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Abstract—We consider the inference problem of reconstructing
a visual stimulus from brain activity measurements (e.g. fMRI)
that encode this stimulus. Recovering a complete image is
complicated by the fact that neural representations are noisy,
high-dimensional, and contain incomplete information about5

image details. Thus, reconstructions of complex images from
brain activity require a strong prior. Here we propose to train
generative adversarial networks (GANs) to learn a generative
model of images that is conditioned on measurements of brain
activity. We consider two challenges of this approach: First, given10

that GANs require far more data to train than is typically
collected in an fMRI experiment, how do we obtain enough
samples to train a GAN that is conditioned on brain activity?
Secondly, how do we ensure that our generated samples are
robust against noise present in fMRI data? Our strategy to15

surmount both of these problems centers around the creation
of surrogate brain activity samples that are generated by an
encoding model. We find that the generative model thus trained
generalizes to real fRMI data measured during perception of
images and is able to reconstruct the basic outline of the stimuli.20

I. INTRODUCTION

The goal of neural decoding is to characterize some distri-
bution p(X|V ), where X is a certain class of percepts (e.g.
a class of objects, a direction, an image, etc.) and V is a25

set of neural observables measured under some procedure
(e.g. fMRI voxel measurements). In the context of vision,
we might be interested in some property of an image or the
image itself. When X is an image, p(X|V ) would be a useful
interpretive tool by allowing one to sample pictures associ-30

ated with a measured brain state. Generating such samples—
a problem known as image reconstruction—is difficult for
several reasons. First, even measurements of brain activity
that permit perfect “identification” [1] of images may only
partially characterize those images. Second, invariances to35

image detail are built into the brain’s visual representations
from the earliest stages of visual processing. These invariances
are necessary for object recognition, but induce a one-to-many
relationship between brain states and images. Meaningful
reconstruction thus requires prior information that can be40

combined with information from the brain to constrain the
decoded images. Previous methods for image reconstruction
[2], [3] have utilized massive collections of photographs as
an implicit prior. Under this approach only images that have

previously been photographed can be decoded, and it is often 45

not clear what parts of the decoded image are strongly or
poorly constrained by the neural representations. These can
be unwelcome limitations when considering reconstruction
of mental images, for example, since mental images may
potentially depict things that have never been seen before. 50

Here, we take several steps toward replacing large databases
of images with a trainable and sufficiently generic generative
model. Generative models characterize a probability distri-
bution p(X), either explicitly through parametrization of a
known distribution or implicitly by providing a sampling 55

process with which to obtain samples from p(X). A class of
generative models known as generative adversarial networks
(GANs) have received a lot of interest lately for their ability
to produce convincing-looking image samples [4]–[6]. These
generative networks have several desirable properties. First, 60

they do not require strong assumptions regarding the form
of p(X) because it is only defined implicitly by the model.
GANs implicitly represent p(X) by first sampling from an
arbitrary distribution p(Z) and then transforming it through a
nonlinear function (represented by a deep generator network) 65

GX to make it look like pdata(X) to a discriminator function
DX trained to distinguish pmodel(X) from the real image
distribution pdata(X). Secondly, the discriminator, being itself
a deep network jointly trained with the generator network,
is in effect a trainable objective function. Therefore, the 70

discriminator is left to discover what (statistical) measures best
characterize the data.

Importantly, GANs have been generalized to produce image
samples from a conditional distribution p(X|Y ) where Y is
typically a low-dimensional noise-free code such as an object 75

category embedding. However, it has also been suggested
(and demonstrated in content transfer applications) that the
conditional GAN framework could be extended to conditions
of multiple modalities [6]. In this study we condition a
GAN on high-dimensional, distributed brain-like codes C 80

and examine the prospects of such a conditional generative
model for stimulus reconstruction. In principle, assuming that
the code accurately characterizes specific image details, a
conditional GAN should be able to learn to exploit this
information to narrow the distribution p(X|C) around the 85

target image. If successful, samples from p(X|C) would be

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 20, 2018. ; https://doi.org/10.1101/304774doi: bioRxiv preprint 

https://doi.org/10.1101/304774
http://creativecommons.org/licenses/by-nc-nd/4.0/


faithful reconstructions of the target image.
We use in silico brain-like activity to provide a proof-of-

principle demonstration that a conditional GAN can learn
to use stimulus features encoded in a conditioning vector90

C to produce faithful reconstructions of a target image. We
show that the variability of these reconstructions—which are
ostensibly samples from p(X|C)—is directly related to the
content and quality of the conditioning code. We then apply
our approach to reconstruct target images from fMRI measure-95

ments of brain activity in human visual cortex. Applying our
approach to real brain activity measurements is challenging
due to the generally low signal-to-noise associated with these
measurements, and because it is currently not feasible to
obtain enough samples of brain activity to successfully train100

a conditional GAN. We overcome these challenges by using
a voxelwise encoding model of activity in the visual cortex.
The encoding model generates predictions of brain activity in
response to any arbitrary stimulus. As we will demonstrate, we
can use these predicted activity patterns to learn to denoise and105

compress raw brain activity measurements into a conditioning
code C. We can further leverage the encoding models to
generate tens of thousands of surrogate data samples that
can be used to train a conditional GAN. We show that this
approach then generalizes to reconstructions of natural scenes110

from human brain activity.

II. METHODS

Our method consists of three distinct components shown
in Fig. 1. First, we build an encoding model. A deterministic
encoding model makes some neural predictions V̄ = EV (X)115

(whose elements may correspond to neurons, voxels, etc),
where EV (X) is some mapping from stimulus space to neural
space. Second, we reduce the dimensionality of the voxel
activity vector V by utilizing the internal representations
C = EC(V ) of a denoising auto-encoder. Finally, we build120

a generative network conditioned on the condition vector C.
We used the energy-based formulation of GANs [7] since it
provided good sample quality and more stable training for all
conditions. These three steps are detailed below.

A. Encoding125

In previous work, we have detailed an approach to en-
coding models called the feature-weighted receptive field
(fwRF) model [8]. This approach makes several assumptions—
foremost is space-feature separability—which heavily regular-
izes the training of the model. For our purpose here, it also has130

the additional benefit of introducing several easily interpretable
and controllable parameters.

The fwRF model EV (X) (Figure 1A) can be separated
into two components: a feature extractor EY and a linear (or
weakly nonlinear) feature-to-voxel regression (the blue circle135

labeled fwRF in Figure 1A). For the sake of demonstration,
we used a very low spatial resolution deep neural network
(DNN) as a feature extractor. This DNN consisted of five
convolutional layers (with rectifier nonlinearity) and one fully-
connected layer trained to recognize the 10 image categories of140

the cifar-10 dataset [9]. This resulted in a total of 2314 feature
maps of various resolutions, which were all included in the
fwRF model. The fwRF model applies to these feature maps
a set of feature weights wv and a spatial receptive field (RF)
parameterized by a size σv and center location (xv, yv), where 145

v indexes a particular voxel. The feature weights determine the
importance of each feature map in the DNN to the predicted
response of the voxel being modeled, whereas the spatial RF
determines the region of the visual field where an individual
voxel is most sensitive to the features with nonzero weights. 150

Feature weights are learned via gradient descent, while spatial
RF are learned via grid search over a set of candidate RFs.
In this work, the search grid included 8 log-spaced sizes
σv between 0.7 and 6.0 degrees spaced 1.33 degrees apart
(regardless of size) for a total of 1800 candidate spatial RFs. A 155

compressive element-wise nonlinearity f(x) = log(1 +
√
|x|)

was applied after pooling over the feature maps, which resulted
in slightly better prediction accuracy. The model for each voxel
was run for 40 epochs of stochastic gradient descent with batch
size of 200 and step size of 10−4 starting from an initial state 160

of wv = 0.

B. Denoising

Image features are encoded noisily and redundantly across
populations of voxels in fMRI measurements of brain activity.
This suggests that high-dimensional, noisy fMRI brain activity 165

patterns can be compressed into a much lower-dimensional
embedding. We used a simple denoising autoencoder to
produce a highly informative and noise-resistant embedding
of the brain activity. An autoencoder is a mapping X ′ =
DC(EC(X)) where EC(X) provides some embedding of 170

X into a (usually smaller or sparser) space C. The training
objective involves minimizing the distance between X ′ and
X . A denoising autoencoder uses the same objective but adds
some noise to the input of the encoder X ′=DC(EC(N [X])),
where N [·] is some corruption process, which further reg- 175

ularizes the encoding and decoding procedure and increases
robustness to corrupted inputs [10]. The target is the uncor-
rupted input X , and the goal is usually to discover some useful
feature representations of the data.

In this work, we used a denoising autoencoder to denoise 180

brain activity measurements V under the assumption that the
outputs of the voxel encoding model (V̄ ) provide a suitable
denoised target. Therefore, our autoencoder objective is

LV̄ =
∑
v

βv|V̄v −DC(EC(V ))v|2,

where v indexes the various voxels of V (V̄ ) and βv is some
relative importance factor for voxel v. In order to obtain 185

enough data samples to effectively train the autoencoder, we
used a surrogate data approach (note that this approach was
also used to train the GAN, as will be seen below). First,
we generated a large set of encoding model predictions V̄surr
corresponding to images in a collection of natural scenes (here 190

the cifar-10 dataset). These predicted brain activity vectors
served as target activity patterns for training the denoiser. To
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Fig. 1. Summary of the model. The proposed strategy consists of three independently trained components: (A) A voxel-wise encoding model based on the
fwRF, (B) a voxel denoising autoencoder and (C) a conditional generative network (here an ebGAN). (D) shows the components of the system used to sample
images from pmodel(X|C=EC(Vtest)) at test time. E, D and G represent encoder, decoder and generator deep neural networks. S and V are stimuli and
fMRI brain activity measures, respectively, from the vim-1 dataset. X and Y are images and categorical labels, respectively, from a separate image collection
(cifar-10 or MNIST). Arguments to the loss functions L are indicated by the black brackets. The color of the various model components is matched to the
data subset (labeled trn, val, test and surr) used to train their parameters; colored pipelines show the flow of data through the system during training (A-C).
Models in (A) are trained sequentially (not jointly) from left to right i.e. first EY , then the fwRF followed by a voxel noise model N . Then all the parameters
in (B) are trained jointly followed by all parameters in (C). The surrogate voxel data used to train (B) and (C) is obtained by applying the encoding model
(and noise model) to the input images of Xsurr.

create the surrogate brain activity patterns for training, we
corrupted the prediction V̄surr under a noise model

N [V̄ ] = ρ� V̄ +
√

1− ρ2 � Σ1/2N (0, 1)d

that is consistent with the validation accuracy (i.e., the corre-195

lation between the predicted and the experimentally measured
brain activities for each voxel) and covariance structure (i.e.,
the correlation of residuals across the voxel population) of
the real brain activity. Here, ρ = ρval and Σ1/2 are noise
parameters estimated from a special validation set of brain200

activity measures, Vval. Briefly, these noise parameters satisfy
N [V̄val] = Vval. The training objective above was minimized
by applying stochastic gradient descent to 59500 surrogate
brain activity measurements. This process generalized ex-
tremely well to denoising Vval.205

C. Decoding

To produce reconstructions of images from measurements of
brain activity, we trained a GAN to generate samples from an
implicit distribution p(X|C), where C is a conditioning vector
derived from brain activity measurements obtained while a210

human subject observed a target image. The GAN training
strategy does not minimize a single objective function, but
iteratively updates a generator and discriminator network to
minimize separate, opposing, objectives [4]. This process
admits a unique global optimal solution when the generator215

produces samples from the (conditional) data distribution, i.e.
pmodel(·) = pdata(·), limitations due to realization notwithstand-
ing.

For this work, we trained a conditional energy-based
GAN (ebGAN) [7], which is a modification of the structure220

of a GAN that replaces the binary discriminator by a deep
autoencoder network (note that the autoencoder used to train
the ebGAN is completely distinct from the autoencoder we

used to obtain conditioning codes for the ebGAN). In this for-
mulation, the conditional generator GX(Z;C) and conditional 225

autoencoder DX(EX(X;C);C) parameters are trained under
their respective objectives

LG(Z;C) = LX(GX(Z;C);C) + λfPT(ξ)

LD(X,Z;C) = LX(X;C) + [m− LX(GX(Z;C);C)]+

where LX(X;C)=‖X−DX(EX(X;C);C)‖2 is a standard
L2-norm loss for a deep autoencoder and [·]+ indicates a
rectifier nonlinearity. Like in Ref. [7], the addition of a “pull- 230

away” regularization term fPT(ξ) to the autoencoder internal
representation ξ greatly reduced the preponderance of mode
collapse in our tests. m and λ were set to 1.0 and 0.1
respectively. Conditioning is realized by concatenation of the
condition vector C with every feature map (replicated over 235

spatial extent) of the generator and discriminator networks [6].
Here, C is a 128-dimensional vector and Z is sampled from a
920-dimensional normalized and uncorrelated Gaussian which
is sliced and concatenated at various layers of the generator
network. The training of the conditional generative adversarial 240

network then followed standard practice.
Note that nowhere in the GAN training procedure do we

specify explicitly that the generated images have to be close
to the encoded images. However, by learning to fool the dis-
criminator by matching the statistical features of images from 245

the dataset, the generator learns to use stimulus information
encoded in the conditioning vector C to its advantage. This
results in sample images that are heavily constrained toward
the image encoded in the brain activity measurements used
to produce the conditioning vector. On the other hand, if 250

a great amount of noise remains in the conditioning vector,
the implicit distribution p(X|C) is weakly constrained by C,
so that samples from this distribution would resemble those
of the unconditional GAN. Therefore, the training procedure

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 20, 2018. ; https://doi.org/10.1101/304774doi: bioRxiv preprint 

https://doi.org/10.1101/304774
http://creativecommons.org/licenses/by-nc-nd/4.0/


effectively decides whether or not to leverage the conditioning255

vector. One consequence of this is that a complete retraining
of the GAN has to be performed for any change in the noise
distribution or in the features encoded in the (synthetic) voxels.

All networks were implemented in theano [11] (lasagne
[12]). To train the generator we used the same surrogate260

data used to train the denoiser. At this point, it is straight-
forward to generate an associated noisy condition vector
C = EC(N [EV (X)]) for any image X in a large dataset.
Using the previous 59500 surrogate data samples, we trained
the generator and discriminator with the Adam optimizer for265

400 epochs, with learning rates of 2.5× 10−4 and 5.0× 10−4

for the generator and discriminator respectively, alternating
training between each batch of size 500. After 250 epochs, the
learning rates were reduced by 1% each epoch until the end of
training. The generated images from the training set usually270

started to be recognizable after over a hundred epochs. At
test time, we constructed a conditioning vector by submitting
a real brain activity measurement Vtest to the trained encoder
EC . This was then passed to the generator GX to generate
image samples (see Fig. 1D). Such image samples are shown275

in Figs. 2A, 2E, 4 and 5). In this way, multiple reconstructions
are obtained for each brain activity measurement.

D. Experimental dataset
To test our procedure, we used the vim-1 dataset; a high

quality, publicly available, recording of two subjects presented280

with natural images [1], [2]. The dataset, described in detail
in [1], contains estimates of functional BOLD activity in re-
sponse to greyscale natural photographs from voxels in visual
brain areas V1, V2, V3, V4, V3A, V3B and LO and in voxels
in visually responsive cortex anterior to LO. This dataset was285

acquired using a 4T INOVA MR scanner (Varian, Inc.) at a
spatial resolution of 2mm × 2mm × 2.5mm and a temporal
resolution of 1 Hz. During the acquisition, subjects viewed
sequences of 20o × 20o greyscale natural photographs while
fixating on a central white square. Photographs were presented290

for 1 s with a delay of 3 s between successive photographs. The
data, available online at https://crcns.org/data-sets/vc/vim-1,
is partitioned into distinct training and validation sets which
consist of estimated voxel activation in response to 1750
and 120 photographs respectively. We further separated the295

validation set into a set of 100 samples used for inferring
the noise parameters and a set of 20 samples for the final
generative test. All figures in the current study use data from
subject 1.

III. RESULTS AND DISCUSSION300

Before presenting our results for the encoding and gener-
ative procedure on the vim-1 dataset, we probe the effects
of various observable properties of neural activity on the
reconstruction accuracy on a synthetic neural dataset.

A. Reconstruction variability depends on the encoding model305

accuracy, receptive field coverage and feature support.
Our approach assumes that features reliably encoded in the

brain-derived conditioning vector C will be present in the

majority of samples from p(X|C), while features that are
encoded noisily or not at all will vary across samples from 310

p(X|C) just as much as they would in samples from p(X).
In order to validate this fundamental assumption, we first

performed experiments with a set of synthetic brain activ-
ity measurements. The voxels in this synthetic dataset were
randomly tuned to the feature maps of a DNN trained to 315

discriminate digits in the MNIST digits dataset. We varied
the noisiness of each synthetic voxel (i.e., the accuracy of
its encoding model), the specific feature maps in the DNN to
which the synthetic voxels were tuned (i.e., the voxels’ feature
support), and the location and size of the synthetic voxels’ spa- 320

tial RFs. We then examined the effects of these manipulations
on the reconstructions generated by a GAN trained as specified
in the methods section above. Specifically, we examined how
the variability of samples from p(X|C) depends on the amount
of noise, the feature support, and the RF coverage of the 325

synthetic voxels.
The sample variability was estimated by calculating the

(pixelwise or average) entropy from an estimate of the prob-
ability of a pixel being white or black across samples from
GX(Z;EC(N [V̄ ])). If all samples were identical, the entropy 330

would be low, whereas highly variable samples result in high
entropy. Note that low sample variability does not necessarily
imply that the samples are accurate reconstructions (i.e. that
they look like the image encoded in the conditioning vector
C); nonetheless, we found that in these in silico experiments 335

all reconstructions were clearly recognizable as the correct
digit (unless otherwise noted).

Figure 2C–E illustrates the effects of manipulating the syn-
thetic voxel populations on the reconstructed image samples.
In all cases except where the feature support included only 340

the first 2 convolutional layers (V0) of the DNN, the generator
learned to produce convincing-looking digits of the category
encoded. For the feature support V0, the reconstruction tended
to be an amalgamation of edges that resembled digits but
lacked overall coherence. On the other hand, these recon- 345

structions were also less variable than those from feature
support V1, V2 and V3, which suggest that the generator
tuned specifically to noisy low-level visual features without
consideration of the global arrangement.

We also tested the localization effect under the spatially 350

homogeneous condition vector by restricting the RF support
to only one visual hemifield. The result, shown in Fig. 2E,
demonstrates a dependence on the local variability of the sam-
ples on the RF coverage of the encoded voxels. Furthermore,
in this controlled experiment, the RF sizes relative to the visual 355

feature of interest were extremely small. We thus also tested
the effect of the size of the RFs by increasing all sizes by
a factor of two and retrained the model. As expected, we
observed that the variability of the samples increased with
the RF sizes, which follows from the intuition that larger RFs 360

cannot constrain the detail of the image as accurately.
These experiments with simple, synthetic brain activity

confirmed that a conditional GAN could be trained to use
stimulus information encoded in a brain-like code to narrow
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Fig. 2. Control studies on a synthetic dataset (A) We generated synthetic brain activity populations tuned to different combinations of layers in a DNN,
EY , that was trained to discriminate digits in the MNIST image collection. Synthetic activity patterns were generated using 4 distinct sets of features maps:
V0 used only the first 2 convolutional layers; Vi used all feature maps above and including layer i. The set of feature maps used to produce synthetic voxel
responses is referred to as the population’s “feature support”. (Below) An example of generated samples based on the encoded stimuli. Samples from p(X)
are unconditioned. The samples from p(X|V3) are conditioned on high-level features only and show a consistent “4” (a “4” was indeed encoded) with
large variability in style. Samples from p(X|V1) for the same encoded image show much less variability (as shown at the very bottom of the figure). (B)
Distribution of synthetic voxels model accuracy (i.e. how accurately the known encoding model for each synthetic voxel predicts its signal) with varying
levels of noise. Each distribution is parameterized by a “gain” coefficient g. A positive (negative) gain means that the synthetic population includes voxels
with more (less) accurate encoding models than the reference distribution (null gain). (C) Effect of the encoding model feature support. Sample variability
is a measure of the variability of image reconstructions sampled from the implicit image distribution learned by the GAN. The two right-most points show
the sample variability of the unconditioned p(X) and class-conditioned generator p(X|Y ) (Y is a one-hot class label) relative to the unconditioned (black
dashed line) and average class-wise variability (red dashed line) of images in the MNIST dataset. (D) Effect of the model accuracy. One can test the effect of
model accuracy by choosing different distributions of voxel noise, as shown in B. As would be expected, synthetic voxel populations with little noise result
in lower sample variability. (E) Effect of the receptive field support. Circles show the size and locations of RFs in three separate synthetic voxel populations.
Populations with RFs restricted to a single visual hemifield lead to increased sample variance in the un-represented hemifield, while preserving the category
of the represented digit. Results for each distinct population require a complete re-training of the denoiser and generator network (B and C in Fig. 1).
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the variability of its samples around a target image. As365

expected, the variability in the samples was smallest for those
features or those regions of the visual field most reliably
encoded in the synthetic brain activities.

B. Validation of the encoding model used to train the denoiser
and the generator.370

As detailed above, we trained the denoiser and the
ebGAN using surrogate data samples obtained from a voxel-
wise encoding model. For the reconstruction to succeed at test
time, when a real brain activity pattern is used, it is essential
that the encoding model be accurate. Figure 3 shows that375

the encoding model used in this study accurately predicted
brain activity measurements in response to natural scenes, and
recovers well-known properties of receptive fields [13] and
tuning along the visual hierarchy. Due to the low resolution
of the input, the encoding model used here included a less380

rich set of features than in previous works [8]. This choice
was made to accommodate the low-resolution images of the
cifar-10 dataset used to train the denoiser and generator. In
general—dataset permitting—we expect that one could use
a high-resolution input for the encoding model while using385

down-sampled images for the generator in order to facilitate
training of the latter. Nevertheless, the encoding model used
here achieves comparable prediction accuracy in early visual
areas and shows, as expected, the progressively increasing
tuning to deep feature maps along the visual hierarchy also390

observed in Refs. [8], [14]–[16].
Only voxels whose validation accuracy ρval were above a

threshold of 0.2 were included in V . This corresponded to
roughly 2900 voxels, 56% of which were found in early visual
area V1–3, 21% in area V4, LO and V3a/b, and the remaining395

in visual cortex area anterior to LO.

C. Reconstruction quality depends critically on voxel denois-
ing.

Before considering the fully cross-validated reconstructed
images, we first examined reconstructions using the same set400

of brain activity patterns, Vval, that were used to estimate
the parameters of the noise model N . These brain activity
patterns were used (indirectly) to construct the surrogate
activity patterns on which the denoising autoencoder was
trained. We found that these brain activity patterns are almost405

perfectly denoised by the autoencoder and therefore provide
an upper bound on the reconstruction accuracy that we might
achieve. Figure 4 shows a sample of stimuli reconstruction
from brain activity measurements in Vval. These demonstrate
quite convincingly that the generator trained under the proce-410

dure described here learns to associate elements of the voxel
predictions to low- and intermediate-level visual features to
reconstruct the seen images. This suggests that extremely
accurate reconstructions could be obtained with the proposed
decoding strategy by adopting an experimental design that415

includes a set of brain activity measurements for the dedicated
purpose of estimating noise parameters.

D. Reconstruction of visual stimuli from evoked brain activity.

Figure 5 shows a few samples generated from conditioning
on real held-out voxel activity measurements with the cor- 420

responding stimuli that was presented to the subject. While
it would be difficult to identify the image from a priori
considerations, one can observe that the dominant lines (hori-
zon, mountains, etc.) appear to be preserved and that regions
containing high spatial frequency details appear generally as 425

such. A composite video of samples produces the impression
of high variability of certain elements, while other, more
robust, stand out as the main objects in the reconstructions.

E. Relation to other decoding methods.

One way to model p(X|V ) is to apply Bayes’ theorem with 430

the encoding model describing the likelihood p(V |X) [2],
[17]. This requires that one specifies an appropriate prior
distribution p(X), which generally requires some fairly strong
assumptions about X . For example, Refs. [2] and [3] used a
large collection of natural images (videos) as a prior. The im- 435

plicit representation of p(X|V ) afforded by the GAN strategy
does not require strong assumptions on the prior or posterior
distributions, and thus greatly extends its expressiveness. Our
results can be compared directly to those of Ref. [2] since
we used the same experimental dataset. Averaged samples on 440

the held-out set (Fig. 5) are comparable to the reconstructions
presented in Ref. [2]; however, our method has the advantage
of being able to produce multiple samples from p(X|V ), as
opposed to just the mean of the posterior. As we discuss
below, this innovation helps to distinguish signal from noise 445

in the reconstructed images (see supplementary videos for
examples). Furthermore, the reconstructions in Fig. 4, where
we assume near-optimal denoising, suggest that the ceiling on
reconstruction quality might be much higher for the GAN de-
coding strategy presented here than for previous strategies. 450

Other methods center around a maximum likelihood esti-
mation for the decoded image. One such obvious decoding
procedure is to induce a generative process on EV (X) by
performing gradient descent with respect to X under an
objective that minimizes some distance Lrec between the neural 455

predictions and measurements. However, such a process has
several limitations. Mainly, the difficulty is that, while the pixel
gradient ∇XLrec succeeds in reconstructing accurate images
from low-level feature maps, it tends to drive reconstructions
of deep feature maps into unnatural-looking images. This 460

is related to the problem of interpretation of deep feature
maps [18], [19] where several attempts have been made at fine-
tuning prior-like constraints to the objective in order to favour
certain aspects of the reconstructions, with limited success.

Shen et al. [20] attempted to improve the quality of the im- 465

ages obtained through such gradient-based method by adding
a pre-trained generative model of images EV (GX(Z)) and
perform gradient descent with respect to Z instead of X
directly. This addition was intended to serve as a regularizer
(or prior) to keep the generated image near the generative 470

model manifold (of natural images). However, this procedure
still does not permit an interpretation of the variance of
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Fig. 3. Encoding model. (A) shows histograms of model validation accuracy (i.e. the correlation coefficient between the prediction of the model and real
voxel activity) for voxels in distinct visual areas (top right of each histogram). The inset displays model validation accuracy on a flattened map of visual cortex
(subject 1 in the vim-1 dataset). The overall accuracy is lower than reported in [8]; however, the encoding model used here had many fewer model parameters,
greatly decreased stimuli resolution, and was based on a DNN trained classify many fewer object categories. In spite of these suboptimal conditions, the
model parameters still manage to reflect the dominant cortical organization, as seen in (B) and (C). (B) shows the estimated spatial RF size of voxels as a
function as of its eccentricity (distance to fovea). (C) show the relative network layer contribution to the overall model accuracy for different visual areas.
The network hierarchy aligns with the hierarchy of areas in the visual cortex.

Fig. 4. Image decoding from optimally denoised voxels. (A) The stimuli shown to the subject. (B) One sample from the generator conditioned on the evoked
brain activity of each of the stimulus presentations. The colorization of the reconstruction samples are a result of the generator training dataset. For these
reconstructions we used real measured brain activity patterns, but purposely used overfit parameters for the noise model used to train the denoising autoencoder.
Thus, these reconstructions represent an upper bound on image reconstruction quality achievable with the proposed system, and suggests that proper estimation
of noise model parameters is a critical step in our proposed decoding strategy. A composite video of samples demonstrating the stability of certain image
elements is available online at https://github.com/styvesg/gan-decoding-supplementary.

the samples, even in principle. In contrast, instead of using
an encoding model to score and tune the image generated
under a pre-trained generative model, we trained a conditional475

generative model that learn the posterior distribution from
brain to image under an encoding model.

F. Toward generic decoding of mental images.

It is important to conceptually separate the technical difficul-
ties associated with the practical problem of image reconstruc-480

tion from evoked brain activity from the theoretical problem
of understanding the representative limitations of the processes
that evoked this brain activity. The technical difficulties center
around producing an inference procedure that can put together
disparate and often corrupted pieces of information into a 485

consistent whole. What we call consistent here refers to our
prior knowledge of natural images.

Our analysis offers certain predictable prospects for decod-
ing mental imagery (MI). First, it has long been known that
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Fig. 5. Generated samples. (A) Stimuli from the held-out test set Stest. (B) The average over the reconstructed images recovers a coarse outline of the
encoded stimuli. (C) 10 generated samples for the top-left stimuli (red square). It is also remarkable that the robust sample features are also preserved across
re-training of all parts of the model. See https://github.com/styvesg/gan-decoding-supplementary for a composite video of such samples.

evoked brain activity during MI does not cover the whole490

visual cortex uniformly, but tends to re-activate regions high
in the visual hierarchy [21]. This implies, since these regions
are best predicted by increasingly invariant features (Fig. 3),
that an optimal generator would necessarily produce samples
with high variability, as demonstrated by Fig. 2B. A recent495

fMRI study of MI revealed that population RF of voxels
during MI tend to be larger in early visual area than during
perception [22]. According to our results, this reduction in
spatial specificity would also increase the variability of the
generated samples, and suggests not merely a lower practical500

bound to MI reconstructions, but a lower theoretical bound as
well.

IV. CONCLUSION

We have demonstrated the feasibility of using the GAN
strategy to obtain an implicit representation of the probability505

distribution of images p(X|V ) given observed voxels V . Our
demonstration has focused on three elements: First, that com-
mon observable properties that are associated with neural ac-
tivity (prediction accuracy, receptive fields and feature tuning)
play a direct and obvious role in our capacity to reconstruct510

encoded stimuli under our method. Second, we maintain that
the central challenge with our method is the voxel denoising
strategy. Here we have used a model of the noise inferred from
measurements and shown that a denoising autoencoder trained
with surrogate data under this model effectively learns to515

denoise the voxel measurements. However, the relatively small
size of the dataset meant that the noise model overfitted the
noise, and thus generalized relatively poorly to held-out data.
Nevertheless, the dominant features of the stimuli appeared
to be recovered. Finally, we have shown that a generator520

conditioned on a brain-like code could be trained using purely

synthetic data produced by a sufficiently accurate encoding
model. This development permits extension of the generator
to arbitrarily large natural image sets and clearly disentangles
the problem of encoding, denoising and decoding. 525
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