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Abstract

The estimation of multiple sequence alignments of protein sequences is
a basic step in many bioinformatics pipelines, including protein structure
prediction, protein family identification, and phylogeny estimation. Sta-
tistical co-estimation of alignments and trees under stochastic models of
sequence evolution has long been considered the most rigorous technique
for estimating alignments and trees, but little is known about the accuracy
of such methods on biological benchmarks. We report the results of an
extensive study evaluating the most popular protein alignment methods
as well as the statistical co-estimation method BAli-Phy on 1192 protein
data sets from established benchmarks as well as on 120 simulated data
sets. Our study (which used more than 230 CPU years for the BAli-Phy
analyses alone) shows that BAli-Phy is dramatically more accurate than
the other alignment methods on the simulated data sets, but is among
the least accurate on the biological benchmarks. There are several poten-
tial causes for this discordance, including model misspecification, errors
in the reference alignments, and conflicts between structural alignment
and evolutionary alignments; future research is needed to understand the
most likely explanation for our observations. multiple sequence alignment,
BAli-Phy, protein sequences, structural alignment, homology

Introduction

Multiple sequence alignment is a basic step in many bioinformatics pipelines,
including phylogenetic estimation, but also for analyses specifically aimed at
understanding proteins. For example, protein alignment is used in protein
structure and function prediction [13], protein family and domain identification
[49, 23], functional site identification [1, 64], domain identification [5], inference
of ancestral proteins [27], detection of positive selection [22], and protein-protein
interactions [77]. However, multiple sequence alignment is often difficult to per-
form with high accuracy, and errors in alignments can have a substantial impact
on the downstream analyses [32, 48, 54, 22, 15, 66, 74, 29, 58]. For this reason,
the evaluation of multiple sequence alignment methods (and the development
of new methods with improved accuracy), especially for protein sequences, has
been a topic of substantial interest in the bioinformatics research community
(e.g., [74, 69, 28, 56, 34]).

Protein alignment methods have mainly been evaluated using databases,
such as BAliBase [3], Homstrad [46], SABmark [73], Sisyphus [2], and Mat-
tBench [14], that provide reference alignments for different protein families and
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superfamilies based on structural features of the protein sequences. Perfor-
mance studies evaluating protein alignment methods using these benchmarks
(e.g., [18, 65, 44]) have revealed conditions under which alignment methods
degrade in accuracy (e.g., highly heterogeneous data sets with low average pair-
wise sequence identity), and have also revealed differences between alignment
methods in terms of accuracy, computational efficiency, and scalability to large
data sets. In turn, the databases have been used to provide training sets for
multiple sequence alignment methods that use machine learning techniques to
infer alignments on novel data sets. Method development for protein alignment
is thus strongly influenced by these databases, and has produced several pro-
tein alignment methods that are considered highly accurate and robust to many
different challenging conditions.

An alternative approach to multiple sequence alignment has been devel-
oped within the statistical phylogenetics community in which an alignment is
co-estimated with a phylogenetic tree by considering stochastic models of evo-
lution in which sequences evolve down a model tree under a process that in-
cludes substitutions, insertions, and deletions (jointly referred to as “indels”).
Likelihood-based estimation of alignments and/or trees under these models pro-
vide a mathematically rigorous and highly appealing approach, and was initially
proposed in [6]. Subsequent extensions of this basic approach were made in a
sequence of papers [70, 71, 72, 26, 41, 42, 43, 25, 40, 20, 39, 68, 61, 52, 11, 59].
BAli-Phy [68, 61, 59], a Bayesian method that uses MCMC sampling to jointly
estimate the multiple sequence alignment and phylogenetic tree under a stochas-
tic sequence evolution model that allows for indels and substitutions, is the most
well known of these methods.

Prior studies have shown somewhat different trends with respect to BAli-
Phy’s performance on biological and simulated data sets. Three studies [36, 59,
53] evaluated BAli-Phy on simulated nucleotide data sets and found it to have
superior accuracy compared to the other alignment methods they examined;
this question was examined directly in [36, 59] and indirectly in [53] through
the substitution of MAFFT [31] by BAli-Phy within PASTA [44], a divide-and-
conquer meta-method that is designed to scale MSA methods to larger data
sets. Finally, [30] evaluated BAli-Phy on protein biological benchmarks as well
as on simulated protein data sets, and found that BAli-Phy was much less
accurate than some other MSA methods (Prank [37], Muscle [19], and variants
of MAFFT) on the biological data, but was very good (and for some criteria it
was the best) on the simulated data. This study is intriguing but limited, in
that they used somewhat non-standard evaluation criteria and did not explore
several leading protein alignment methods. In addition, the data sets that
were analyzed in [30] were large for BAli-Phy (the simulated data sets had 100
sequences, and the biological data sets ranged up to 100 sequences) and BAli-
Phy was only run twice, each for only 1000 MCMC iterations. As discussed in
[30, 60], 1000 MCMC iterations may not have been sufficient to allow BAli-Phy
to reach convergence on data sets of this size, and it is known that BAli-Phy
can have reduced accuracy if stopped prematurely [60]. Hence, a more careful
evaluation of BAli-Phy is necessary to understand its performance on biological
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benchmark data sets.
In this paper, we report on an extensive performance study in which we com-

pare BAli-Phy version 2.3.8 to a collection of leading protein sequence alignment
methods. We use 1192 data sets from four established benchmark databases of
protein multiple sequence alignments (BAliBASE, Sisyphus, MattBench, and
Homstrad) as well as 120 simulated data sets in order to characterize the rel-
ative and absolute accuracy of the alignment methods we explore. We limit
our study to biological sequence data sets with at most 25 sequences and to
simulated data sets (under 6 model conditions) with 27 sequences, so that we
are able to run BAli-Phy for long enough to enable it to converge. In particular,
we ran BAli-Phy on each data set using 32 independent runs, each for 48 hours
(i.e., BAli-Phy was run somewhat longer than 2 months on each data set). This
analysis protocol enabled BAli-Phy to generate many hundreds of thousands
(and in several cases more than 1,000,000) of MCMC samples for each data set
that it analyzed, and achieve good ESS values that indicate that BAli-Phy may
have converged well on these data sets. Our study used more than 230 CPU
years for the BAli-Phy analyses alone, and provides a careful evaluation of how
BAli-Phy performs on biological and simulated data sets.

The most important outcome of our study is that BAli-Phy is dramatically
more accurate than all the alignment methods we explore on the simulated
data sets, but is among the less accurate on the biological data sets. One
possible explanation is that many of the reference sequence alignments in these
benchmark data sets have substantial error. Another potential explanation is
model misspecification, so that the sequence evolution models underlying BAli-
Phy may be a poor fit to how protein sequences actually evolve. Finally, it
is possible that many of the reference alignments in the biological benchmark
data sets reflect shared structural features that are not a result of descent from
a common ancestor (i.e., the aligned amino acids in the reference alignments are
structurally homologous and not evolutionarily homologous). Further research is
needed to determine the major causes for the discordance between performance
on biological benchmarks and simulated data sets.

Materials & Methods

Alignment Methods

We explored the following multiple sequence alignment methods: BAliPhy v. 2.3.6,
Clustal-Omega v. 1.2.4 [65], CONTRAlign v. 1.04 [16], DiAlign v. 2.2.2 [47,
24], KAlign v. 2.04 [33], MAFFT v. 7.305b [31], Muscle v. 3.8.31 [19], Prank
v. 140603 [38, 37], Prime v. 1.1 [78], ProbAlign v. 1.4 [63], Probcons v. 1.12 [17],
PROMALS3D [57], and T-Coffee v. 11.00.8cbe486 [50, 51, 55], We explore two
ways of running MAFFT: MAFFT-G-INS-i and MAFFT-Homologs (using the
SwissProt Database [4]).

All methods other than BAli-Phy and Promals3D were performed in default
mode. Promals-3D enables structural alignment features, but we turned these

3

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 20, 2018. ; https://doi.org/10.1101/304659doi: bioRxiv preprint 

https://doi.org/10.1101/304659
http://creativecommons.org/licenses/by-nc-nd/4.0/


off using the following sample command:

python promals < InputSequencesFile > -dali 0 -tmalign 0 -fast 0

BAli-Phy requires specific parameters (including the substitution model and the
number of MCMC iterations) to be set by the user. To select a protein sequence
evolution model for use in BAli-Phy, we applied RAxML [67] version 8.2.9 to
the alignment computed using MAFFT L-ins-i. We ran 32 independent runs
of BAli-Phy, each for 48 hours, discarding the first 25% of the alignments that
were generated during the MCMC run, and then retaining every 10th alignment
in the remaining sample. The point estimates of the alignments were computed
using the posterior decoding (PD). According to the output from BAli-Phy, the
vast majority of the BAli-Phy runs we performed showed evidence of having
converged, as indicated by various statistics (e.g., Minimum ESS values); see
Supplementary materials for these statistics.

Computational Resources

BAli-Phy and T-Coffee are the most computationally intensive methods we ex-
plored, and so these were run on the Blue Waters supercomputer at the National
Center for Supercomputing Applications (NCSA); all other methods were run
on the Campus Cluster at the University of Illinois at Urbana-Champaign.

Evaluation Criteria

The accuracy of the estimated alignment was assessed in comparison to the
reference alignment for the biological data sets, and to the true alignment for
the simulated data sets. We used FastSP v. 1.6.0 [45] to calculate alignment
accuracy with respect to the Modeler Score and SP-score. These accuracy mea-
sures produce a value between 0.0 and 1.0, with 1.0 indicating perfect accuracy
and 0.0 indicating complete failure. We also report the expansion ratio, which
is the ratio of the numbers of sites in the estimated alignment and the refer-
ence or true alignment; values below 1.0 represent over-alignment (i.e., shorter
alignments than the reference or true alignment) and values greater than 1.0
represent under-alignment.

Data Sets

Protein biological data sets. We took all the alignments from the four
databases we selected (BAliBASE, MattBench, Homstrad, and Sisyphys) that
had between 4 and 25 sequences. All alignments with more than 25 sequences
were then sub-sampled to produce a data set with between 5 and 25 sequences;
see Supplementary Materials for the protocol used for subsampling.

T-COFFEE failed to align a number of data sets due apparently to a lack of
results from the BLAST step of the algorithm; this was particularly pronounced
on the BAliBase data, where 82 out of 742 alignments were not completed,
although it also failed to align 2 datasets each from the other three benchmarks.
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BAli-Phy was able to analyze all the datasets, but on two datasets the posterior
decoding algorithm failed due to the high computational complexity of having
a small number of very long sequences. After eliminating the datasets where
T-Coffee and the Bali-Phy posterior decoding failed to complete, we still had a
large number (1192) of reference alignments from the four benchmarks.

Table 1 presents empirical properties for the reference alignments for these
1192 data sets, including average pairwise sequence identity (PID), average se-
quence length, average number of sequences, average percentage gapped, and
mean gap length.

Table 1: Empirical properties of the 1192 reference alignments from the four
biological benchmark collections. We report the average pairwise sequence iden-
tity (%PID), average number of sequences, average alignment length, average
fraction of the reference alignment occupied by gaps, and median gap length.

Database % PID # seqs. alignment length % gapped gap length
BAliBase 30.0% 12.4 772.0 37.7% 8.1
Homstrad 36.7% 6.9 257.3 16.6% 2.7
MattBench 20.0% 7.3 416.4 44.6% 2.8
Sisyphus 25.5% 9.4 172.3 21.0% 4.9

Simulated data sets. We generated 120 simulated data sets (20 data sets
from each of 6 different model trees) to evaluate the alignment methods for
this study. To obtain the basic model tree topology and branch lengths, we
selected the 27-sequence serine protease data set from the Homstrad benchmark
collection, computed a MAFFT L-ins-i alignment on the data set, and then used
RAxML to construct a phylogenetic tree with branch lengths. We set the indel
rate and the gap length distribution (a negative binomial) to match the empirical
distribution for the serine protease data set. We then modified this basic model
tree in two ways – by rescaling the branch lengths (by a factor of three) and
reducing the indel rate – to produce six different model conditions (Table 2)
that ranged in terms of the average percent gapped (from 18.3% to 46.4%) and
average pairwise sequence identity (PID) (from 10.7% to 23.9%). Hence, this
process produced six different model conditions with a range of average PID and
percentage gapped that cover the characteristics of the biological benchmark
data sets we explored. The root sequence had 200 amino acids, and sequences
evolved down each model tree with substitutions and indels under the WAG
[75] model, using Indelible [21].

Results

Results on Biological Data Sets

The results shown are restricted to the 1192 datasets where all methods ran
successfully.
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Table 2: Empirical properties of the true alignments for the simulated data
sets, each with 27 sequences. Each submatrix represents one of the six model
conditions, and the top row within each submatrix represents the mean percent
pairwise identity (% PID) and the bottom row represents the percentage gapped.

Low subst. rate High subst. rate

In
d

e
l

R
a
te High

% PID 23.8% 10.7%
% gapped 46.4% 42.6%

Medium
% PID 23.9% 11.2%

% gapped 29.8% 31.5%

Low
% PID 23.3% 11.6%

% gapped 18.3% 19.2%

Our first experiment examined the overall accuracy of the different methods
we examined, showing SP-Score, Modeler Score, and expansion ratio (Fig. 1).
Overall, BAli-Phy had the best average Modeler score but among the lowest
average SP-score of all the methods. T-Coffee and Promals had the best overall
SP-scores, and (except for BAli-Phy) the best Modeler scores. CONTRAlign
and MAFFT-homologs were next best, followed by ProbAlign and Probcons.
MAFFT-G-ins-i, Prime, Clustal-Omega, and Muscle, roughly in that order,
came in the next group. Finally, Prank, Di-Align, and KAlign were the least
accurate on these data.

The same comparison was performed on the different benchmarks individu-
ally, restricted to the set of top-performing methods (i.e., with Prank, Di-Align,
and KAlign removed), and those data sets on which all methods completed.
While the relative and absolute performance varied to some extent between
benchmark collections, BAli-Phy consistently had very good Modeler scores
and very poor SP-scores (Fig. 2). T-Coffee and PROMALS were also typically
the top two most accurate alignment methods, and Muscle and Clustal-Omega
were among the least accurate alignment methods. Alignment accuracy was
highest on the Homstrad database (with the average SP-score and Modeler
scores nearly always above 80% for all methods), relatively high for BAliBASE,
lower for Sisyphus, and lowest for MattBench. Thus the different benchmarks
present different levels of difficulty, with MattBench the hardest and Homstrad
the easiest.

We then examined the impact of average pairwise sequence identity (PID)
on alignment accuracy, measured using Modeler score, SP-score, and expansion
ratio. Figure 3 shows that when the data sets have sufficiently low heterogeneity
(i.e., average PID above 25%), most methods have expansion ratios that are
close to 1.0, and so produce alignments that are approximately the correct
length. However, when the data sets have high heterogeneity, the only methods
that consistently come close to producing alignments of approximately the same
length as the reference alignment are Probalign, Probcons, Promals, and T-
Coffee. Of the remaining methods, BAli-Phy, Di-Align, and Prank under-align,
and the others over-align. Also, BAli-Phy displays the largest degree of under-
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Figure 1: Average Modeler Score vs. average SP-score of the full set of multiple
sequence alignment methods on the biological benchmark data sets, each with
at least 4 and at most 25 sequences; each data point represents analyses of 1192
data sets from the four benchmark collections (658 from BAliBase, 231 from
Homstrad, 202 from MattBench, and 101 from Sisyphus).

alignment, and even under-aligns on the bin with the lowest average PID.
As seen in Figure 4, the average PID is correlated with the Modeler Score

of estimated alignments for all methods, with the best accuracy obtained for
the data sets with the highest average percent identity (PID). In addition, the
difference between methods is less for the high PID data sets and then increases
as PID drops. In particular, for the lowest average sequence identity data sets,
there is a big gap between the least accurate methods (Muscle and Clustal-
Omega) and the most accurate methods (BAli-Phy and T-Coffee). In addition,
while the Modeler score for BAli-Phy is impacted by PID, the impact seems less
than for other methods, as BAli-Phy’s Modeler score generally remains high as
the average PID is reduced. Also, while T-Coffee clearly ties for best on the
lowest average PID data sets, it is not among the best for the highest average
PID data sets (and indeed it is the least accurate of the collection). Similarly,
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Figure 2: Average Modeler Score vs. SP-Score of the top methods on the bi-
ological benchmark data sets, each with at most 25 sequences. Results shown
are for 1192 data sets from the four benchmark collections (658 from BAliBase,
231 from Homstrad, 202 from MattBench, and 101 from Sisyphus)

Promals clearly dominates all methods other than BAli-Phy and T-Coffee for
the lower average PID data sets, but is not noteworthy on the highest PID data
sets.

Figure 5 enables the same comparison but with respect to SP-score. With
the exception of BAli-Phy’s performance, all the trends observed for the Modeler
score hold for the SP-score. The best SP-scores are obtained by T-Coffee and
Promals, two methods that rely on external biological information, but even
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Figure 3: Average expansion ratios on the 1192 biological benchmark data sets,
each with at most 25 sequences, by average percent ID (ID). Values more than
1.0 indicate under-alignment (i.e., longer alignments than the reference align-
ment), while values less than 1.0 indicate over-alignment (i.e., shorter alignments
than the reference alignment). The four bins based on average sequence iden-
tity, ordered from smallest to largest, have 83, 417, 615, and 77 alignments,
respectively.

the vanilla methods (e.g., MAFFT G-ins-i) are substantially more accurate than
Prank and BAli-Phy. Indeed, BAli-Phy is among the worst for SP-score of these
top methods, under all tested conditions.

Results on Simulated Data Sets

We explored the relative and absolute accuracy of the multiple sequence align-
ment methods on simulated data sets with 27 sequences. PROMALS and T-
Coffee were run on two model conditions (one with high and one with low sub-
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Figure 4: Average Modeler Scores for the top methods on the 1192 biological
benchmark data sets, binned into different average pairwise sequence identity
(ID) levels. The four bins based on average sequence identity, ordered from
smallest to largest, have 83, 417, 615, and 77 alignments, respectively.

stitution rates) and had mediocre SP-scores and Modeler scores, clearly neither
among the worst nor among the best (see Supplementary Materials). Hence,
these methods have poorer accuracy on the simulated data sets than on the
biological data sets, a result that is most likely explained by the fact that these
methods depend on similarity between the input sequences and those found in
external protein benchmark databases, suggesting that simulated amino acid
sequences are not very similar to biological amino acid sequences.

The accuracy of the other MSA methods (i.e., MAFFT-G-ins-i, Prank,
Prime, Probcons, Probalign, Clustal-Omega, Muscle, and BAli-Phy) varied
across these six model conditions, with all methods having the best accuracy
for each criterion under the conditions with the lowest substitution and indel
rates and the poorest accuracy when both rates were high (Fig. 6; see also Sup-
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Figure 5: Average SP-Scores for the top methods on the 1192 biological bench-
mark data sets, binned into different average pairwise sequence identity (ID)
levels. The four bins based on average sequence identity, ordered from smallest
to largest, have 83, 417, 615, and 77 alignments, respectively.

plementary Materials). When both rates are low, the average PID is low, and
all methods had excellent Modeler and SP-scores and the differences between
them were small. Thus, the simulation study confirms the trends seen on the
biological data sets that average PID impacts accuracy for all MSA methods we
explored.

The most striking observation on the simulated data sets is that BAli-Phy
had the best accuracy of all methods with respect to both criteria. Furthermore,
while the difference between BAli-Phy and the next best method was small for
the easiest model condition, the difference in accuracy increased as the indel
rate or the substitution rate increased, and was large under the harder model
conditions. For example, under the most difficult model condition (where sub-
stitution and indel rates are the highest), BAli-Phy achieved average SP-score
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and Modeler score of 92-93%, while the second most accurate method had scores
that were at least 8% lower (see Supplementary Materials). The relative per-
formance between the other methods depended on the model condition, with
Prank having the lowest accuracy when the mutation rate was high, but having
reasonable accuracy (falling in the top half of the group) for the low mutation
rate conditions, and Clustal having the lowest accuracy for the low mutation
rate conditions. Finally, Prime and MAFFT G-INS-i typically came in among
the top few methods under all model conditions, but clearly much less accurate
than BAli-Phy except for the easiest model conditions where all methods had
excellent accuracy.
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Figure 6: Modeler score vs. SP-Score for MSA methods on simulated amino
acid data sets with 27 sequences for 6 different model conditions that vary by
the substitution rate and indel rate; averages over 20 replicates are shown.

As shown in Figure 7, similar trends were seen with respect to expansions
ratios: BAli-Phy had nearly perfect expansion ratios (i.e., very close to 1.0),
whereas most of the other MSA methods (especially Clustal-Omega, MAFFT G-
INS-i, and Muscle) often over-aligned, a trend that has been noted before [7, 30].
Probalign had mixed results, sometimes over-aligning and sometimes under-
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aligning, but not too badly. The outlier here is Prank, which tends to under-
align (producing expansion ratios greater than 1.0), and in the hardest model
condition produced alignments that were 50% longer than the true alignment
(see Supplementary Materials).
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Figure 7: Expansion ratios (1.0 is perfect) for MSA methods on simulated amino
acid data sets with 27 sequences for 6 different model conditions that vary by
the substitution rate and indel rate; averages over 20 replicates are shown.

The impact of model misspecification on BAli-Phy. Finally, we ex-
plored the accuracy of BALi-Phy when the protein substitution model it assumes
is different from the true substitution model. Our simulation was performed un-
der the WAG substitution model, and so we explored the impact of specifying
the true substitution model and a wrong substitution model (JTT) on the re-
sultant alignments by BAli-Phy. As seen in the Supplementary Materials, using
the wrong model reduced the alignment accuracy by a very small amount. Un-
der low to moderate rates of evolution, the impact on alignment accuracy is
less than 1%, and under the highest rates of evolution that we explored the
impact could reach 2%. However, even when affected by model misspecifica-
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tion, BAli-Phy still clearly dominated, by a large margin, the other alignment
methods.

Running Time

The last experiment is to provide an estimate of the running time of different
methods. We selected four data sets (one from each of the benchmark collec-
tions), each containing 17 sequences to enable this comparison. This comparison
is meant to be approximate, as we used different platforms for the methods, and
did not ensure that all methods were run using the same environments. T-Coffee
and BAli-Phy were run on the National Center of Supercomputing Applications
Blue Waters supercomputer and the rest of the methods were run on the Cam-
pus Cluster at the University of Illinois at Urbana-Champaign. Some of these
methods were compiled from the source code, and we used the precompiled ver-
sions for other methods. The running time for BAli-Phy is based on 48 hours
for each run, and we ran BAli-Phy 32 independent times.

As shown in Table 3, BAli-Phy is the most computationally intensive of
all the methods. T-Coffee and Promals are the next most computationally
intensive, followed by Prank. The remaining methods are all reasonably fast,
most completing in seconds on the selected data sets.

Table 3: Running time information of a single 17-sequence data set in each of the
biological benchmarks for different alignment methods, with methods roughly
sorted by running time from fastest to slowest. The running times are rounded
to the nearest hundredth of a second, and reflect wall clock time. The time
reported for most methods is based on a single processor. However, BAli-Phy
was run 32 independent times, and the running time reported is for a single run;
MAFFT uses 4 threads, and Clustal-Omega uses 12 threads.
Benchmark MattBench Homstrad Sisyphus BAliBASE
Data set SF054 proteasome AL00048098 BALBS213
Max. Seq. Len. 270 250 117 688
DiAlign 0.0 0.0 0.0 0.0
Prime 0.1 0.0 0.0 0.0
KAlign 0.1 0.0 0.0 0.1
Clustal-Omega 0.4 0.3 0.1 1.5
Muscle 0.5 0.4 0.1 1.0
MAFFT-G-INS-i 0.7 0.7 0.3 2.0
ProbAlign 1.7 1.4 0.4 7.9
ProbCons 3.1 2.6 0.6 12.6
CONTRAlign 5.8 6.2 1.4 42.0
Prank 48.5 1:16.1 9.4 4:14.7
Promals 14:11.5 12:22.1 5:06.2 24:03.2
T-Coffee 46:47.2 58:04.7 7:06.5 59:18.8
BAli-Phy 48:00:00.0 48:00:00.0 48:00:00.0 48:00:00.0

14

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 20, 2018. ; https://doi.org/10.1101/304659doi: bioRxiv preprint 

https://doi.org/10.1101/304659
http://creativecommons.org/licenses/by-nc-nd/4.0/


Discussion

The results on the simulated and biological benchmarks are very similar in
most respects, but not in all. For both types of data, the best accuracy was
obtained for the conditions with the lowest rates of evolution, and the differences
between methods were minimal. However, when evolutionary rates were high
enough, the differences between methods increased, and some methods clearly
outperformed others. Since the MattBench data sets have the lowest average
PID, it is not surprising that the alignment methods also demonstrate the lowest
average accuracy on MattBench compared to the other benchmarks. Similarly,
the Homstrad data sets have the highest average PID of all these benchmarks,
and the accuracy was highest on these data sets.

On biological data sets, BAli-Phy had the best Modeler scores and the worst
SP-scores across all levels of heterogeneity, while T-Coffee and Promals generally
had among the best accuracy (although the relative performance depended on
the level of heterogeneity and the criterion). For example, T-Coffee had the best
SP-scores for the high heterogeneity data sets (when PID was low) but not under
the lowest heterogeneity data sets where Promals and many other methods had
better SP-scores. Results on the simulated data sets show different trends: T-
Coffee and Promals were not among the better methods on the simulated data
sets for either criterion, and BAli-Phy clearly dominated all the other methods
with respect to both criteria. Hence, the relative accuracy of methods seems
to depend on the heterogeneity in the data set (as measured using PID), the
criterion (i.e., Modeler score or SP-score), and – to some extent – whether the
data were biological or simulated.

The performance of Prank, a “phylogeny-aware” method that has been re-
ferred to as a “heuristic to full statistical alignment” [8], is also worth com-
menting on. On the biological data sets we examined, Prank has overall among
the lowest accuracy of all tested methods. On the simulated data sets, Prank
has among the lowest accuracy of the “top performing” methods whenever the
substitution rate is high, and is only competitive with the better methods under
the lower substitution rates. The poor accuracy on the simulated data sets of
Prank under higher rates of evolution is perhaps surprising, given that prior
studies have suggested that Prank provides superior alignment accuracy [37].
However, a careful examination of [37] reveals that the simulation conditions in
which Prank provided outstanding accuracy had substitutions operating under
the simplest model (Jukes-Cantor with a strict molecular clock), which may
have favored Prank in some way.

Conclusions

Statistical sequence alignment, and in particular statistical co-estimation of mul-
tiple sequence alignments and phylogenetic trees under stochastic models of se-
quence evolution that are based on phylogenetic trees, has been considered by
many to be the most rigorous approach to alignment estimation.
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Our study shows that BAli-Phy, a leading statistical method for co-estimating
alignments and trees, has outstanding accuracy on simulated data sets but much
lower accuracy on the biological data sets. Specifically, although BAli-Phy often
has very good (and sometimes the best) Modeler scores on the biological data,
it under-aligns on these datasets, as evidenced by its low SP-scores and high
expansions ratios. Put differently, BAli-Phy exhibits both high precision and
recall on simulated data but exhibits high precision and low recall on the biolog-
ical data. Thus, overall accuracy on simulated data and accuracy on biological
benchmarks are not necessarily correlated. Most importantly, on the biological
data sets, BAli-Phy does not produce alignments with SP-scores that are nearly
as good as many popular methods, such as MAFFT and Muscle, that are much
faster to use.

This contrast in performance is disturbing, and requires some explanation.
There are multiple possible explanations, discussed in detail below, that center
on the possible distinctions between evolutionary and structural alignments, and
the potential for model misspecification between the model assumed in BAli-Phy
and how proteins evolve. Each explanation is likely to be valid, but the relative
contribution of each factor is unknown at this time (and beyond the scope of
this study). However, some of these factors - if they turn out to be significant
reasons for this contrast in performance - have ramifications in phylogenetics
that are important to consider.

One possible explanation is that the reference alignments are accurate evolu-
tionary alignments, but that the sequence evolution model assumed by BAli-Phy
is a poor match to the true sequence evolution model under which the proteins
evolve. Similar critiques have been made about sequence evolution models used
in phylogeny estimation [76, 35] and in simulation studies [28, 9]. Two of the ma-
jor concerns about these sequence evolution models is the assumption that the
sites evolve identically and independently (the i.i.d. assumption) and without
any selection occurring, which are not realistic for protein sequences. Although
the sequence evolution model underlying BAli-Phy is more complex than the
standard sequence evolution models discussed in these papers in that it ad-
dresses insertions and deletions (i.e., indels) rather than only substitutions, the
sequence evolution model nevertheless also has the two problematic features (iid
site evolution and no selection operating) that were criticized in [76, 35, 28, 9].
Hence, most likely there is substantial model misspecification between the BAli-
Phy model of sequence evolution and protein sequence evolution.

If the degree of model misspecification between the model in BAli-Phy and
how proteins actually evolve is sufficient to explain much of the distinction in
performance between BAli-Phy on biological and simulated datasets, then there
are multiple consequences for phylogenetic estimation. Most immediately, if the
model misspecification is sufficient to cause protein alignment estimation based
on the models to be incorrect, then it suggests the possibility that phylogeny
estimation based on these models may be similarly impaired. Hence, better
sequence evolution models that more faithfully characterize the evolutionary
processes underlying protein sequences will be needed. Furthermore, since many
genomic regions (e.g., protein-coding sequences) also evolve under processes that
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are not i.i.d. and that have selective pressures, then model-based phylogeny
estimation may also be impaired for many types of markers, at least when
based on standard models of sequence evolution. This is the most disturbing of
the possible explanations, in terms of the impact on phylogeny estimation.

There are, of course, other potential explanations for the distinction in per-
formance on biological and simulated protein sequences. For example, it is
possible that the reference alignments for the biological benchmarks are insuffi-
ciently accurate. This might occur is if the reference alignments themselves have
false positive homologies (i.e., are over-aligned); in this case, the true alignment
would have a high Modeler score and a low SP-score with respect to the refer-
ence alignment, which is what we tend to see with BAli-Phy on the biological
data sets. If this is the case, then more accurate structural alignments would
need to be developed, in order to provide strong and reliable benchmarks. While
some error in these reference alignments seem likely, it does not seem very likely
that they would be sufficiently incorrect so as to create a condition in which
BAli-Phy has much poorer accuracy on biological data than standard alignment
methods.

A final possible explanation is that the reference alignments are accurate
as structural alignments but not as evolutionary alignments. This is certainly
possible, because the distinction between the two types of alignments is real,
and the potential for “structural homology” to be different from “evolutionary
homology” has been pointed out in several other studies (e.g., [62, 28, 12, 10]).
However, it seems unlikely that the differences between correct structural align-
ments and correct evolutionary alignments would be large enough (and frequent
enough) to cause BAli-Phy to consistently be among the least accurate align-
ment methods in terms of SP-score. Hence, the most likely explanation may
be model misspecification between BAli-Phy’s model and how proteins actu-
ally evolve, but determining the relative contribution of each of these possible
explanations is beyond the scope of this study and is left to future research.

Data availability

All biological data sets studied in this paper are available in public repositories,
and the simulated datasets are available from the authors upon request. The
software used to analyze the data sets are also publicly available.

Supporting information
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This document (PDF) has the control file for the simulation study as well as
additional discussion.
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[52] Ádám Novák, István Miklós, Rune Lyngsø, and Jotun Hein. StatAlign: An
extendable software package for joint Bayesian estimation of alignments and
evolutionary trees. Bioinformatics, 24(20):2403–2404, 2008.

[53] Michael Nute and Tandy Warnow. Scaling statistical multiple sequence
alignment to large datasets. BMC Genomics, 17(S10):135–144, 2016.

[54] T Heath Ogden and Michael S Rosenberg. Multiple sequence alignment
accuracy and phylogenetic inference. Systematic biology, 55(2):314–28, apr
2006.

[55] Orla O’Sullivan, Karsten Suhre, Chantal Abergel, Desmond G. Higgins,
and C??dric Notredame. 3DCoffee: Combining protein sequences and struc-
tures within multiple sequence alignments. Journal of Molecular Biology,
340(2):385–395, 2004.

[56] Fabiano Sviatopolk-Mirsky Pais, Patŕıcia de Cássia Ruy, Guilherme
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1 Supplementary Methods

1.1 Protocol for Amino Acid Simulations

Model Tree Selection The tree for these simulations was generated by
pulling the reference alignment for the protein family Serine Protease from the
Homstrad data (filename: sermam.faa). The initial goal had been to find a
dataset with 25 sequences, but no dataset had exactly that number; the closest
dataset (in terms of number of sequences) was sermam.faa, which had 27 se-
quences. We constructed a maximum likelihood tree on the reference alignment
for this dataset, using RAxML using the following command:
<rml>/raxmlHPC-PTHREADS-SSE3 -m PROTGAMMAAUTO -s <aln> -p 12345 -T

12 -n sermam -w ./tree

The tree this yielded is contained in the Indelible control file in the following
section.

Control file for the simulation The following block contains the full text
of the control file used for these simulations. The entry <replicate> on the
final line is replaced by the replicate number (0 through 19) prior to running.

[TYPE] AMINOACID 2

[MODEL] MYgtr

[submodel] WAG

[indelmodel] NB 0.637 2

[indelrate] 0.01

[rates] 0 1.0 0

[TREE] sermam (((1hcga:0.32813366,1kigh:1.82565029):5.04507020,(1trma:1.15447822,

(1mcta:0.62361724,(2ptn:1.24168792,((2tbs:2.86128857,1a0ja:1.55107647):0.57961993,

(((1ab9:7.47264901,(((1a5ia:1.86915958,1a5ha:0.75672770):5.42205227,

1lmwb:6.73311957):6.89530909,((1sgt:15.58003595,(1bbr:0.57706215,1ppb:0.80065367)

:11.39891397):1.44976925,(1a0la:7.07161115,3est:8.44608968):0.79813103):1.20035927)

:0.00001000):1.10595446,(1dfpa:9.55074028,(((3rp2a:3.98254555,1klt:2.79818431)

:6.79824585,((1hnee:5.51083303,1fuja:2.50912876):1.85070844,1a7s:7.38514536)

:3.64213522):1.00597677,1azza:9.01656013):1.96095053):1.43056606):1.80265480,

((2pka:4.13942226,1ton:4.81015672):3.48654869,1npma:5.54688340):3.87351624)

:1.92885001):0.78867819):0.37891363):0.70651560):6.45102778,1fxya:0.00001000)

:0.0000000);
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[PARTITIONS] part [sermam MYgtr 200]

[SETTINGS]

[output] FASTA

[EVOLVE] part 1 R<replicate>

1.2 Sequence sampling protocol
For the biological benchmark datasets, we subsampled 25 sequences from each
of the datasets with more than 25 sequences (the “large” alignments). To do
this, we selected the number of sequences to sample from 5 up to 25, picking
each one in order, and then starting again from 5; thus, 5 sequences were ran-
domly sampled from the first large alignment, 6 sequences from the second large
alignment, and so on, until we reached the 22nd dataset where we started with
5 again.

2 Additional results

2.1 Evidence that BAli-Phy had converged on the biolog-

ical datasets.

The MattBench datasets were the most challenging biological datasets for any
method to align, and the ones where BAli-Phy had the worst accuracy. Hence,
we report the empirical statistics provided by BAli-Phy that evaluate the evi-
dence that BAli-Phy has converged. BAli-Phy judged 257 of the 259 MattBench
datasets to have successfully converged during burn-in, and showed mean mini-
mum ESS values that were greater than 96,000. The Sisyphus datasets were the
second hardest; BAli-Phy judged 125 of the 126 Sisyphus dataset to have con-
verged during burn-in, and showed mean minimum ESS values that were greater
than 182,000. These statistics suggest that BAli-Phy had successfully converged
(at least according to these tests) in analyzing these biological datasets. As
noted, the other biological datasets and even the hardest simulated datasets
were much easier for BAli-Phy to align, and so there is less need to evaluate
convergence on these datasets.

2.2 Comparison of T-COFFEE and PROMALS on Simu-
lated Data

Because T-COFFEE and PROMALS rely on retrieval of putative ortholog pro-
teins from public databases as a central component of their alignment algorithm,
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their alignments of simulated data would not be expected to have high accu-
racy. Thus, they were not included in the data presented in the main paper.
Nonetheless, they were run on the simulated data as a control, and the results
are presented here.

Both methods were run on all 20 replicates for both substitution error con-
ditions (trees with scale factor 1.0 and 3.0), each at the original indel rate of
0.01. This has the effect of making the simulations from the 3.0 model tree
considerably more difficult.
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