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Abstract	

Objectives:	 To	 investigate	 whether	 the	 association	 between	 subjective	 wellbeing	

(subjective	happiness	and	life	satisfaction)	and	physical	health	is	causal.		

Design:	We	 conducted	 two-sample	 bidirectional	 Mendelian	 randomisation	 between	

subjective	 wellbeing	 and	 six	 measures	 of	 physical	 health:	 coronary	 artery	 disease,	

myocardial	infarction,	total	cholesterol,	HDL	cholesterol,	LDL	cholesterol	and	body	mass	

index	(BMI).			

Participants:	We	used	 summary	data	 from	 four	 large	genome-wide	association	study	

consortia:	CARDIoGRAMplusC4D	for	coronary	artery	disease	and	myocardial	infarction;	

the	 Global	 Lipids	 Genetics	 Consortium	 for	 cholesterol	 measures;	

the	Genetic	Investigation	 of	Anthropometric	Traits	 consortium	 for	BMI;	 and	 the	 Social	

Science	Genetics	Association	Consortium	for	subjective	wellbeing.	A	replication	analysis	

was	conducted	using	337,112	individuals	from	the	UK	Biobank	(54%	female,	mean	age	

=56.87,	SD=8.00	years	at	recruitment).		

Main	 outcome	 measures:	 Coronary	 artery	 disease,	 myocardial	 infarction,	 total	

cholesterol,	HDL	cholesterol,	LDL	cholesterol,	BMI	and	subjective	wellbeing.		

Results:	There	was	evidence	of	a	causal	effect	of	BMI	on	subjective	wellbeing	such	that	

each	 1	 kg/m2	 increase	 in	 BMI	 caused	 a	 0.045	 (95%CI	 0.006	 to	 0.084,	 p=0.023)	 SD	

reduction	in	subjective	wellbeing.	Replication	analyses	provided	strong	evidence	of	an	

effect	 of	 BMI	 on	 satisfaction	 with	 health	 (b=0.034	 (95%	 CI:	 -0.042	 to	 -0.026)	 unit	

decrease	 in	 health	 satisfaction	 per	 SD	 increase	 in	 BMI,	 p<2-16).	 There	 was	 no	 clear	

evidence	of	a	causal	effect	between	subjective	wellbeing	and	the	other	physical	health	

measures	in	either	direction.		

Conclusions:	 Our	 results	 suggest	 that	 a	 higher	BMI	 lowers	 subjective	wellbeing.	Our	

replication	analysis	confirmed	this	finding,	suggesting	the	effect	in	middle-age	is	driven	

by	 satisfaction	with	health.	 BMI	 is	 a	modifiable	 determinant	 and	 therefore,	 our	 study	

provides	 further	 motivation	 to	 tackle	 the	 obesity	 epidemic	 because	 of	 the	 knock-on	

effects	of	higher	BMI	on	subjective	wellbeing.		
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Introduction	

Subjective	wellbeing	is	most	commonly	defined	as	a	combination	of	life	satisfaction	and	

positive	affect	in	the	absence	of	negative	affect	[1].	Observational	evidence	suggests	an	

association	 between	 higher	 subjective	 wellbeing	 and	 improved	 physical	 health	 or	

longevity	 [2–4],	 including	 cardiovascular	 outcomes	 [5],	 cholesterol	 levels	 [6]	 and	

extremes	of	body	mass	index	(BMI)	[7].	

	

Depression	 has	 been	 shown	 to	 have	 the	 opposite	 association	 with	 physical	 health,	

increasing	risk	of	coronary	artery	disease	(CAD)	especially	the	chance	of	a	heart	attack	

[8],	 altering	 serum	 cholesterol	 [9]	 and	 a	 U-shaped	 relationship	 with	 BMI	 [10].	 A	

Mendelian	randomisation	(MR)	study	of	BMI	on	multiple	mental	health	outcomes	found	

a	consistent	effect	of	higher	BMI	on	increased	likelihood	of	depression,	although	the	effect	

sizes	were	small	[11].	This	causal	effect	was	replicated	in	the	follow-up	analysis	of	the	

most	 recent	 genome-wide	 association	 study	 (GWAS)	 of	 depression	 [12]	 and	 was	

replicated	 using	 a	 continuous	measure	 of	 depressive	 symptoms	 [13],	with	 suggestive	

evidence	of	a	causal	link	between	BMI	and	subjective	wellbeing.	However,	this	study	did	

not	examine	other	health	behaviours	and	did	not	adjust	 for	sample	overlap,	so	results	

could	be	biased	towards	the	observational	effect	[14].			

	

Twin	 analyses	 indicate	 partly	 distinct	 genetic	 (and	 environmental)	 aetiologies	 for	

depression	 and	 subjective	 wellbeing	 [15],	 suggesting	 that	 separate	 analyses	 of	 the	

relationship	between	subjective	wellbeing	and	depression	on	health	outcomes	may	be	

appropriate.	 Observational	 research	 suggests	 that	 the	 association	 between	 subjective	

wellbeing	and	physical	health	goes	beyond	the	absence	of	negative	affect	states,	reduced	

arousal	or	confounding	 from	socio-economic	position	[16]	and	subjective	wellbeing	 is	

more	 predictive	 of	 health	 outcomes	 than	 negative	 feelings	 [17].	 Therefore,	 subjective	

wellbeing	 might	 be	 a	 better	 target	 for	 improving	 physical	 health	 outcomes	 than	

depression.	 From	 a	 public	 health	 perspective,	 it	 is	 important	 to	 understand	whether	

increasing	 subjective	 wellbeing	 can	 increase	 health	 in	 later	 life,	 given	 that	wellbeing	

interventions	can	be	cost-effective	to	administer	[18].		

	

Studies	suggesting	a	 link	between	subjective	wellbeing	and	physical	health	are	mostly	

observational.	 Due	 to	 reverse	 causation	 and	 residual	 confounding,	 it	 is	 hard	 to	make	
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causal	inferences	from	observational	evidence	[19].	Mendelian	randomisation	(MR)	uses	

genetic	 variants	 as	 instrumental	 variables	 for	 the	 exposure	 of	 interest.	 Mendelian	

randomisation	exploits	Mendel’s	 laws	of	segregation	and	 independent	assortment:	 the	

inheritance	of	the	alleles	will	be	largely	independent	of	genetic	variants	affecting	other	

traits	and	of	conventional	disease	risk	factors.	Associations	are	not	affected	by	reverse	

causation,	because	genotype	is	unchanged	over	the	lifetime	[19,20].	In	an	instrumental	

variable	 analysis,	 the	 genetic	 variant	 (Z)	 acts	 as	 the	 instrument	 which	 is	 related	 to	

differences	 in	 the	 exposure	 (X).	 If	 the	 exposure	 causes	 the	 outcome	 (Y)	 then	 genetic	

variants	which	affect	the	exposure	should	be	associated	with	the	outcome	(see	Figure	1)	

[19].		For	example,	genetic	variants	(Z)	shown	to	predispose	individuals	to	have	a	higher	

BMI	(X)	are	associated	with	lower	income,	suggesting	increases	in	BMI	reduce	income	(Y)	

[21].		

	

	
Figure	1.		A	Directed	Acyclic	Graph	(DAG)	representing	the	basic	Mendelian	

Randomisation	instrumental	variable	analysis.		

	

The	 two-sample	MR	method	uses	 the	 summary	 statistics	 from	 two	separate	Genome-	

wide	Association	Studies	(GWAS)	in	one	analysis	[22].	The	GWAS	of	the	exposure	must	

have	 identified	 single	 nucleotide	 polymorphisms	 (SNPs)	 robustly	 associated	with	 the	

exposure.	 These	 SNPs	 can	 then	 be	 looked	 up	 in	 the	 GWAS	 summary	 statistics	 of	 the	

outcome.	For	power,	multiple	genetic	variants,	rather	than	single	genetic	variants,	are	

often	used	in	two-sample	MR.	However,	this	increases	the	likelihood	of	pleiotropic	effects	

biasing	the	result,	so	it	is	particularly	important	to	perform	sensitivity	analyses	that	are	

more	robust	to	pleiotropy	when	using	multiple	instruments	[14].		

Z X Y 

U 

Instrument	(Genetic	
variant) 

Exposure Outcome 

Confounders 
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Pleiotropy	 occurs	when	 a	 genetic	 variant	 affects	multiple	 phenotypes.	 There	 are	 two	

classes	of	pleiotropy	of	relevance	to	MR:	horizontal	and	vertical	[22].	Vertical	pleiotropy	

occurs	when	one	genetic	variant	has	multiple	effects	all	on	one	causal	pathway.	Vertical	

pleiotropy	 does	 not	 violate	 the	 assumptions	 of	 MR	 as	 long	 as	 the	 phenotype	 most	

proximal	to	the	genetic	variation	is	correctly	identified	[22].	Horizontal	pleiotropy	occurs	

when	a	genetic	variant	affects	the	outcome	via	pathways	aside	from	through	the	exposure	

of	interest	[22]	and	can	bias	MR	estimates	[19].		

	

Mendelian	randomisation	makes	several	assumptions	that	must	be	checked	to	ensure	the	

validity	of	 the	causal	conclusions.	First,	 the	genetic	 instrument	(Z)	must	be	associated	

with	the	exposure	(X)	in	the	sample.	Second,	the	genetic	instrument	must	not	associate	

with	the	confounders	(U).	Finally,	Z	has	no	effects	on	the	outcome	apart	from	through	the	

exposure	X	[19].		

	

In	 this	 study,	 we	 investigated	 the	 association	 between	 subjective	 wellbeing	 and	 the	

physical	 health	 traits	 of	 BMI,	 coronary	 artery	 disease	 (CAD),	 HDL,	 LDL	 and	 total	

cholesterol	 and	 Myocardial	 Infarction	 (MI)	 using	 MR.	 We	 conducted	 two-sample	

bidirectional	 MR	 analyses	 to	 establish	 whether	 subjective	 wellbeing	 affects	 physical	

health	 traits,	 or	 vice-versa.	 We	 extended	 previous	 research	 by	 conducting	 follow	 up	

analysis	in	an	independent	sample	to	avoid	sample	overlap	[14]	and	examining	the	causal	

relationship	between	subjective	wellbeing	and	a	range	of	physical	health	conditions.		

	

Method	

Data	Sources	

Details	of	the	contributing	GWAS	consortia	are	given	in	Table	1.	They	were	selected	for	

traits	 relating	 to	 cardiovascular	 health	 or	 obesity,	 having	 the	 largest	 sample	 size	 and	

consisting	of	the	most	similar	populations.			

	

Statistical	Analyses	

We	applied	four	different	two-sample	MR	methods,	which	make	different	assumptions	

about	horizontal	pleiotropy.	Therefore,	a	consistent	effect	across	the	four	methods	is	less	

likely	 to	 be	 a	 false	 positive	 [23].	 If	 the	 genetic	 variants	 have	 horizontally	 pleiotropic	
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effects	but	they	are	independent	of	the	effects	of	the	genetic	variants	on	the	exposure,	

then	this	is	known	as	balanced	pleiotropy.	If	all	of	the	pleiotropic	effects	are	biasing	the	

estimate	in	the	same	direction	(directional	pleiotropy)	this	will	bias	the	results	(with	the	

exception	 of	 the	MR	 Egger	method).	We	 used	 the	MR	 Egger	 intercept	 to	 test	 for	 the	

presence	of	directional	pleiotropy.		

	

Instrument	identification	in	MR	Base	

For	 all	 phenotypes,	 apart	 from	 subjective	 wellbeing,	 our	 genetic	 instruments	 were	

composed	of	 genome-wide	 significant	SNPs	 (p<5x10-8)	 from	published	GWAS	studies.	

Only	 three	 genome-wide	 significant	 SNPs	were	 available	 for	 subjective	wellbeing.	We	

tested	the	strength	of	these	instruments	by	checking	if	they	predicted	happiness	in	a	large	

independent	sample	(N=	242,219)	from	the	UK	Biobank.	There	was	only	evidence	that	

one	 SNP	 (rs2075677)	 was	 associated	 with	 happiness	 (see	 supplementary	 Table	 S1).	

Therefore,	we	used	a	more	 liberal	p-value	threshold	of	p<5x10-5	as	 the	 instrument	 for	

subjective	wellbeing.	SNPs	were	clumped	to	ensure	independence	at	LD	R2	=	0.001	and	a	

distance	of	10000kb.	If	a	SNP	was	unavailable	in	the	outcome	GWAS	summary	statistics,	

then	proxy	SNPs	were	searched	for	with	a	minimum	LD	R2	=	0.8.	MAF	was	used	to	align	

palindromic	 SNPs	 with	 MAF<0.3.	 Inverse-variance	 weighted,	 MR-Egger,	 weighted	

median	and	weighted	mode	approaches	were	compared.	Analyses	were	conducted	using	

MR-Base	[24],	a	package	for	two-sample	MR.	

	

Inverse-variance	weighted	method	

The	 inverse-variance	 weighted	 (IVW)	 meta-analysis	 uses	 the	 individual	 Wald	 ratios	

conducted	for	each	SNP.	The	Wald	ratio	is	calculated	by	regressing	each	genetic	variant	

on	the	exposure	and	outcome	separately.	When	effects	on	the	outcome	and	exposure	are	

plotted,	 the	 gradient	 of	 the	 line	 of	 best	 fit	 taking	 into	 account	 all	 of	 the	 data	 points	

(constrained	to	have	an	intercept	of	0)	gives	the	strength	of	the	association.	The	slope	

indicates	how	much	of	a	unit	increase	there	is	in	exposure	relative	to	each	unit	increase	

in	outcome	[25].	This	method	may	be	biased	by	horizontal	pleiotropy	[26].		

	

MR-Egger	method	

The	 MR-Egger	 method	 relaxes	 the	 assumptions	 of	 MR	 and	 allows	 for	 directional	

pleiotropic	 effects,	 such	 that	 some	 SNPs	 could	 be	 acting	 on	 the	 outcome	 through	 a	
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pathway	other	than	through	the	exposure.	Unlike	the	IVW	method,	 the	 intercept	 is	no	

longer	constrained	to	pass	through	zero.	This	allows	an	adjustment	to	be	made	for	the	

presence	of	directional	pleiotropy.	The	intercept	itself	is	an	estimate	of	the	directional	

pleiotropic	effect	[26].	MR-Egger	has	the	lowest	power	of	the	four	methods	to	detect	a	

causal	effect,	and	requires	variation	 in	the	SNP	effects,	and	therefore	 is	more	effective	

when	more	SNPs	are	used	to	create	the	instrument.	The	MR-Egger	method	also	makes	

the	 additional	 NOME	 assumption,	 that	 there	 is	 no	 measurement	 error	 in	 the	 SNP-

exposure	effects	[26].	This	is	evaluated	using	the	I2(GX)	statistic	[27].	

	

Weighted	median	method	

Rather	than	relaxing	the	assumptions	of	pleiotropy	for	all	SNPs	used	(like	MR-Egger),	the	

weighted	 median	 approach	 assumes	 that	 at	 least	 50%	 of	 the	 total	 weight	 of	 the	

instrument	comes	from	valid	variants.	The	weighted	median	approach	is	more	likely	to	

give	a	valid	causal	estimate	than	MR-Egger	or	IVW	because	it	is	more	consistent	with	the	

true	causal	effect	in	the	presence	of	up	to	50%	invalid	variants	[28].		

	

Weighted	mode-based	estimation	method	

The	weighted	mode-based	 estimation	 (MBE)	method	 assumes	 that	 the	most	 common	

causal	 effect	 is	 consistent	 with	 the	 true	 causal	 effect	 [29]	 Hence,	 the	 remaining	

instruments	 could	 be	 invalid	 (violate	 the	 assumptions	 of	 MR)	 without	 biasing	 the	

estimated	causal	effect.		

	

Replication	in	the	UK	Biobank	

We	attempted	replication	of	our	two-sample	MR	results	(to	overcome	potential	bias	from	

sample	 overlap)	 using	MR	 analysis	where	 participants	 for	 the	 exposure	 and	outcome	

were	from	the	same	sample	(UK	Biobank),	with	a	weighted	genetic	score	derived	using	

estimates	from	GWAS.	The	replication	sample	and	measures	are	now	described	below.		

	

Study	sample		

UK	Biobank	is	a	national	health	resource	with	biological	measures	collected	over	10	years	

(http://www.ukbiobank.ac.uk).	A	total	of	502,647	participants	aged	40-69	years	were	

recruited	from	across	the	United	Kingdom	between	2006	and	2010	[30].	After	restricting	

to	 European	 ancestry	 and	 excluding	 related	 individuals,	 withdrawn	 consent	 and	 sex	
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mismatched	individuals,	337,112	participants	remained	[31].	 	Of	these	individuals,	the	

mean	age	was	56.87	(SD	=	8.00)	years	at	recruitment	and	54%	were	female.	

	

A	sub-sample	(150,000)	participants	were	genotyped	first,	and	this	sample	was	selected	

on	smoking	status	to	include	more	current	smokers	than	would	be	representative	of	the	

UK	population	[32].	These	150,000	genotyped	individuals	also	contributed	to	the	SSGAC	

GWAS	of	subjective	wellbeing	 [33].	The	 remaining	UK	Biobank	participants	have	now	

been	genotyped.	To	avoid	any	possible	biases	associated	with	smoking,	we	used	the	full	

Biobank	 sample	 in	 the	 replication	 analysis	 presented	 here	 (N	 =	 337,112).	 However,	

because	 of	 partial	 sample	 overlap	 with	 the	 SSGAC	 GWAS,	 we	 repeated	 the	 same	

replication	analysis	including	only	individuals	who	did	not	contribute	to	the	SSGAC	GWAS	

(N	=	242,219).		

	

BMI	allele	score	

To	 conduct	 the	 replication	 of	 the	 link	 between	 BMI	 and	 wellbeing	 we	 constructed	 a	

polygenic	 score	 for	 BMI	 in	 UK	 Biobank.	 This	 polygenic	 score	 was	 constructed	 by	

extracting	the	97	variants	found	to	be	associated	at	genome-wide	significance	with	BMI	

in	the	most	recent	GWAS	[34].	Allele	scores	for	each	SNP	were	calculated	as	a	sum	of	the	

number	 of	 increasing	 alleles	 weighted	 by	 the	 effect	 sizes	 from	 the	 GWAS	 summary	

statistics.	Therefore,	higher	polygenic	score	indicates	an	increased	risk	of	higher	BMI.	Of	

the	97	SNPs,	rs2033529	was	unavailable	in	UK	Biobank	(see	Supplementary	Table	S2	for	

full	SNP	list).	The	allele	score	was	standardised	to	mean	zero	and	standard	deviation	one.		

	

Observed	BMI	

Body	Mass	 Index	was	calculated	 (weight	 in	kg/(height	 in	m)2)	 from	measurements	of	

height	and	weight	taken	during	the	initial	assessment	centre	visit.		

	

Outcomes	

We	 used	 phenotypic	measurements	 collected	 at	 initial	 assessment	 (2006-2010).	 The	

measures	were:	

	

Subjective	Happiness	–	assessed	using	a	single	item	questionnaire	measure.		Responses	to	

the	question	 ‘In	general	how	happy	are	you?’	were	 collected	on	a	6-point	 likert	 scale	
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ranging	 from	Extremely	 unhapppy	 to	Extremely	 happy.	 Individuals	 responding	Do	 not	

know	or	Prefer	not	to	answer	were	coded	as	missing.		

	

Life	 Satisfaction	–	assessed	using	 five	 single	 item	measures	relating	 to	domains	of	 life	

satisfaction.	 Domains	 were:	 family	 and	 relationships,	 work/job,	 health,	 finances	 and	

friendships.	 For	 example,	 ‘In	 general	 how	 satisfied	 are	 you	 with	 your	 family	

relationships?’	 Responses	 were	 collected	 on	 a	 6-point	 Likert	 scale	 ranging	 from	

Extremely	unhapppy	to	Extremely	happy.	Individuals	could	also	respond	Do	not	know	or	

Prefer	not	to	answer	(and	additionally	I	am	not	employed	for	the	work/job	domain),	which	

were	coded	as	missing.	

	

Baseline	Demographic	Measures	–	collected	at	initial	assessment,	including:	sex,	age	and	

socio-economic	position	(SEP).	SEP	was	measured	using	the	Townsend	deprivation	index	

(Townsend,	1987)	based	upon	their	location	in	the	UK	(calculated	from	output	area)	and	

information	from	the	last	national	census.		

	

Statistical	Analysis	

Mendelian	randomisation	was	conducted	through	instrumental	variable	regressions	run	

in	R	 	 [35]	 to	 attempt	 to	 replicate	 the	 effect	 of	 BMI	 on	 subjective	wellbeing	 using	 the	

polygenic	score	for	BMI	as	the	instrument.			
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Table	1.	Description	of	GWAS	consortia	used	for	each	phenotype	

Variable	 First	

Author	

Year	 Consortium	 Sample	size	 Population	 Gender	

Subjective	Wellbeing	 Okbay	[33]	 2016	 SSGAC	 Exposure	=	298420	

Outcome	=	197174		

European	 Mixed	

Coronary	Artery	Disease		 Nikpay	[36]	 2015	 CARDIoGRAMplusC4D	 Cases	=	60801	

Controls	=	123504	

Mixed	 Mixed	

Total	Cholesterol	 Willer	[37]	 2013	 GLGC	 92260	 Mixed	 Mixed	

HDL	Cholesterol	 Willer	[37]	 2013	 GLGC	 92860	 Mixed	 Mixed	

LDL	Cholesterol	 Willer	[37]	 2013	 GLGC	 83198	 Mixed	 Mixed	

Myocardial	Infarction	 Nikpay	[36]	 2015	 CARDIoGRAMplusC4D	 Cases	=	43676	

Controls	=	128199	

Mixed	 Mixed	

BMI	 Locke	[34]	 2015	 GIANT	 339224	 Mixed		 Mixed	

	
Note:	SSGAC	=	Social	Science	Genetics	Association	Consortium,	GLGC	=	Global	Lipids	Genetics	Consortium,	GIANT	=	The	Genetic	Investigation	
of	Anthropometric	Traits	consortium.	Sample	sizes	were	different	when	wellbeing	was	the	exposure	or	outcome	due	to	23andMe	data	only	
being	included	for	the	top	10,000	SNPs.	Therefore,	data	including	23andMe	was	used	for	the	exposure,	but	the	data	without	23andMe	was	
used	for	the	outcome.		
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Results	

Two-sample	MR:	Subjective	Wellbeing	Predicting	Physical	Health	Outcomes	

The	genetic	instrument	for	the	exposure,	subjective	wellbeing,	was	84	SNPs	with	p<5x10-

5	(independent	at	R2	=	0.001	and	a	distance	of	10000kb)	from	the	GWAS	by	the	SSGAC	

[33].	 The	 regression	 dilution	 I2(GX)	 estimate	 was	 less	 than	 90%	 for	 the	 subjective	

wellbeing	 instrument	(see	Supplementary	Table	S3	 for	 further	 information),	 therefore	

simulation	 extrapolation	 (SIMEX)	 correction	was	 applied	 in	MR	 Egger	 analysis	 	 [27].	
There	was	no	clear	evidence	to	suggest	a	causal	effect	of	subjective	wellbeing	on	any	of	

the	health	outcomes	(see	Figure	2).		

	

	
Figure	2.	 Two-sample	MR	analysis:	 the	 effect	of	 subjective	wellbeing	on	physical	health	

outcomes	using	SNPs	significant	at	p<5x10-5.	One	unit	increase	of	subjective	wellbeing	is	

equivalent	 to	 one	 standard	 deviation	 increase	 of	 the	 subjective	 wellbeing	 composite	

continuous	scale.	N	SNP	refers	to	the	number	of	the	84	SNPs	associated	with	wellbeing	which	
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were	 available	 in	 the	 outcome	 summary	 statistics.	 SNPs	 might	 be	 unavailable	 in	 the	

outcome	 due	 to	 imputation	 platform	 or	 not	 passing	 QC	 procedures.	 A	 more	 stringent	

analysis	 using	 only	 genome-wide	 significant	 SNPs	 as	 the	 instrument	 produced	 a	 similar	

pattern	of	results	(see	Supplementary	Figure	S1).	

	

Two-sample	MR:	Physical	Health	Predicting	Subjective	Wellbeing	

In	this	analysis,	we	investigated	whether	subjective	wellbeing	was	causally	affected	by	
physical	health.	Genome-wide	 significant	SNPs	 for	each	physical	health	measure	were	

used	as	genetic	instruments.	The	number	of	SNPs	this	gave	for	each	analysis	is	given	in	

Figure	3.	The	regression	dilution	I2(GX)	estimates	for	all	exposures	were	greater	than	90%	

(see	 Supplementary	 Table	 S3	 and	 Supplementary	 Note	 for	 further	 information),	

indicating	exposures	were	suitable	for	MR	Egger	analysis	[27].	We	found	evidence	that	

higher	 BMI	 caused	 lower	 subjective	 wellbeing	 (see	 Figure	 3).	 The	 direction	 of	 effect	

remained	consistent	across	all	 four	methods.	 	There	was	no	clear	evidence	of	a	causal	

effect	of	any	of	 the	heart	health	or	cholesterol	exposures	on	subjective	wellbeing	(see	

Figure	3).	
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Figure	3.	Two-sample	MR	analysis:	 the	 effect	of	physical	health	 exposures	on	 subjective	

wellbeing	 per	 unit	 of	 exposure.	 N	 =	 number	 of	 SNPs.	 For	 all	 phenotypes,	 genome-wide	

significant	SNPs	(p<5x10-8)	from	the	previous	GWAS	studies	were	used	as	the	instrument,	

clumped	at	LD	R2	=	0.001	and	10000kb.	Genome-wide	 significant	 SNPs	have	odds	 ratios	

from	1.04	(1.02,	1.06)	-	1.37	(1.31,	1.44)	for	CAD	risk	and	from	1.03	(1.01,	1.06)	-	1.33	(1.27,	

1.4)	for	MI	risk	[36].	Genome-wide	significant	SNPs	for	BMI	account	for	2.7%	of	variance	in	

BMI	[34],	13.7%	of	the	variance	in	HDL	cholesterol,	14.6%	of	LDL	cholesterol	and	15%	of	

total	cholesterol	[37,38].	
	

Cochran’s	Q	and	I2	statistics	were	calculated	to	check	for	the	presence	of	heterogeneity	

(dispersion	of	SNP	effects),	which	can	indicate	pleiotropy.	There	was	little	evidence	of	

heterogeneity	for	the	association	between	BMI	and	wellbeing	(see	Supplementary	Table	

S4	for	results	and	further	information).	The	MR-Egger	intercept	suggested	little	evidence	

of	directional	pleiotropy	 (see	Supplementary	Table	S5,	 all	p>0.07).	The	 funnel	plot	of	

individual	 SNP	 effects	 revealed	 a	 symmetrical	 distribution	 of	 SNP	 effects	 around	 the	
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effect	estimate	suggesting	balanced	pleiotropy	(see	Supplementary	Figure	S2).	We	also	

conducted	a	leave-one-out	analysis	revealing	the	SNP	with	the	largest	contribution	to	the	

effect	is	rs1421085	located	on	chromosome	16	in	the	second	intron	of	the	FTO	(fat	mass	

and	obesity	associated)	gene	(see	Supplementary	Figure	S3	and	for	more	information).	

	

Replication	in	the	UK	Biobank	

Observational	association	between	BMI	and	subjective	wellbeing	

Mean	 BMI	 in	 the	 UK	 Biobank	 replication	 sample	 was	 27.39	 (SD=4.75).	 Means	 and	

standard	deviations	for	the	subjective	wellbeing	measures	(scored	from	1-6	with	6	being	

high	 wellbeing)	 are	 given	 in	 Table	 2.	 Mean	 subjective	 wellbeing	 values	 show	 some	

negative	skew	but	none	have	skew	less	than	-1.	Linear	regressions	were	conducted	to	test	

the	observational	association	between	BMI	and	subjective	wellbeing	in	our	UK	Biobank	

sample	controlling	for	age,	sex	and	SEP	(see	Table	2).		BMI	was	negatively	associated	with	

all	measures	 of	 subjective	wellbeing	 apart	 from	 job	 satisfaction	 and	 satisfaction	with	

family	where	 there	was	 no	 clear	 association	 and	 satisfaction	with	 friends	where	 the	

association	was	positive.		

	

Table	2.	Linear	regressions	between	BMI	and	subjective	wellbeing	 in	 the	UK	Biobank	

sample	

	 Mean	(SD)	 Beta	(95%	CI)	 N	 p-value	

Happiness	 4.45	(0.70)	 -0.001	(-0.002,	-0.001)	 110,347	 0.002	

Satisfaction	with	work	 4.40	(0.87)	 -0.001	(-0.002,	0.000)	 75,519	 0.097	

Satisfaction	with	health	 4.25	(0.87)	 -0.048	(-0.047,	-0.049)	 110,388	 <2.2-16	
Satisfaction	with	finances	 4.31	(0.94)	 -0.020	(-0.020,	-0.022)	 110,247	 <2.2-16	

Satisfaction	with	friends	 4.76	(0.74)	 0.002	(0.001,	0.003)	 109,550	 0.001	

Satisfaction	with	family	 4.79	(0.90)	 -0.000	(-0.001,	0.001)	 109,712	 0.938	

	

Association	with	baseline	confounders	

The	association	of	the	BMI	genetic	score	and	BMI	with	baseline	confounders	(age,	sex,	

SEP,	education,	smoking	and	alcohol	consumption)	were	compared	(see	Supplementary	

Figure	S4).	There	was	evidence	of	an	association	between	our	BMI	genetic	score	and	SEP,	

educational	 attainment,	 smoking	behaviour	and	alcohol	 consumption.	For	educational	

attainment	and	SEP,	the	association	was	weaker	for	the	genetic	score	than	observed	BMI.	
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The	 association	 between	 our	 BMI	 genetic	 score	 with	 daily	 alcohol	 consumption	 and	

smoking	could	be	due	to	a	causal	effect	of	BMI	on	these	outcomes	[39–41].				

	

Association	between	polygenic	score	and	BMI		

The	genetic	score	was	strongly	associated	with	observed	BMI	(strength	of	instrument:	

F(1,	336027)	=	6180,	R2	=	0.018,	p<2.2-16).				

	
Replication	analysis	of	BMI	(exposure)	on	subjective	wellbeing	(outcome)	

The	results	are	shown	in	Figure	4.	There	was	very	strong	evidence	of	a	causal	effect	of	

BMI	on	satisfaction	with	health	(!=-0.034,	95%	CI	-0.042	to	-0.026,	p<2-16).	There	was	
little	clear	evidence	of	a	causal	effect	of	BMI	on	any	of	the	other	measures	of	subjective	

wellbeing.	 There	 was	 little	 evidence	 that	 this	 effect	 differed	 in	 older	 and	 younger	

participants,	but	the	age	range	in	the	UK	Biobank	is	narrow	with	all	participants	over	40	

years	old.	When	individuals	were	split	by	median	age,	the	evidence	for	a	causal	effect	of	

BMI	on	satisfaction	with	health	remained	strong	in	both	groups	(Age≤58	years:	-0.040,	
95%	CI	-0.050	to	-0.029,	p=6.413;	Age>58	years:	-0.028,	95%	CI	-0.040	to	-0.016,	p=3.7-6).	

The	 results	 remained	 the	 same	 in	 the	 independent	 sample	 with	 contributors	 to	 the	

subjective	wellbeing	SSGAC	GWAS	removed	(see	Supplementary	Table	S6).		

	

	

Figure	4.	Results	of	the	replication	analysis:	effect	on	subjective	wellbeing	per	1kg/m2	of	
BMI,	consistent	with	previous	estimates	from	automated	MR-PheWAS	[42].	
	
	
Discussion		
We	 found	 evidence	 that	 higher	 BMI	 causes	 lower	 subjective	 wellbeing.	 Sensitivity	

analyses	suggested	this	was	not	due	to	directional	pleiotropy	and	the	finding	replicated	

in	 the	 UK	 Biobank.	 The	 replication	 analysis	 suggested	 the	 causal	 effect	 of	 BMI	 on	
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subjective	wellbeing	was	driven	by	satisfaction	with	health,	such	that	higher	BMI	caused	

lower	health	satisfaction.	The	pathway	from	BMI	to	health	satisfaction	could	be	biological	

or	 social.	 Biological	 pathways	 include	 BMI	 as	 a	 risk	 factor	 for	 other	 negative	 health	

outcomes	 such	 as	 diabetes,	 cardiovascular	 illness	 and	 cancers	 [43]	 with	 randomised	

control	 trials	 and	MR	stengthening	evidence	of	 a	 causal	 effect	 [44–46].	Therefore,	 the	

effect	of	BMI	on	satisfaction	with	health	seen	in	the	current	study	may	reflect	accurate	

perceptions	 of	 health.	 Alternatively,	 societal	 influences	 could	 cause	 individuals	 to	
associate	negative	health	consequences	with	a	higher	BMI	and	consequently	report	lower	

health-satisfaction.		Subjective	wellbeing	and	health	are	in	a	complex	and	dynamic	system	

of	 causal	 pathways	 and	 further	work	 is	 needed	 to	 understand	 these	 using	mediation	

analysis	[2].		

	

In	understanding	this	causal	effect	further,	another	important	consideration	might	be	the	

influence	of	age.	Individuals	recruited	for	the	UK	Biobank	are	middle	aged	or	older,	with	

an	average	age	of	57	years.	BMI	may	be	an	important	determinant	of	health	satisfaction	

in	 an	 older	 generation	 as	 the	 health	 implications	 of	 obesity	 (heart	 disease,	 diabetes,	

cancer)	begin	to	emerge	[47].	 In	younger	age	groups,	body	dissatisfaction,	self-esteem	

and	bullying	might	be	more	 important	mediators	of	 the	association	between	BMI	and	

wellbeing	[48].	Further	investigation	of	the	causal	pathways	in	a	younger	sample	should	

be	explored,	especially	as	some	genetic	variants	for	BMI	show	a	developmentally	specific	

pattern	of	association[49,50].		
	

Observational	 evidence	 suggests	 a	 non-linear	 association	 between	mental	 health	 and	

BMI,	where	 extremely	 high	 and	 low	BMI	 both	 predict	 higher	 rates	of	 depression	 and	

lower	rates	of	wellbeing	[7,10].	The	association	between	very	low	BMI	and	depression	

seen	 in	 observational	 studies	 could	 be	 driven	 by	 eating	 disorders	 such	 as	 anorexia	

nervosa.	 The	 two	 are	 commonly	 comorbid	 with	 a	 50%	 lifetime	 prevalence	 of	 major	

depression	 in	 individuals	 with	 anorexia	 [51].	 Twin	 studies	 have	 suggested	 this	

comorbidity	is	due	to	shared	genetic	influence	between	anorexia	and	major	depressive	

disorder	 [52].	 However,	 the	 Mendelian	 randomisation	 estimators	 we	 used	 assume	 a	

linear	 relationship.	 Therefore,	 if	 individuals	with	 low	BMI	 also	 have	 lower	 subjective	

wellbeing,	this	could	lead	to	the	effect	observed	in	MR	appearing	smaller	than	it	truly	is.	
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New	methods	to	allow	for	non-linear	associations	in	MR	are	being	developed	[53,54]	but	

are	currently	too	underpowered	to	apply	here.		

	

Two-sample	 MR	 analyses	 revealed	 no	 clear	 evidence	 of	 a	 causal	 effect	 of	 subjective	

wellbeing	 on	 cardiovascular	 health,	 cholesterol	 or	 BMI.	 This	 is	 consistent	 with	 a	

prospective	analysis	in	over	700,000	women	which	found	no	effect	of	happiness	on	later	

mortality,	if	baseline	health	was	controlled	for	[55].	Previous	observational	associations	
[2,3]	could	be	due	to	residual	confounding,	reverse	causation	or	publication	bias	[56,57].	

In	our	analysis,	there	was	little	evidence	that	subjective	wellbeing	had	a	causal	effect	on	

physical	health	outcomes.	The	genetic	variants	 for	 subjective	wellbeing	are	weak	and	

confidence	 intervals	were	wide,	 so	 the	 null	 effect	 could	 be	 due	 to	 a	 lack	 of	 statistical	

power.	Further	analysis	is	needed	when	stronger	instruments	are	available.		

	

There	was	no	clear	evidence	for	a	causal	effect	of	cholesterol,	coronary	artery	disease	risk	

or	myocardial	infarction	risk	on	subjective	wellbeing,	meaning	that	residual	confounding	

is	 likely	 responsible	 for	 the	 previous	 observational	 associations.	 This	 conclusion	 is	

supported	 by	 recent	 evidence	 from	 a	 new	 approach	 called	 Bayesian	 direct	 multi-

morbidity	mapping	(BDMM)	which	found	that	CAD	was	only	associated	with	depression	

because	of	an	association	with	BMI	[58].	However,	CAD	and	MI	are	rare	outcomes	and	the	

SNPs	for	CAD	risk	used	in	our	analysis	all	had	small	effect	sizes	[36],	resulting	in	limited	

power	to	detect	an	effect	on	subjective	wellbeing.	Future	research	using	the	continuous	
phenotype	of	blood	pressure	could	provide	additional	insight	into	the	causal	pathways	

between	cardiovascular	health	and	subjective	wellbeing.		

	

Limitations	

In	addition	to	the	specific	limitations	of	weak	instruments	and	statistical	power	outlined	

above	a	more	general	limitation	of	this	study	was	the	use	of	BMI	as	a	proxy	for	adiposity.	

BMI	can	vary	due	to	reasons	other	than	adiposity	and	we	cannot	be	sure	which	aspect	is	

driving	the	casual	association.	We	need	to	understand	the	mechanisms	clearly	in	order	

to	design	interventions	[59].	Nevertheless,	BMI	is	a	good	indicator	of	adiposity,	is	widely	

available	and	easy	to	collect	in	large	samples,	and	other	more	precise	measures	have	not	

been	shown	to	differ	dramatically	[60].	
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A	second	possible	limitation	could	be	the	influence	of	population	structure	on	the	genetic	

instrument.	 In	 large	 samples	 such	 as	 the	 UK	 Biobank,	 it	 is	 difficult	 to	 fully	 remove	

population	 structure	 without	 removing	 true	 effects	 [61].	 Coincident	 structure	 may	

confound	 the	 association	 between	BMI	 and	 subjective	wellbeing,	 generating	 spurious	

signal.	Although	we	cannot	completely	remove	the	possible	influence	of	structure	in	our	

replication	analysis,	we	are	reasonably	confident	 that	 the	effect	of	BMI	on	satisfaction	

with	health	 is	not	spurious	because	we	do	not	 see	 the	same	 inflation	 for	 the	negative	
control	outcomes	of	domain	satisfaction	or	happiness.	Further,	non-genetic	instrumental	

variables	give	the	same	results	as	genetic	instruments	in	the	UK	Biobank	for	educational	

attainment,	a	trait	largely	influenced	by	structure	[62].	

		

Conclusion	

We	 found	 no	 clear	 evidence,	 using	 MR	 for	 a	 causal	 effect	 of	 subjective	 wellbeing	 on	

physical	 health	 outcomes.	 This	 suggests	 that	 previously	 reported	 observational	

associations	may	have	resulted	from	residual	confounding.	We	found	strong	evidence	for	

a	 causal	 effect	 of	 increased	BMI	on	 decreased	 subjective	wellbeing.	 Replication	 in	UK	

Biobank	 suggested	 that	 the	 effect	 of	 BMI	 on	 subjective	 wellbeing	 was	 driven	 by	 an	

adverse	effect	of	higher	BMI	on	health	satisfaction.	Our	findings	add	further	support	to	

the	need	to	reduce	obesity	because	of	the	downstream	consequences	on	mental	health	

and	 wellbeing.	 Further	 work	 is	 required	 to	 understand	 the	 pathways	 from	 BMI	 to	

subjective	wellbeing	and	to	explore	how	the	effect	of	BMI	on	mental	health	varies	across	
the	life-course.				
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