583 (29.9%) 105 (5.4%) 586 (30.1%) 1,949

Downstream
All sites 351 (17.5%) 317 (15.8%) 987 (49.3%) 346 (17.3%) 2,001
A-to-I sites 344 (17.7%) 301 (15.4%) 970 (49.8%) 334 (17.1%) 1,949

The distributions of nucleotides immediately upstream (top) and downstream (bottom)
of edited sites, considering both the set of all sites, and restricted to only A-to-I sites.

Table 5. Correlations between edQTL and eQTL
Site Ensembl ID Corr eQTL Pval edQTL Pval
Chr6.87384501.AG.CSN3 ENSBTAG00000039787 0.871 1.64× 10−27 2.31× 10−33

Chr6.87384563.AG.CSN3 ENSBTAG00000039787 0.906 1.64× 10−27 9.71× 10−46

Chr6.99862424.AG.HPSE ENSBTAG00000005745 0.915 2.65× 10−30 1.42× 10−38

Chr16.4747421.AG.PFKFB2 ENSBTAG00000002126 0.753 1.30× 10−9 3.96× 10−22

Chr19.42974121.AG.STAT5B ENSBTAG00000010125 0.814 9.44× 10−11 3.72× 10−17

Chr19.9446655.AG.LPO ENSBTAG00000012780 0.732 3.04× 10−18 1.02× 10−19

Chr27.37355512.AG.HOOK3 ENSBTAG00000007634 0.782 6.87× 10−20 7.98× 10−33

Spearman correlations between edQTL and eQTL for the gene in which the edited site
was located. Results are shown only where sites i) were A-to-I edits; ii) were
genome-wide significant for both the eQTL and edQTL; and iii) had correlations larger
than 0.707 (r2 > 0.5).
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Table 6. Correlations between edQTL and milk QTL
Site MY FY PY LY FC PC LC
Chr4.40591602.AG.CD36 0.746 -0.179 0.453 0.663 0.725 0.651 0.237

0.382 -0.037 0.252 0.357 0.356 0.409 0.298
Chr4.40592839.AG.CD36 0.753 -0.210 0.458 0.678 0.733 0.644 0.223

0.362 -0.051 0.286 0.323 0.339 0.236 0.353
Chr6.99862424.AG.HPSE 0.024 0.252 -0.101 0.255 -0.238 0.720 0.346

-0.082 0.338 -0.083 0.016 -0.246 0.320 0.118
Chr17.60341050.AG.FBXW8 -0.294 0.237 -0.336 -0.323 0.753 0.592 -0.216

-0.305 0.092 -0.442 -0.356 0.258 0.479 -0.082
Chr17.60341051.AG.FBXW8 -0.242 0.234 -0.294 -0.271 0.806 0.612 -0.184

-0.219 0.043 -0.415 -0.277 0.348 0.428 -0.168
Chr19.42974121.AG.STAT5B -0.161 -0.202 -0.337 0.607 -0.129 0.785 0.965

0.148 -0.102 -0.183 0.671 0.141 0.733 0.866
Chr27.37355505.AG.HOOK3 -0.166 0.639 -0.153 -0.142 0.395 -0.172 0.709

-0.163 0.351 -0.117 -0.151 0.121 -0.021 0.419
Chr27.37355508.AG.HOOK3 -0.145 0.714 -0.130 -0.141 0.389 -0.170 0.689

-0.114 0.390 -0.095 -0.088 0.104 -0.039 0.393
Chr27.37355512.AG.HOOK3 -0.180 0.668 -0.171 -0.156 0.417 -0.170 0.738

-0.179 0.377 -0.179 -0.147 0.219 0.020 0.472

Pearson (top row) and Spearman (bottom row) correlations (r) between edQTL and
milk production QTL. Only edited sites which i) had a significant edQTL; ii) were
A-to-I edits; and iii) had at least one result where r2 > 0.5 are shown. Results with
r2 > 0.5 are indicated in bold. Phenotypes are milk yield (MY), along with milkfat,
protein, and lactose yield (FY, PY, LY) and concentration (FC, PC, LC).

Figures
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Figure 1. A sequence logo (Schneider and Stephens, 1990) showing the edit-containing
consensus sequence based on all 1,947 A-to-I RNA edit sites identified in the current
study. The proportion of each column occupied by each letter represents the frequency
of that base at that position, while the total height of each column is equal to the
information theoretical entropy (bits) at each position, with calculations as previously
described (Schneider et al., 1986). For clarity of presentation, the edit site (boxed) is not
shown at its actual height of 1.999 bits.

Figure 2. An example dot-plot showing visualisation of double-stranded regions of
RNA sequences. A) A dot-plot for a 2 kbp section of the ABCG2 gene, plotted against
its complementary sequence. Black dots represent positions where at least eight of
the surrounding eleven base pairs are complementary. Longer diagonal black lines
indicate that long complementary sequences are present, representing helical regions in
the secondary structure. Red dots highlight the positions of RNA edit sites. B) The
secondary structure corresponding to the blue boxes highlighted in (A). Four RNA editing
sites are indicated using red bases, corresponding to the red dots in (A). Structure (B)
drawn using the ‘draw’ program from the RNAstructure (Reuter and Mathews, 2010)
software package.
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Figure 3. Distributions of the proportion of edited reads (Φ) for A-to-I RNA editing
sites, by A) upstream nucleotide; B) downstream nucleotide; C) both upstream and
downstream nucleotides. Proportions at each site are averaged across 355 animals in the
quantification data set.

Figure 4. The distribution of Pearson correlation statistics calculated between editing
rates (logit-transformed Φ values) and the expression of the genes to which they map
(VST-transformed; see Materials and Methods). Dark blue indicates correlations which
are significant after Bonferroni correction (P<2.62× 10−5).
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Figure 5. Genetic analysis of RNA editing at the HOOK3 locus. A) A Manhattan
plot showing an edQTL using markers from the BovineHD panel, with the edited site
located at BTA27:37,355,505 within HOOK3. The horizontal black line indicates the
genome-wide significance after Bonferroni correction. B) A 1 Mbp window centred on the
most significant variant in the WGS-resolution data (rs109157662; BTA27:37,355,466).
Colours represent the strength of LD (R2) with that variant. The vertical dashed line
indicates the position of the edited site. No variants are present around 37.6 Mbp due to
the presence of numerous small contigs at this locus in the reference sequence, which have
been filtered out of the WGS data set due to errors in phasing. C) Putative structure of
the pre-mRNA surrounding the edited sites (red) and candidate causative SNP (orange).
Site BTA27:37,355,505 is the left-most edited site. The candidate causative SNP is also
shown in (B) with an orange border.

Figure 6. Graphical illustration of the mechanistic hypothesis that reducing sequence
complementarity will decrease rates of editing. A) A short double-stranded section of
an mRNA secondary structure, containing a SNP (C) with complementary (G), and
an adjacent editing site (A), with high levels of editing. B) The alternative SNP allele
(A) reduces complementarity, destabilising the secondary structure with a consequent
reduction in editing rates.
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Figure 7. Two examples of co-located, co-segregating eQTL and edQTL. Each point
represents the − log10 p-values for one variant for an edQTL (x-axis) and eQTL (y-axis).
A) The edQTL for the Chr19.42974121.AG.STAT5B site, against the STAT5B eQTL,
with correlation r = 0.814. B) The edQTL for the Chr6.87384563.AG.CSN3 site, against
the CSN3 gene, with correlation r = 0.906.

Figure 8. Production QTL and correlations with co-located edQTL and eQTL. Pan-
els A and B: 1 Mbp windows for two production QTL (blue), eQTL (orange) and
edQTL (green). Panel A shows the lactose concentration (LC) QTL at Chr19:42.9Mbp,
with the co-segregating STAT5B eQTL and Chr19.42974121.AG.STAT5B site edQTL.
Panel B shows the fat concentration (FC) QTL at Chr17:60.3Mbp, and co-segregating
Chr17.60341051.AG.FBXW8 edQTL, along with an independently segregating FBXW8
eQTL (Panel D). Panels C and D: plots of QTL p-values (− log10 scale) against one
another. Panel C illustrates the strong correlations between all three QTL in panel A.
Panel D shows a case where, while the FC QTL and Chr17.60341051.AG.FBXW8 edQTL
are correlated, and therefore may share a similar genetic underpinning, the FBXW8
eQTL is not correlated with either.
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Supporting Information
Figure S1
Dot plots of genome sequences centred on RNA editing sites. Sequences are plotted
against their complement, with dots indicating that at least 11 of the 15 surrounding
nucleotides are complementary, yielding diagonal black lines where long strands of
complementarity are present, indicating potential double-stranded regions. Red dotted
lines indicate the positions of RNA editing sites, showing that these tend to cluster
within the double-stranded regions.

Figure S2
Structures predicted using the ‘bifold’ program from the RNAstructure (Reuter and
Mathews, 2010) software package, for double-stranded regions predicted from the dot
plots shown in Figure S1. Edited sites are indicated in red.

Figure S3
An example comparison between WGS and RNAseq for three animals, illustrating the
difference between SNPs and RNA editing. The region shown is part of intron 1 of the
LPO (lactoperoxidase) gene. The top row shows the single SNP called in this region from
a large WGS study. The section with the blue background shows the WGS coverage
mapped for three animals, where grey represents the reference base (indicated at the
bottom of the figure), and with blue and brown representing cytosine and guanine
respectively. The section with the yellow background shows the RNAseq coverage for the
same three animals (green = adenine). Edit sites appear in the RNAseq coverage as bars
of mixed green and brown (A-to-G(I) edits), while SNPs appear at the same location in
both the WGS and RNAseq sequences.

Table S1
Summary data for edited sites. Tab one (“Edited Sites”) contains the chromosome and
base position of each site on the bovine UMD 3.1 reference genome, along with the gene in
which the site is located by HGNC symbol and Ensembl ID, plus the reference and edited
base, complemented when the strand is negative. Tab two (“VEP Results”) contains the
outputs from the Variant Effect Predictor for each edited site. The reference and edited
base are not complemented in this tab. Tab three (“Edit Frequencies”) contains the data
in tab one, with the addition of the immediate upstream and downstream bases, plus the
mean, median and standard deviation of the editing frequency for each site. Only A-to-I
sites are included.

Table S2
Details of the 131 edit sites exhibiting genome-wide significant cis-edQTL. Gene symbols
and Ensembl identifications are provided for genes containing the edit sites. Also included
are the minimum p-values for each edQTL, as well as the strength of the cis-eQTL for
the appropriate gene. The Spearman correlation between the association (χ2) statistics
for the edQTL and eQTL are also included, in the second tab.

Table S3
Correlations between all 131 cis-edQTL and milk production QTL. Edit sites are named
by position (UMD 3.1 reference), reference and edited bases, and gene symbol. Tab one
contains Pearson correlations, and tab two contains Spearman correlations. On both
tabs, correlations greater than 0.707 (

√
0.5) are highlighted in bold, those greater than

0.5 are italicised, and those less than zero are in grey.
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