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Abstract

Optimizing methods for liquid chromatography coupled to mass spectrometry (LC-
MS) is a non-trivial task. Here we present rawDiag, a software tool supporting rational
method optimization by providing MS operator-tailored diagnostic plots of scan level
metadata. rawDiag is implemented as R package and can be executed on the command
line, or through a graphical user interface (GUI) for less experienced users. The code
runs platform independent and can process a hundred raw files in less than three
minutes on current consumer hardware as we show by our benchmark. In order to
demonstrate the functionality of our package, we included a real-world example taken

from our daily core facility business.
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1 Introduction

Over the last decade, liquid chromatography coupled to mass spectrometry (LC-MS) has
evolved into the method of choice in the field of proteomics.!™ During a typical bottom up
LC-MS measurement, a complex mixture of analytes is separated by a liquid chromatography
system that is connected to a mass spectrometer (MS) through an ion source interface. The
analytes which elute from the chromatography system over time are converted into a beam
of ions in this interface and the MS records from this ion beam a series of mass spectra
containing detailed information on the analyzed sample.%” These mass spectra, as well as
their metadata, are considered as the raw measurement data and usually recorded in a
vendor specific binary format. During a measurement, the mass spectrometer applies internal
heuristics which enables the instrument to adapt to sample properties like sample complexity
or amount in near real time. Still, method parameters controlling these heuristics, need to
be set prior to the measurement. For an optimal measurement result, a carefully balanced
set of parameters is required, but their complex interactions with each other make LC-MS
method optimization a challenging task.

Here we present rawDiag, a platform independent software tool implemented in R that
supports LC-MS operators during the process of empirical method optimization. Our work
builds on the ideas of the discontinued software “rawMeat” (vastScientific). Our application
is currently tailored towards spectral data acquired on Thermo Fisher Scientific instruments
(raw format), with a special focus on Orbitrap mass analysers (Exactive or Fusion instru-
ments). These instruments are heavily used in the field of bottom-up proteomics in order
to analyse complex peptide mixtures derived from enzymatic digests of proteomes. raw-

Diag is meant to run post mass spectrometry acquisition, optimally as interactive R shiny
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application and produces a series of diagnostic plots visualizing the impact of method pa-
rameter choices on the acquired data across injections. If static reports are required, pdf
files can be generated using R markdown. The visualizations generated by rawDiag can be
used in an iterative method optimization process (see Figure 1) where an initial method is
tested, analyzed and based on these results a hypothesis can be formulated to optimize the
method parameters. The same sample is then re-analyzed with the optimized method and
the data can enter the refinement loop again until the operator is satisfied with the found
set of method parameters for his type of sample.

In this manuscript we present the architecture and implementation of our tool. We
provide example plots, show how plots can redesigned to meet different requirements and

discuss the application based on a use cases.
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Figure 1: The schema displays the feedback loop of the optimization process of an LC-MS
method using rawDiag (see the grey box on the right). The optimization starts (“start here”)
with an initial method. Scan data is recorded using the initial method and the information
stored as raw instrument data. rawDiag reads the scan metadata data and visualizes the
method characteristics. Based on this analysis, the mass spectrometer operator can optimize
the instrument method. Optionally, rawDiag could also operate on top of a lab information
management system(LIMS).
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2 Experimental Procedures

2.1 Architecture

rawDiag acts as an interface to vendor specific software libraries that are able to access
the spectrum-level metadata contained in a mass spectrometer measurement. The package
provides support for R command line, interactivity through R shiny and pdf report generation

using R markdown. A rough overview of the architecture can be seen in Figure 1.

2.2 Implementation

The entire software is implemented as R package providing a full documentation and includes
example data. All diagnostic plots are generated by R functions using the ggplot2® graph-
ical system, based on “The Grammar of Graphics”.? The package ships with an adapter
function read.raw which returns an R data. frame object from the raw data input file.
In its current implementation, the adapter functions default input method is set for read-
ing Thermo Fisher Scientific raw files, using a C# programmed executable!', based on the
platform-independent RawFileReader .Net assembly?. Since in general more than one mass
spectrometry file is loaded and visualized, the adapter function supports multiprocessor in-
frastructure through the parallel R package. In order to be flexible with the entire variety of
instruments, we implemented the two utility functions ¢s.rawDtag and as.rawDiag. While
the is.rawDiag function checks if the input object fulfills the requirements of the package’s
diagnostic plot functions, the as.rawDiag method coerce the object into the right format

by deriving missing values if possible, otherwise filling missing columns with NA values.

LA Docker recipe for the entire build process of the C# based executable also ships with the R package.
2http://planetorbitrap.com/rawfilereader, December 2017
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2.3 Visualization

This package is providing several plot functions tailored towards mass spectrometry data.
A list of the implemented plot functions with a short description can be found in Table 1.
An inherent problem of visualizing data is the fact that depending on the data at hand
certain visualizations lose their usefulness (e.g. overplotting in scatter plot if too many
data points are present). To address this problematic, we implemented most of the plot
functions in different versions inspired by the work of Cleveland,!® Sarkar!! and Wickham.®
The data can be displayed in trellis plot manner using the faceting functionality of ggplot2
(see Figure 2A). Alternatively, overplotting using color coding (Figure 2B) or violin plots
based on descriptive statistics values (Figure 2C) can be chosen. This allows the user to
interactively change the appearance of the plots based on the situation at hand. E.g. a
large number of files are best visualized by violin plots giving the user an idea about the
distribution of the data points. Based on this a smaller subset of files can be selected and
visualized with another technique.

To benefit from the grammar of graphics, e.g., adapt y-axis scaling, change axis labels, add
title or subtitles, each of the implemented plot functions always returns the ggplot object.
Due to the implementation of this design pattern those ggplot objects can be further altered
by adding new layers allowing a customization of the plots if needed. The following R code
snippet produces the three plots shown in Figure 2 and demonstrates the described feature

of modifying an existing ggplot object by eliminating the legend in the last two plots.

R> library(rawDiag)
R> WU163763 <- getWU163763()
R> PlotMassDistribution(WU163763)

R> PlotMassDistribution(WU163763, method = 'overlay') +

+ theme (legend.position = 'none')

R> PlotMassDistribution(WU163763, method = 'violin') +

+ theme (1egend.position = 'none')
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The interactivity of the visualizations is achieved by an implementation of the plot func-
tions into an R shiny applications. Static versions of the plots can be easily generated by

the provided R markdown file that allows the generation of pdf reports.
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Figure 2: Concurrent metadata visualization applying PlotMassDistribution to nine raw
files acquired in DDA mode (sample was 1pg HeLa digest.) A) method trellis B) method
overlay C) method violin.

2.4 FEvaluation

We tested the performance of our approach by running an scan information throughput
benchmark as a function of the number of used processes on a Linux server and an Apple
MacBook Pro. The hardware specifications are listed in Table 2.

As benchmark data, we downloaded the raw files described in'® on the filesystem. For
the benchmark we limited the input to 128 files, corresponding to two times the available
number of processor cores of the Linux system. The data has an overall file size of 95 GBytes

and contains 4’149’326 individual mass spectra in total.
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Table 1: The rawDiag cheatsheet lists the functions of the package using a subset of the
provided ‘WU163763° dataset. Each thumbnail gives an impression of the plot function’s
result. The column names ‘trellis,” ‘overlay’ and ‘violin’ were given as method attribute.
Marginal distribution plots for discrete response variables are not supported.

function name trellis overlay violin description

read.raw reads mass spectrometric measurement file.
is.rawDiag tests if an object is an rawDiag S3 class.
as.rawDiag coerces an object to a rawDiag S3 class object.
summary . rawDiag provides a summary.

PlotChargeState - displays charge state distributions as biologist-

l friendly bar charts as absolute counts. 12
[ |

PlotCycleLoad ,7 - displays duty cycle load (number of MS2 scans
per duty cycle) as a function of retention time
(RT) (scatter plots) or its marginal distribution

(violin).

PlotCycleTime . i | displays cycle time with respect to RT (scatter
‘ | 1 plots) or its marginal distribution (violin). A
: smooth curve graphs the trend. The maximum

is indicated by a red dashed line.

PlotInjectionTime displays injection time as a function of RT. A
[ Nl | smooth curve graphs the trend. The maximum

] r— 7 T is indicated by a red dashed line.

PlotLockMassCorrection — —_— —_— graphs the lock mass deviations along RT (note:
this example data were acquired with lock mass
""""""""""" correction).

PlotMassDistribution \‘ ‘\‘ ‘ displays mass distribution using color coding ac-
\ ““ cording to charge state (trellis) or file (violin).

PlotMassHeatmap - draws a computer scientist-friendly 2D histogram
of the peak count charge deconvoluted mass

along RT.

/ /\
PlotMzDistribution /\ /\ a scatter plot of m/z versus RT on MSI level (no
( \(/ > density; with overplotting.). violin display the

marginal m/z distribution of each file.

PlotPrecursorHeatmap - according to PlotMassHeatmap but displaying

convoluted data.

~ <=
\ |
PlotScanFrequency T graphs scan frequency versus RT or scan fre-
| ‘ Ll quency marginal distribution for violin.
N
- 14
PlotScanTime w plots scan time as function of RT for each MSn

- 1 i s ! { dL level. A smooth curve displays the trend.

PR R

PlotTicBasepeak - displays the total ion chromatogram (TIC) and

b b Lt | the base peak chromatogram.
JM\ M MM’M ) p g
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Table 2: Summary of the hardware specifications.

specs Linux Server Apple MacBook Pro 2017

number of cores 64 8

CPU Intel(R) Xeon(R) CPU E5- | 2.9GHz Intel Core i7
2698 v3 @ 2.30GHz

disk RAID Module RMS25CB080 | SSD SM1024L

filesystem XFS APFS

OS SMP Debian 3.16.43- | Darwin  Kernel  Version
2+deb8u2 17.4.0

Mono JIT compiler version | 5.8.0.127 5.2.0.224

The left plot in Figure 3 depicts the overall runtime in dependency of the number of used
CPUs for five repetitions starting with 64 cores to avoid caching issues. The right scatter
plot in Figure 3 is derived from the overall runtime and illustrates the scan information
throughput in dependency of the number of used process cores.

The best performance on our system is achieved by using 39 CPUs having an performance

of reading 64’833 scan information per second.
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Figure 3: Benchmark — The left plot shows the overall logarithmic scaled runtime of 128
raw files. The graphic on the right side shows the thereof derived 10 throughput as scan
information per second. The plots illustrate that both systems, server, and laptop, can
analyze 95GB of instrument data within less than three minutes.
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3 Results and discussion

Our application rawDiag acts as an interface to file reader libraries from mass spectrometry
vendors. These libraries are able to access the scan data as well as the scan metadata stored
in the proprietary file formats. In its current configuration, rawDiag is able to read data
from Thermo Fischer Scientific raw files via a C# executable. This executable is extracting
the information stored in the raw file via the platform-independent RawFileReader .Net
assembly. To avoid writing to the disk, the information is directly fed into an R session
using the pipe command. The data integrity is checked by the 4s.rawDiag function and
coerced by the as.rawDiag function into the proper format for the plot functions if required.
As soon as the data is extracted and loaded into the R session, the different plot functions
can be called upon the data for the visualizations of LC-MS run characteristics. In the
envisioned method optimization pipeline (see Figure 1) a test sample which mimics the
actual research sample as close as possible is analyzed with an initial method. After the
analysis is finished, the acquired data can be visualized by our application. Based on the
visualized run characteristics a hypothesis for the method optimizations can be formulated
and the optimized methods can again be used to analyze the test sample. A use case example
of this process will be discussed in the following paragraph. In the interactive mode, the
application runs as an R shiny server and generates a summary table of all loaded data
allowing to get an overview in a single glance. The user is provided with a series of plots
which provide a rational basis for optimizing method parameters during the iterative process
of empirical mass spectrometry method optimization. In order to be flexible towards different
situations where a single visualization technique might lose its usability, most plot functions
can be called in three different versions. This allows to circumvent overplotting issues or
helps to detect trends when multiple files are loaded. A list of the currently implemented
plot functions can be found in Table 1 and the flexibility of choosing different visualization

styles is depicted in Figure 2.
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3.1 Use case — Optimize data dependent analysis

Starting from an initial method template based on the work of Kelstrup et al.,'® we ana-
lyzed 1 ug of a commercial tryptic HeLa digest on a Q-Exactive HF-X instrument using a
classical shotgun heuristics. Subsequently, the resulting raw data was mined using rawDiag.
Inspection of the diagnostic plots suggested that analysis time was not optimally distributed
between the different scan levels (precursor and fragment ions). To test this hypothesis,
we ramped the parameter controlling the number of dependent scans per instrument cycle
(TopN), in two steps and applied the resulting methods by analyzing the same material in
technical triplicates. Visualization applying rawDiag confirmed that all three methods ex-
ploit the max. number of dependent scans (18, 36 and 72) during the separation phase of the
gradient (see Figure 4B). Concurrently, the MS2 scan speed increased from ~30 to ~36 and
~40 Hz respectively (see Figure 4A). Using the modified methods, the instrument is spend-
ing 5 and 10 min more time on MS2 scans during the main peptide elution phase, comparing
the methods to the initial "Top18” method (see Figure 4E). As a concomitant effect the
average cycle load (number of MS2 scans per cycle) increased from 10 ("Topl8”) to 16 and
21 ("Top36” and "Top72”, respectively). These optimized methods not only showed better
run characteristics but ultimately also resulted in more peptide and protein identifications
as shown in Figure 4C and 4D. (Data searched by Sequest through ProteinDiscoverer agains
a human database applying standard search parameters and filtered for high confidence)
Interestingly, the number of peptide spectrum matches (PSM) is decreasing in the "Top72”
method compared with the "Top36”. Based on this one could formulate a new hypothesis:
the "Top72” method is sampling the precursors to such a deep level, that we reach an injection
time limit for many low abundant species (MS2 quality is suffering from low amount of ions).
To test this, the methods could now be further fine tuned by reducing the number of MS2
from 72 to a lower number but at the same time increase the injection time to increase the

spectra quality.
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3.2 Related work

To our knowledge the only alternative tool that is able to extract and visualize metadata
from raw files on single scan granularity is rawMeat (Vast Scientific). Unfortunately, it was
discontinued years ago and built on the meanwhile outdated MSFileReader libraries from
Thermo Fisher Scientific (MS Windows only). This implies that it does not fully support

1T are tailored

the latest generation of qOrbi instruments. Other loosely related tools
towards longitudinal data recording and serve the purpose of quality control (monitoring of

instrument performance) rather than method optimization.

4 Conclusion

In this manuscript, we presented rawDiag an R package to visualize characteristics of LC-MS
measurements. Through its diagnostic plots, rawDiag supports scientists during empirical
method optimization by providing a rational base for choosing appropriate data acquisition
parameters. The software is interactive and easy to operate through an R shiny GUI applica-
tion, even for users without prior R knowledge. More advanced users can fully customize the
appearance of the visualizations by executing their own code from the R command line. This
also enables rawDiag to be customized and implemented into more complex environments,
e.g., data analysis pipelines embedded into LIMS systems. In its current implementation,
the software is tailored towards the Thermo Fisher Scientific raw file format, but its architec-
ture allows easy adaptation towards other mass spectrometry data formats. An interesting
showcase would be the novel Bruker tdf 2.0 format (introduced for the timsTOF Pro), where
scan metadata is not “hidden” in proprietary binary files, but stored in an open SQLite
database directly accessible to R. In the future, we plan to extend rawDiag by allowing users
to link additional metadata not originally logged by the instrument software (derived meta-
data), but created offline by external tools. A simple, but very useful example, is to scan

metadata created by search engines. These typically links scans to similarity scores, peptide

11
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assignments, and their corresponding probabilities. This would allow visualizing assignment
rates and score distributions across injections. Having the peptide assignments at hand will
open the door for chained metadata usage, for instance by linking a scan over the amino
acid sequence of the identified peptide to physicochemical properties like hydrophobicity,
iRT scores, or MW. Such derived metadata can then be compared to primary metadata like
empirical mass or RT. Linking primary and derived metadata will also clear the way to big
data applications similar to MassIVE? but bypassing the necessary conversion to open data
formats like mzML. This is beneficial since the conversion process does not preserve all useful

primary metadata.

Supporting Information Available

The package vignette as well as the R package itself, a Dockerfile which build the entire
architecture from scratch, is accessible through a git repository under the following URL:
https://github.com/protViz/rawDiag.

A demo system including all data shown in this manuscript is available through http:

//fgcz-ms-shiny.uzh.ch:8080/rawDiag-demo/.
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R Session information

An overview of the package versions used to produce this document are shown below.
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Loaded via a namespace (and not attached): assertthat 0.2.0, bindr 0.1, broom 0.4.2,
cellranger 1.1.0, colorspace 1.3-2, compiler 3.4.2, forcats 0.2.0, foreign 0.8-69,
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mnormt 1.5-5, modelr 0.1.0, munsell 0.4.3, nlme 3.1-131, parallel 3.4.2,

pkgconfig 2.0.1, plyr 1.8.4, psych 1.7.3.21, R6 2.2.2, Rcpp 0.12.12, readxl 1.0.0,
reshape2 1.4.2, rlang 0.1.2, rvest 0.3.2, scales 0.5.0, stringi 1.1.5, stringr 1.2.0,

tools 3.4.2, xml2 1.1.1
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Figure 4: A) Moving average of the scan speed of triplicate measurements of "Top18” (blue),
"Top36” (green) and "Top72” (orange). B) Number of MS2 scans for each scan cycle for
"Top18” (blue), "Top36” (green) and "Top72” (orange). C) Number of Proteins (orange) and
peptides (blue) for the different TopN settings (note: number of peptides is divided by 10 in
this plot due to scaling reasons). D) Number of PSM (blue) and MS2 scans (orange) for the
different TopN settings. E) Time spent on MS1 (blue) and MS2 (orange) for the different
TopN settings. Time range for calculation is the elution phase of the peptides between 15-70
min.
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