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Abstract 26 

Plant specialized metabolism (SM) enzymes produce lineage-specific metabolites with 27 

important ecological, evolutionary, and biotechnological implications. Using Arabidopsis thaliana 28 

as a model, we identified distinguishing characteristics of SM and GM (general metabolism, 29 

traditionally referred to as primary metabolism) genes through a detailed study of features 30 

including duplication pattern, sequence conservation, transcription, protein domain content, and 31 

gene network properties. Analysis of multiple sets of benchmark genes revealed that SM genes 32 

tend to be tandemly duplicated, co-expressed with their paralogs, narrowly expressed at lower 33 

levels, less conserved, and less well connected in gene networks relative to GM genes. 34 

Although the values of each of these features significantly differed between SM and GM genes, 35 

any single feature was ineffective at predicting SM from GM genes. Using machine learning 36 

methods to integrate all features, a well performing prediction model was established with a true 37 

positive rate of 0.87 and a true negative rate of 0.71. In addition, 86% of known SM genes not 38 

used to create the machine learning model were predicted as SM genes, further demonstrating 39 

its accuracy. We also demonstrated that the model could be further improved when we 40 

distinguished between SM, GM, and junction genes responsible for reactions shared by SM and 41 

GM pathways. Application of the prediction model led to the identification of 1,217 A. thaliana 42 

genes with previously unknown functions, providing a global, high-confidence estimate of SM 43 

gene content in a plant genome. 44 

 45 

Significance 46 

 Specialized metabolites are critical for plant-environment interactions, e.g., attracting 47 

pollinators or defending against herbivores, and are important sources of plant-based 48 

pharmaceuticals. However, it is unclear what proportion of enzyme-encoding genes play roles in 49 

specialized metabolism (SM) as opposed to general metabolism (GM) in any plant species. This 50 

is because of the diversity of specialized metabolites and the considerable number of 51 

incompletely characterized pathways responsible for their production. In addition, SM gene 52 

ancestors frequently played roles in GM. We evaluate features distinguishing SM and GM 53 

genes and build a computational model that accurately predicts SM genes. Our predictions 54 

provide candidates for experimental studies, and our modeling approach can be applied to other 55 

species that produce medicinally or industrially useful compounds. 56 

 57 
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Introduction 62 

 Gene duplication and subsequent divergence/loss events led to highly variable gene 63 

content  between plant species (1, 2). The high rate of differential gain and loss events has 64 

generated a diverse repertoire of metabolic enzymes ranging from those involved in generally 65 

conserved, primary metabolic processes found in most species, such as carbohydrate 66 

metabolism or photosynthesis (referred to as general metabolism, or GM, genes), to those that 67 

function in lineage-specific specialized metabolism (SM) (3–6). The proliferation of lineage-68 

specific SM genes in plants has resulted in an overall far larger number of specialized than 69 

general metabolites. Specialized metabolites are important for niche-specific interactions 70 

between plants and environmental agents that can be harmful (e.g. herbivores) or beneficial 71 

(e.g. pollinators) (3, 7, 8). In addition, specialized metabolites are the basis for thousands of 72 

plant-derived chemicals, many of which are used for medicinal and/or nutritional purposes, such 73 

as carotenoid derivatives with antioxidant properties in tomato (9–11). Thus, identification of the 74 

genes encoding enzymes that produce specialized metabolites (referred to as SM genes) is key 75 

to understanding the causes underlying the diversity of plant specialized metabolites as well as 76 

for engineering plant-derived chemicals and pharmaceuticals. 77 

  Despite their importance, most plant metabolites and the enzymes and genes involved in 78 

their biosynthesis are yet to be identified (12). Although many SM genes arise by duplication of 79 

GM genes (13, 14) or other SM genes (15), duplication itself is not sufficient for pinpointing SM 80 

genes for four reasons. First, genes encoding GM or SM enzymes can belong to the same 81 

family, Second, duplicated GM genes may not necessarily become specialized (1), and minor 82 

sequence changes can lead to substantially altered enzyme functions (16, 17). Third, SM genes 83 

may arise through lineage-specific loss of the GM function without duplication. Finally, 84 

convergent evolution may explain the presence of unrelated enzymes in different lineages that 85 

use the same substrate to make similar products (5). Consequently, it remains unresolved 86 

whether most plant enzyme genes are involved in GM or SM pathways, even in the best 87 

annotated plant species, Arabidopsis thaliana (3, 5, 18, 19). Therefore, in recent years there has 88 

been a renewed focus on identifying SM genes (20, 21). 89 

Despite the challenges, multiple other properties may be useful in distinguishing SM 90 

from GM genes (4, 20–22), including a restricted phylogenetic distribution, a higher family 91 

expansion rate, tandem clustering of paralogs, a propensity for genomic clustering (close 92 

physical proximity of genes encoding enzymes in the same pathways), higher degrees of 93 

expression variation, and higher degrees of co-expression compared with GM genes. A recent 94 

study by Edger and coworkers (23) provides an example of the contribution of whole genome 95 

duplications (WGDs) and tandem duplications to metabolic innovations in glucosinolate 96 

biosynthesis genes. In addition, pioneering studies used co-expression with known SM genes 97 

(20, 24) or genomic neighborhood and gene-metabolite correlation (25) to predict SM genes. 98 

Nonetheless, with the influx of more biochemical and -omic data, there is an increasing number 99 

of gene properties that have yet to be evaluated for their utility in distinguishing SM/GM genes. 100 

Furthermore, the studies published to date have mainly focused on specific SM or GM pathways 101 

but not on how they differ globally. This prompted us to examine 10,243 gene properties 102 

(referred to as features) from five categories (gene function, expression/co-expression, gene 103 

networks, evolution/conservation, and gene duplication) and evaluate the ability of each feature 104 

to distinguish SM genes from GM genes. Earlier studies revealed that the association between 105 
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features and SM genes is far from absolute (26) and—in most cases—the effect sizes (i.e. the 106 

extent to which these specific features can distinguish SM and GM genes) were not clear.  To 107 

overcome these limitations, a machine learning approach (21), which jointly considers all five 108 

categories of heterogenous features, was used to distinguish SM and GM genes. This approach 109 

led to machine learning models that can robustly predict if an A. thaliana enzyme gene is likely 110 

an SM gene.  111 

 112 

Results and Discussion 113 

Benchmark SM and GM genes 114 

Currently there are two major resources for plant SM and GM gene annotations: Gene 115 

Ontology (GO; (27)) and AraCyc (28). For SM genes, we started with the 357 genes with the 116 

GO term ‘secondary metabolic process’, and 649 enzyme-encoding genes in 129 AraCyc 117 

‘secondary metabolism’ pathways (Dataset S1). Initial GM genes included 2,009 annotated with 118 

the GO term ‘primary metabolic process’ and 1,557 enzyme-encoding genes in 490 AraCyc 119 

non-secondary metabolism pathways (Dataset S1). Although 32.4% of GO- and 41.8% of 120 

AraCyc-annotated GM genes overlapped, only 35 SM genes (15% of GO- and 8.3% of AraCyc-121 

annotated SM genes) overlapped (Figure 1A). While this is a significantly higher degree of 122 

overlap than expected by chance (Figure S1A, B), it indicates a greater inconsistency in SM 123 

annotation criteria than in GM annotation criteria between the GO and AraCyc datasets. 124 

Furthermore, 152 and 261 genes were annotated as both SM and GM in GO and AraCyc, 125 

respectively. This indicates that while SM and GM genes may have distinct properties, several 126 

genes can belong to both and their properties may not be distinct. Here we focus on cases that 127 

are not ambiguous, but later we delve into this gene set to see if genes involved in both SM and 128 

GM pathways can be uniquely classified. 129 

To further assess the differences in AraCyc and GO annotations, we asked whether SM 130 

and GM genes annotated based on these two sources have different functional and pathway 131 

annotations and Pfam protein domains. We found that GO- and AraCyc-annotated SM genes 132 

have substantially different enriched GO categories (Figure 1B, Dataset S1), AraCyc pathways 133 

(Figures S1C, Dataset S1), and protein domains (Figure S1D, Dataset S2). For example, GO-134 

annotated SM genes tend to be overrepresented in lignin, coumarin and phenylpropanoid 135 

biosynthesis GO categories. In contrast, AraCyc-annotated SM genes are overrepresented in 136 

anthocyanin and flavonoid biosynthetic process GO categories. With regard to AraCyc pathway 137 

enrichment, GO-annotated SM genes are overrepresented in, for example, biosynthesis of 138 

flavonoids, leucine, suberin monomers and wax. In contrast, AraCyc-annotated SM genes are 139 

overrepresented in the terpenoid, camalexin, carotenoid, farnesene, and glucosinolate 140 

biosynthesis pathways (Figure S1C). The only commonly enriched pathway is flavonoid 141 

biosynthesis. In contrast to SM genes, GO- and AraCyc-annotated GM genes tend be over-142 

represented in the same functional categories and pathways (Figure 1B). 143 

Considering the above findings, we defined three benchmark sets (Dataset S1). The first 144 

(benchmark1) was defined to include as many annotated SM genes as possible. Here, 393 145 

benchmark1 SM genes were defined as the union of GO and AraCyc SM annotations that have 146 

Enzyme Commission (EC) numbers. Similarly, 2,226 benchmark1 GM genes are from the union 147 

of GO and AraCyc primary metabolism gene annotations associated with EC numbers. In the 148 
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second set (benchmark2), we used only AraCyc annotations, which were likely better annotated 149 

because the focus of AraCyc is on metabolic pathways (SM=411, GM=1306, Figure 1A). In the 150 

third set (benchmark 3), we used the intersection between GO and AraCyc annotations 151 

(SM=35, GM=650, Figure 1A). When we examined which gene feature could distinguish 152 

benchmark SM and GM genes (described in the following four sections, Dataset S2), the p-153 

values from testing >10,000 features were highly correlated among the three benchmark 154 

definitions (all Pearson Correlation Coefficients (PCCs) >0.71, Table S2). Therefore, we focus 155 

on comparing benchmark1 (union-based) and benchmark2 (AraCyc-only) genes, particularly 156 

when the conclusions (whether a feature can distinguish between SM and GM genes) were 157 

inconsistent.  158 

Differences in gene expression and epigenetic marks between SM and GM genes 159 

A previous study showed that the expression of genes in some SM pathways tends to be 160 

more variable than the expression of genes in "essential pathways" (22). To further assess 161 

differences in SM and GM gene expression, we examined transcriptome datasets 162 

encompassing 25 tissue types (development dataset) and 16 abiotic/biotic stress conditions 163 

(stress dataset, see Methods; for all test p-values, see Dataset S2). In addition to confirming 164 

that benchmark2 SM genes tend to have higher expression variability (p=0.003, Figure 2A), we 165 

examined 23 additional expression features. We found that SM genes had significantly narrower 166 

breadths of expression (Mann Whitney U tests, for all benchmark sets: p<1e-35, Figure 2A), 167 

lower median expression levels (p=e-24, Figure 2A), and lower maximum expression levels 168 

(p=0.04, Figure 2A). These findings are consistent with that SM genes have more specialized 169 

roles, whereas GM genes are involved in basic cellular functions (3, 6). As expected with the 170 

established roles of some specialized metabolites in environmental interactions (e.g. (8, 29)), 171 

we found that benchmark1 SM genes tend to be up-regulated under a higher number of abiotic 172 

and biotic stress conditions compared with GM genes  (all p<2e-7, Figure 2B), largely similar to 173 

the results based on benchmark2 (p=0.24~1e-8). Relatively fewer SM genes were down-174 

regulated in the shoot under stress compared with GM genes (p=0.18~3.1e-5, Figure 2B), likely 175 

reflecting a growth-defense tradeoff (30) where GMs involved in house-keeping functions are 176 

down-regulated under stress and SM genes with roles in abiotic and biotic interactions are not. 177 

We do not, however, see the same trend in roots. Because CG methylation and histone 178 

modification can influence gene expression (31, 32), we compared the numbers of these sites 179 

between SM and GM genes. We found that SM genes tend to have a lower degree of gene 180 

body CG-methylation than GM genes (Fisher’s exact tests, p<3e-4, Dataset S2). On the other 181 

hand, the extent of histone modification did not significantly differ between SM and GM genes 182 

for seven of the eight histone marks (see Methods, Figure S2A).  183 

Previous studies used expression correlation to evaluate how well genes in distinct SM 184 

pathways are correlated (20, 21). Because our focus is on exploring general differences in 185 

expression patterns between SM and GM genes, we used maximum PCCs to evaluate 186 

expression correlation between each SM/GM gene and its paralogs (Figure 2C) as well as to 187 

other SM and GM genes (Figure 2D) in each of four expression datasets (abiotic stress, biotic 188 

stress, development, and hormone treatment). We found SM paralogs to have a significantly 189 

higher expression correlation than GM paralogs in all four data sets (Mann-Whitney U test, all 190 

p<0.05, Figure 2C), which is likely due to SM genes having undergone more recent expansion 191 

than GM genes (2, 4). We next looked at the maximum expression correlation between each 192 
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SM gene and other SM genes (SM-SM) or GM genes (SM-GM), as well as between each GM 193 

gene and other GM genes (GM-GM) or SM genes (GM-SM). The expression correlations 194 

ranked as follows: GM-GM > SM-GM > SM-SM > GM-SM (all benchmark1 p<0.05, but all 195 

benchmark2 p>0.05 for correlation in the development and biotic stress datasets, Figure 2D). 196 

The higher expression correlation for GM-GM compared with SM-SM is likely because GM 197 

genes tend to be more broadly expressed and at higher levels than SM genes (Dataset S2). 198 

Taken together, our findings indicate that expression correlations features can distinguish SM 199 

and GM genes. 200 

Because pathway genes tend to be co-expressed and belong to the same co-expression 201 

cluster (20, 21), we next assessed if SM and GM genes that belong to distinct pathways were 202 

members of distinct co-expression modules (Figure 2E, Dataset S2). Among these modules, 203 

99 and 125 contained significantly more SM genes than randomly expected (α=0.05) and are 204 

referred to as SM modules. Similarly, 125 GM modules were significantly enriched in GM genes 205 

(p<0.05). Therefore, a subset of annotated GM and SM genes tend to be co-expressed with 206 

other GM and SM genes, respectively. However, >50% of SM and GM genes did not belong to 207 

SM/GM modules (gray, Figure 2E). In addition, 0.3%-14.0% of GM genes were found in SM 208 

modules and 0%-32% of SM genes were found in GM modules, depending on the dataset and 209 

algorithm (Figure 2E). This pattern reflects the fact that GM genes function immediately 210 

upstream of an SM pathway or vice versa (208 "junction" genes interfacing GM and SM 211 

pathways based on AraCyc annotations (Dataset S2)) and further highlights the challenge in 212 

differentiating SM and GM genes globally using co-expression patterns alone.  213 

Network properties of SM and GM genes  214 

SM genes tend to have specialized functions and are involved in one or a few pathways, 215 

leading us to hypothesize that SM genes would have fewer connections in biological networks 216 

than GM genes. To test this prediction, we first assessed the connectivity among SM genes and 217 

among GM genes in a protein-protein interaction network (33) and found that SM genes have a 218 

significantly smaller number of physical interactions (mean = 1.25) than GM genes (1.84, 219 

benchmark1: p=0.03, benchmark2: p=3.85e-8, Figure S2B). The smaller number of SM gene 220 

interactions is not because SM genes have shorter coding regions (SM>GM, all p=0.004, 221 

Figure S2C) but is possibly due to the presence of fewer protein domains (SM<GM, 222 

benchmark1: p=0.35, benchmark2: p=4.3e-6 Figure S2D). Our finding that significantly fewer 223 

protein-protein interactions are known for SM proteins is consistent with SM genes having more 224 

specific functions than GM genes (6). It is also possible that there have been more interaction 225 

experiments for GM genes, or that GM genes tend to function in larger pathways compared with 226 

SM genes.  227 

Next, we examined the same relationships using the AraNet functional network (34), 228 

which connects genes with likely similar functions through the integration of multiple datasets, 229 

including expression and protein-protein interaction datasets. The connectivity between 230 

benchmark1 (p=0.139, Figure S2E) and benchmark2 (p=0.027) were either not significant or 231 

were marginally significant. AraNet considers multiple gene features including protein 232 

interactions, co-expression, shared domains, and homologous genes to construct gene 233 

networks, so it is not surprising that this result differs from that for analysis of only protein-234 

protein interactions. The findings suggest that the amount of network connectivity is dependent 235 

on the type of network, and this may be useful for distinguishing between SM and GM genes. 236 
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We should also note that the results from the benchmark1 and 2 sets are inconsistent, 237 

highlighting the impact of the benchmark definition on our analyses. In particular, benchmark1 238 

p-values were higher than those of benchmark2, despite the fact that benchmark1 was 239 

substantially larger and therefore tended to have lower p-values compared with a smaller 240 

dataset with the same effect sizes. This suggests that the AraCyc-only-based benchmark2 is of 241 

higher quality.  242 

Evolutionary rates of SM and GM genes based on within- and cross-species comparisons 243 

SM genes are frequently involved in plant adaptation to variable environments  (8, 29, 244 

35). In contrast, GM genes, which are involved in ancient and stable metabolic functions such 245 

as photosynthesis, are expected to be more highly conserved (36) and experience stronger 246 

negative selection (37, 38). An earlier study found a high degree of genetic variation in 247 

glucosinolate genes across A. thaliana accessions (21). Here, by comparing SM to GM genes 248 

globally, we found that SM genes tend to have higher nucleotide diversities than GM genes 249 

(p=3.9e-19, Figure S3B). In addition, we analyzed 15 evolutionary features based on within 250 

species and across species comparisons of SM and GM genes. First, we searched for A. 251 

thaliana SM and GM paralogs as well as homologs across six plant species spanning more than 252 

300 million years of evolution (see Methods). A significantly higher proportion of SM genes 253 

have paralogs than GM genes (p=1.2e-10, Figure S3A). However, consistently fewer SM genes 254 

(14.8-54%) have homologs across species than GM genes (27-76%) (all p<2e-4, Figure S3A). 255 

In addition, as expected for lineage-specific functions, only 0.94% of SM genes have homologs 256 

in core eukaryotic genomes (39) compared with 14.7% of GM genes (Figure S3A). Finally, we 257 

determined the timing of GM and SM duplications over the course of land plant evolution using 258 

sequence similarity to determine the most recent duplication point (see Methods). We found 259 

that 75% of SM genes were products of duplication events after the divergence between the A. 260 

thaliana and B. rapa lineages compared with only 40% of GM genes (Figure 3A), indicating that 261 

SM genes tend to be more recently duplicated relative to GM genes. Additionally, 25% of SM 262 

genes were duplicated after the A. thaliana-A. lyrata split, compared with only 7% of GM genes 263 

(Figure 3A). Thus, SM genes have higher duplication rates but do not persist in the long run, 264 

leading to the observation of fewer homologs across species.  265 

We also found that SM genes and their homologs had significantly higher non-266 

synonymous (dN) to synonymous (dS) substitution rate ratios (all p<1e-06, Figure 3B) 267 

compared with GM genes. Together with other measures of selection (Figure S3C, D), both 268 

within- and cross-species comparisons suggest that SM genes are under weaker negative 269 

selection relative to GM genes. One reason for this pattern may be that these SM genes initially 270 

experienced positive selection (higher rate than GM) followed by negative selection (similar to 271 

GM). This would result in SM genes having a higher rate of evolution than GM genes, with the 272 

appearance of weaker negative selection. Another possible reason for this pattern is that some 273 

of these SM genes may have experienced strong negative selection (similar to GM) but are now 274 

neutrally evolving. This may be because the selective agent (e.g. a particular environmental 275 

factor) previously contributing to the selection no longer exists. This is consistent with the roles 276 

of SM genes mostly in the production of metabolites important for tolerance to rapidly changing 277 

abiotic stress conditions and defense against biotic agents (6).  278 
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Duplication mechanisms and genomic clustering of SM and GM genes 279 

 Gene duplication mechanism, such as whole genome duplication (WGD), tandem 280 

duplication, and dispersed duplication, may impact subsequent functional divergence and 281 

ultimately influence whether a duplicate is under selection and retained (1). For example, genes 282 

in a few SM pathways, such as aliphatic glucosinolate biosynthesis, tend to be tandemly 283 

duplicated and have a higher degree of expression variation (22). To assess if SM and GM 284 

genes differ in their post-WGD retention rate, we compared the number of GM and SM WGD 285 

duplicates in the A. thaliana lineage. Although two different glucosinolate pathways arose in the 286 

α WGD event ~50 million years ago (15), they do not lead to a significant test statistic. This 287 

indicates that SM genes from multiple SM pathways (not just those involved in glucosinolate 288 

metabolism) tend not to be derived from WGDs (benchmark1 p=0.1, benchmark2 p=0.85, 289 

Figure S4A). This suggests that the likelihood of long-term retention of SM and GM WGDs 290 

does not appear to differ significantly. In contrast, significantly more SM genes tend to be 291 

tandem duplicates than GM genes (p<2e-43, Figure S4A). Genes involved in response to the 292 

environment are more likely to be tandem duplicates (2, 40), and tandem duplication potentially 293 

allows for rapid evolution of SM gene families that are subject to selection in variable 294 

environments. 295 

The numbers of paralogs and pseudogenes were used as measures of the degree of 296 

SM and GM gene gains and losses, respectively. Our analysis revealed that SM genes tend to 297 

have more paralogs (p<3e-72, Figure 3C), higher sequence similarities to their paralogs 298 

(benchmark1: p=3e-3, benchmark2: p=0.3 Figure 3D), and lower synonymous substitution rates 299 

(dS) (p<2e-19, Figure 3E) compared with GM genes. Furthermore, a higher percentage of SM 300 

genes duplicated since A. thaliana diverged from A. lyrata (p<4e-8, Figure S4B), and SM genes 301 

tended not to be found in single copies (p<1e-3, Figure S4C). These findings all point to more 302 

recent expansion of SM gene families. We also compared the functional likelihood, which is a 303 

measure of how likely it is that a gene is functional and, thus, under selection (37), between SM 304 

genes, GM genes, and pseudogenes. Interestingly, the functional likelihoods of SM genes are 305 

significantly lower than those of GM genes, but higher than those of pseudogenes (ANOVA, 306 

Tukey’s test, p<2e-16, Figure 3F, Figure S4E). Because genes under strong negative selection 307 

have high functional likelihoods that are close to one, whereas pseudogenes tend to have 308 

values close to zero (37), this finding is consistent with the hypothesis that some SM genes are 309 

under weaker selection and may be in the process of becoming pseudogenes. The proportion of 310 

pseudogene paralogs for SM genes (between benchmarks, 9.8-11.1%) compared with GM 311 

genes (6.1-6.5%) is not significant overall (p=0.04~0.2, Figure S4D). Considering that SM 312 

genes tend not to have cross-species homologs (Figure S3A), this finding suggests that 313 

pseudogenes are too short lived to be adequate indicators of gene loss.  314 

SM and GM genes that function in the same pathway are sometimes found in genomic 315 

clusters (21, 41–43), and we used two approaches to compare the occurrence of SM and GM 316 

genes in close physical proximity. In the first approach, we asked whether SM and GM genes 317 

tend to be located near other SM and GM genes, respectively, regardless of whether the 318 

neighboring genes are paralogous or not.  We found that SM genes cluster near other SM 319 

genes (benchmark1: p=9.5e-121, benchmark2: p=0.02 Figure S4F) and GM genes tend to be 320 

close to GM genes (p<2e-5, Figure S4G). It is surprising that the SM clustering results (p-321 

values reported above) differ so greatly between benchmark sets. This may be attributed to the 322 
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higher proportion of experimentally verified genes in the AraCyc (benchmark 2) dataset, which 323 

is biased toward non-tandemly duplicated genes (37). In the second approach, we defined 324 

metabolic clusters identified using Plant Cluster Finder (21), but the identified clusters were not 325 

enriched in either SM or GM genes (Figure S4H). Taken together, SM genes are more likely to 326 

be tandemly duplicated and tend to belong to large gene families. Our findings provide genome-327 

wide confirmation of earlier studies (e.g. 2, 15, 22) that focused on a relatively small number of 328 

SM genes or pathways. These characteristics may be useful features in distinguishing SM and 329 

GM genes. 330 

Machine learning model for predicting SM and GM genes 331 

In total, we examined 10,243 features (summarized in Dataset S3) that differ widely in 332 

their ability to distinguish benchmark SM and GM genes. For example, the best performing 333 

single feature—gene family size—led to a model with an Area under Receiver Operating 334 

Characteristic curve (AuROC) of 0.8. An AuROC of 0.5 indicates the performance of random 335 

guesses and a value of 1 indicates perfect predictions. However, using this high performing 336 

feature alone as the predictor resulted in a 43% False Positive Rate (FPR) and a 58% False 337 

Negative Rate (FNR). In addition, the majority of the features are not particularly informative 338 

(Dataset S3), as the average AuROC for single feature-based models was extremely low (0.5) 339 

with an average FPR of 89%. These findings indicate that SM and GM genes are highly 340 

heterogeneous and cannot be distinguished with high accuracy using single features. To 341 

remedy this, we next integrated all 10,243 features, regardless of whether they were 342 

significantly different between SM and GM genes or not, to build machine-learning models for 343 

predicting SM and GM genes. We used machine learning because it allowed us to build an 344 

integrated model where multiple features were considered simultaneously. Integrated models 345 

offer better predictive power than individual features by lowering FNR and FPR.  346 

Two machine learning algorithms, Support Vector Machine and Random Forest, were 347 

used to build predictive models using all three benchmark datasets (Dataset S3, Figure 4A, 348 

Figure S6, see Methods). The best performing SM gene prediction model was based on 349 

benchmark2 (AraCyc-only) and Random Forest (AuROC=0.87, FPR=29.4%, FNR=14.8%; 350 

Figure 4A). Randomizing SM/GM labels but maintaining the same feature values associated 351 

with the benchmark genes as the initial model resulted in AuROCs=0.51~0.57, as expected for 352 

random guesses (Dataset S3). Note that the performance measures reported above were 353 

based on models built with a 10-fold cross-validation scheme where 90% of the data were used 354 

for training the models and 10% for testing them. Based on the prediction outcomes, each gene 355 

was given an "SM score" ranging from 0 to 1 indicating the likelihood that the gene is an SM 356 

gene. Based on a threshold SM score defined by minimizing false predictions (see Methods), 357 

85.6% of the training SM genes (Figure 4B) and 73.1% of the training GM genes were correctly 358 

predicted (Figure 4B), a drastic improvement over the individual feature-based, naïve models.  359 

Features important for SM gene prediction and model application to unannotated enzyme 360 

genes 361 

In addition to the SM score, the machine learning result included a list of feature 362 

importance values, where features with more positive values are more informative for predicting 363 

SM genes. In contrast, more negative feature weights are more informative for predicting GM 364 

genes (Dataset S3, Figure 4C). Based on the AraCyc-only (benchmark2) model, the most 365 
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informative features for predicting SM genes included specific protein domains as well as 366 

multiple gene duplication-related features, such as duplication mechanism (higher degree of 367 

tandem duplication), gene family expansion (larger family size), and higher degrees of 368 

correlation in expression between an SM gene and other SM genes or its paralogs (Figure 4C). 369 

In addition, higher evolutionary rates were among the most informative for predicting A. thaliana 370 

SM genes based on comparison of an SM gene to its Populus trichocarpa and Vitis vinifera 371 

homologs, but not to homologs from more closely related species. This pattern may reflect the 372 

fact that at these time points (post divergence between A. thaliana and the P. trichocarpa or V. 373 

vinifera lineages) a number of SM genes experienced accelerated, potentially positive, selection 374 

that contributed to the diversification of major SM pathways. In contrast, wider expression 375 

breadth, measured using the development expression dataset, and higher connectivity in gene 376 

networks were among the most important features for predicting GM genes, indicating the more 377 

generalizable functions of GM genes and the tendency to interact with a greater number of 378 

genes/gene products relative to SM genes. Finally, specific histone marks as well as 379 

hierarchical, k-means, and approximate k-means co-expression clusters under stress, diurnal, 380 

and development were informative for predicting both SM and GM genes. Earlier studies have 381 

established that genes belonging to each SM pathway tend to be co-expressed (20, 25). Here 382 

we demonstrated that there are global differences in expression patterns and properties 383 

between SM and GM genes.  384 

With the accuracy of the SM gene prediction models assessed through cross-validation 385 

and prominent features identified, we next applied these machine learning models to make 386 

predictions for 3,104 known enzymatic genes (with an EC number) not annotated to be SM or 387 

GM genes (Dataset S1). Of these genes, 51% (1,592 genes) were predicted to be SM genes. 388 

We took three approaches to assess the accuracy of these SM and GM gene predictions. First, 389 

we intentionally held out 10% of both known SM and GM genes (Figure 4B, Dataset S1) from 390 

any model training. Upon application of the machine learning model, 84% and 85% of withheld 391 

GM and SM genes were correctly predicted, respectively, indicating that the model has an 84% 392 

True Positive Rate (or 16% FNR). Second, we tested how well genes in well-known SM 393 

pathways involved in glucosinolate biosynthesis (38, 39) could be predicted. To do this we built 394 

a new model using the benchmark SM and GM genes but excluding genes from glucosinolate 395 

biosynthetic pathways (see Methods) (Figure 4B, Dataset S1). When applying this new model 396 

to glucosinolate genes, 79% of known glucosinolate pathway genes were correctly predicted as 397 

SM genes. The FNR was 16% overall, which is much better than the 58% FNR when using the 398 

single best feature, gene family size. 399 

Finally, methyltransferase, terpene synthase, and cytochrome P450 families were 400 

identified based on their respective protein domains (see Methods) and analyzed to test model 401 

performance within a specific family (Figure 4B, Dataset S1). These families were chosen 402 

because they tend to be associated with SM. To this end, we built three new models using our 403 

benchmark sets, excluding ‘hold out’ genes from the families we planned to predict. Upon 404 

applying this model to each enzyme family, 97% of P450, 88% of terpene synthase and 92% of 405 

methyltransferase genes were predicted as SM genes (Figure 4B). Thus, these models 406 

predicted the majority of hold-out genes with known SM functions, glucosinolate pathway genes, 407 

and genes in enzyme families whose members predominantly play roles in SM pathways. In 408 

summary, our models allowed assessment of the relative importance of features in 409 
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distinguishing SM and GM genes, as well as provided predictions for 1,217 SM genes among 410 

enzyme genes with no known SM/GM designation. In addition, our findings indicate that our 411 

models and this general approach are valuable for predicting unknown enzymes. 412 

Characteristics of Mis-Predicted Genes 413 

Although our SM prediction model performed well, 122 (16.7%) AraCyc annotated GM 414 

genes were mis-predicted as SM genes. In addition, 60 (15.3%) AraCyc annotated SM genes 415 

were mis-predicted as GM genes. To assess the properties of mis-predicted SM/GM genes, we 416 

determined how the values of a subset of the most informative features (Figure 4C, Dataset 417 

S3) differed between four gene classes based on the consistency between annotations and 418 

predictions based on benchmark2 (AraCyc only). These four classes included: (1) annotated 419 

GM predicted as GM (GM [annotation] �GM [prediction]), (2) annotated SM predicted as SM 420 

(SM�SM), (3) annotated GM predicted as SM (GM�SM), and (4) annotated SM predicted as 421 

GM (SM�GM). Genes in the mis-predicted classes (3 and 4) tend to have feature values 422 

between those of genes in correctly predicted classes (1 and 2). For example, the median 423 

values of the feature functional likelihood among these four gene classes follow the order: 424 

GM�GM > SM�GM > GM�SM > SM�SM (Figure 4D). The opposite pattern (SM�SM has 425 

the highest value) was observed for dN/dS values (Figure 4E), gene family size, (Figure 4F), 426 

the number of expressed conditions (Figure 4G), and values for other gene features we 427 

examined (Figure S5A-J). Thus, in the SM�GM mis-predicted class, the annotated SM genes 428 

in fact possess multiple properties that are more similar to those of GM genes and vice versa, 429 

but no single feature can fully explain why these genes were mis-predicted.  430 

These observations suggest that some of the mis-predicted benchmark genes (Figure 431 

4B) may in fact be mis-annotated, or alternatively, they may point to a deficiency in our model 432 

(addressed in the next section). To assess how many of the mis-predictions are due to mis-433 

annotation, we collated information from the literature on 28 genes with model predictions (from 434 

the benchmark2-based model) matching the AraCyc annotations (GM�GM=5, SM�SM=23), 435 

and for 32 genes with predictions that were not consistent with their AraCyc annotations 436 

(SM�GM=22, GM�SM=12) (Dataset S1 and SI text). We focused on genes in the 437 

P450/terpene synthase families because they were among the best characterized. For mis-438 

predicted genes, which were manually examined, five (42%) genes in the GM�SM class had 439 

supporting SM evidence (SI text), indicating that a subset of these genes is "mis-predicted" due 440 

to mis-annotation, not due to prediction errors. For the benchmark1 set, which is based on the 441 

union between AraCyc and GO annotations, a similar percentage of the mis-predicted genes (5 442 

of 10 GM�SM (50%) genes examined) were likely mis-annotated. This is consistent with our 443 

finding that some SM genes enriched in AraCyc pathways and GO terms—such as carotene, 444 

leucine, suberin, and wax biosynthesis—are found across all major land plant lineages and 445 

should be considered GM genes (Figure 1B, Figure S1C). It is also possible that some of the 446 

erroneous annotations are based on in vitro biochemical activity and/or sequence similarities 447 

alone, criteria that may not accurately represent their in vivo functions. For 20 AraCyc-annotated 448 

SM genes that we predicted as GM, we found 16 (80%) with evidence indicating that they are 449 

GM genes (Dataset S1, SI text). Together with the finding that most (24/25) genes with 450 

consistent annotations and predictions had biochemical evidence supporting their SM or GM 451 

classification (SI text), these results further support the utility of our machine learning model and 452 

demonstrate the feasibility of using the model prediction outcome to prioritize future experiments 453 
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to determine the in planta role of SM or GM genes, including those that may be mis-annotated 454 

or have functions in addition to their annotated activities. 455 

Impact of dual-annotated genes on model performance 456 

 In addition to mis-predictions, the false predictions indicate that our model can be further 457 

improved. Our original model focused on distinguishing SM and GM genes as binary classes 458 

but genes with both SM and GM functions were excluded. However, there are 261 genes 459 

(Figure 1A) annotated as belonging to both SM and GM pathways in AraCyc (dual-annotated or 460 

DA genes, Figure 5A). We thus explored the possibility that DA genes have properties distinct 461 

from SM or GM genes and should be considered a distinct class. We first compared the SM 462 

scores between SM, GM, and DA genes based on our AraCyc-only binary model. If DA genes 463 

belong to a distinct class that is neither SM nor GM, the SM scores of DA genes should have a 464 

unimodal distribution with a median close to 0.5. Contrary to this expectation, the SM score 465 

distribution of DA genes is bimodal, where some DA genes resemble SM genes and others 466 

resemble GM genes. Thus, based on a GM vs SM binary model, DA genes do not appear to 467 

belong to a distinct class. These findings raise the question whether the dual annotation is valid. 468 

To assess whether our inability to distinguish DA genes from SM/GM genes is because 469 

the binary model is inadequate, we built a multi-class model assuming SM, GM and DA genes 470 

as three distinct classes (Figure 5C-F). If the three classes of genes can be perfectly separated, 471 

then the highest gene density areas will be toward each corner of the ternary plots. Although the 472 

GM/SM/DA model has an F1-score of 0.51 (higher than the F1 of 0.33 for a random model) and 473 

an accuracy of 0.53, the inclusion of DA genes as a third class significantly diminished the 474 

ability of the model to separate SM (Figure 5C) and GM (Figure 5D) genes. Note that SM and 475 

GM genes are not well separated in the ternary plots (Figure 5C,D), but in the binary model, 476 

their SM score distributions are highly distinct (Figure 5B). In addition, the DA gene distribution 477 

in the ternary plot overlapped with the distributions of both SM and GM genes (Figure 5E), 478 

consistent with the bimodal SM score distribution observed among DA genes. Thus, the DA 479 

genes belong to two sub-classes, with each subclass resembling SM or GM genes, again 480 

raising the question whether the dual annotations in AraCyc are valid. Curiously, GM genes 481 

separates into two populations in the GM/SM/DA model where one population is located 482 

towards the GM corner of the ternary plot (arrow g1) and the second population (arrow g2) 483 

overlaps with areas of high SM (arrow s) and DA (arrow d) gene density (Figure 5C). Therefore, 484 

although this three-class model does not separate SM and GM genes well, it raises the 485 

questions how the two GM gene populations (g1/g2 peaks) differ and should be further 486 

examined.  487 

Consideration of junction genes in predictive model building 488 

 Another potential way to improve our model is to consider metabolic network topologies. 489 

We hypothesized that SM and GM genes closer to pathway junctions (Figure 5A, see 490 

Methods) are more likely to be mis-predicted. We identified junction reactions connecting 15 491 

GM (upstream) and 20 SM (downstream) pathways. The 212 genes encoding enzymes 492 

responsible for junction reactions were referred to as junction (JC) genes. By further classifying 493 

JC genes based on the connectivity of their associated reactions, four topological sub-classes of 494 

junction genes were defined: 1�J�1: junction reactions each connected with one reaction 495 

upstream and one reaction downstream, n�J�1: multiple upstream reactions but only one 496 
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downstream reaction, 1�J�n: one upstream and multiple downstream reactions, and n�J�n: 497 

multiple upstream and downstream reactions (Figure 5A). Although junction genes as a whole 498 

also have a bimodal SM score distribution similar to that of DA genes (JC all, Figure 5B), the 499 

score distributions were distinct among the four topological sub-classes, indicating that network 500 

topology is a distinguishing characteristic between SM and GM genes. Considering that 501 

products of GM pathways serve as substrates for many other pathways, it is expected that GM 502 

genes functioning in junction reactions would be connected to multiple downstream pathways. 503 

Consistent with this, JC genes in the n�J�n and 1�J�n subclasses where n>1 tend to be 504 

more similar to GM genes (Figure 5B). In contrast, SM enzymes are more likely involved in 505 

incorporating substrates from multiple reactions and serve as the committed step for producing 506 

specialized metabolites with an expected n�J�1 topology. In addition, a typical SM pathway 507 

mostly contains a series of non-branching reactions that lead to specialized metabolite products 508 

and is also expected to have a 1�j�1 topology. Consistent with these expectations, JC genes 509 

in the n�J�1 and 1�J�1 subclasses are the most similar to SM genes (Figure 5B).  510 

The GM/SM/JC 3-class model separated SM and GM genes significantly better (F1-511 

score = 0.65, accuracy = 0.65, Figure 5G-J) than the GM/SM/DA model (Figure 5C-F), 512 

indicating that junction genes have unique characteristics and that some genes intersecting 513 

annotated SM and GM pathways can be considered a separate class. In addition, the four 514 

topological sub-classes of JC genes are located in different areas in the ternary plots for the 515 

SM/GM/DA (Figure S7A) and GM/SM/JC (Figure S7B) models. We should emphasize that 516 

these JC genes were defined based on a network constructed using AraCyc pathway 517 

annotations where the criteria for defining pathway boundaries may differ between research 518 

groups and/or annotators. Despite this, we show that the GM/SM/JC model demonstrate that JC 519 

genes are by and large distinct from GM/SM genes. Another consideration is that we cannot be 520 

certain which JC genes were key enzymes in the committed steps entering SM pathways. 521 

Interestingly, the JC genes in the n�J�1 subclass ─ reminiscent of the topology for key 522 

enzymes ─ is clearly a class of its own with most genes at the JC-like corner (Figure S7B). 523 

Taken together, these findings demonstrate that further categorization of SM and GM genes 524 

based on biologically motivated criteria, such as network topology, could lead to modest 525 

improvement of our models. In addition, the binary classification of SM and GM genes, while 526 

meaningful, can be an over-simplification. Finally, considering other topological characteristics 527 

(e.g. pathway depth, terminal reaction) and additional biochemical features (e.g. substrate and 528 

product identities) may further improve GM and SM prediction models.     529 

 530 

Conclusions 531 

Machine learning models built using genomic features show considerable promise in 532 

predicting the functions of unclassified or unannotated genes (21, 37). Prior to establish such 533 

models for predicting SM and GM genes, we first explored how SM and GM genes in A. thaliana 534 

differs among >10,000 conservation, protein domain, duplication, epigenetic, expression, and 535 

gene network-based features. The great majority of these features have not been examined by 536 

other studies contrasting SM and GM genes. We demonstrated that machine learning models in 537 

which these features are integrated to predict SM and GM genes perform well based on cross-538 

validation performed using three benchmark datasets, three predominantly SM gene families, 539 
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glucosinolate biosynthesis pathway genes, and 39 AraCyc annotated SM genes that were 540 

deliberately withheld from the model building process. Focusing on the AraCyc-only benchmark 541 

(benchmark2), although 380 individual features significantly differed between SM and GM 542 

genes, the effect sizes are small, and any individual feature does a poor job of distinguishing 543 

SM and GM genes compared with the machine learning models. In addition, machine learning 544 

models allow the global prediction of SM and GM genes in a plant genome. Based on the SM 545 

scores derived from these models, candidate SM genes can be prioritized for further 546 

experimental studies. 547 

Although the binary SM/GM gene prediction model performed well, the FPR and FNR 548 

were substantial at 28% and 19%, respectively. Through closer examination of experimental 549 

evidence for 10 genes annotated as GM genes but predicted as SM genes, we found ~50% had 550 

evidence supporting classification as SM genes, indicating that a subset of the mis-predictions 551 

is likely due to mis-annotation. Thus, in addition to predicting likely GM/SM functions of un-552 

annotated enzymes, our models can pinpoint potentially mis-annotated GM/SM genes. Mis-553 

predictions can be avoided by further improving the model in two areas: the classes defined and 554 

the features used. Classifying enzyme genes simply as GM and SM may be an over-555 

simplification. By building two three-class models (GM/SM/JC and GM/SM/DA), we found that 556 

SM and GM genes could be further categorized based on the metabolic network topology and, 557 

to a lesser extent, based on their dual-annotated roles in both SM and GM pathways. Future 558 

studies distinguishing genes at the pathway level can be carried out using similar multi-class 559 

modeling methods. Additional features that can distinguish SM and GM genes may also be 560 

needed to further improve model performance. One possibility is to incorporate topological 561 

information as features. Another possibility is to examine feature combinations (e.g. combining 562 

an expression and a duplication feature linearly or non-linearly) using approaches such as deep 563 

learning. 564 

In summary, we have conducted a detailed analysis of features, most of which represent 565 

signatures of SM and GM genes that have not been reported previously. We also established 566 

well performing machine learning models that provide a global estimate of the SM gene content 567 

within a plant genome. The great majority of the predicted SM genes have not been assigned to 568 

pathways, highlighting the important next step of combining the GM/SM prediction scheme 569 

described here with approaches for pathway discovery and assignment. Considering that the 570 

most important features are related to gene duplication, evolutionary rate, and gene expression 571 

and that these types of data are readily available for an ever-expanding number of plant 572 

species, the machine learning workflow we have developed can be readily applied to any other 573 

species for predicting SM genes, or more generally, gene functions. 574 

 575 

Methods 576 

Specialized and general metabolism gene annotation and enrichment analysis 577 

Gene sets were identified based on GO ((27); 578 

http://www.geneontology.org/ontology/go.obo), and/or AraCyc ((28); http://www.plantcyc.org/) 579 

annotations, but not MapMan (44). We did not analyze MapMan annotations because all GO 580 

and AraCyc SM genes, which includes a large number of well-known SM examples, were 581 

annotated as GM in MapMan, raising questions about the utility of MapMan SM/GM 582 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 15, 2018. ; https://doi.org/10.1101/304873doi: bioRxiv preprint 

https://doi.org/10.1101/304873
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

 

designations. GO annotations for A. thaliana were downloaded from The Arabidopsis 583 

Information Resource (TAIR) (45) and genes annotated with the secondary metabolism term 584 

(GO:0019748) and primary metabolism term (GO:0044238) were selected as potential SM 585 

genes and GM genes, respectively. Genes that were associated with a more specialized child 586 

GO term of primary and secondary metabolism terms were also classified as GM and SM 587 

genes, respectively. Only genes annotated with either SM or PM terms, but not both, were 588 

included in the analysis and only those with experimental evidence codes IDA, IEP, IGI, IPI 589 

and/or IMP were included. For AraCyc genes, the v.15 pathway annotations were retrieved from 590 

the Plant Metabolic Network database (http://www.plantcyc.org) (28). Potential SM genes were 591 

those associated with “secondary metabolites biosynthesis” pathways. Potential GM genes 592 

were those found in non-secondary metabolite biosynthesis pathways. In addition, genes 593 

without experimental evidence in AraCyc (EV-EXP) were not included in the benchmark.  Some 594 

genes were annotated in both SM and non-SM pathways and were defined as dual-annotated 595 

(DA) genes, not as SM or GM.  Potential SM and GM genes from GO or AraCyc were required 596 

to have an enzyme commission (EC) number annotation from AraCyc or from Pfam v.30 597 

(http://pfam.xfam.org/) (46). Five benchmark gene sets were defined. In addition, glucosinolate 598 

pathway genes were also defined to test model performance. The criteria for defining 599 

benchmarks and glucosinolate pathway genes are detailed in SI Methods. Terpene synthase, 600 

P450, and methyltransferase genes were identified from A. thaliana annotated protein 601 

sequences by using the following domain matches from Pfam: terpene_synth, p450, methyltr_2. 602 

Details of gene set enrichment analysis is available in SI Methods.  603 

Expression dataset processing and co-expression and gene network analysis 604 

Expression datasets were downloaded from TAIR. Target datasets included plant 605 

development (49), biotic stress (50), abiotic stress (50, 51), hormone treatment (52) and diurnal 606 

expression (53). Genes that were considered significantly expressed relative to background in 607 

the development expression dataset were those with a log2 microarray hybridization intensity 608 

value of ≥4 (the cutoff value is based on our earlier study, (37)). The median and maximum 609 

expression levels and expression variation and breadth across the developmental expression 610 

dataset were calculated as previously described (37). Differentially expressed genes under 611 

biotic stress, abiotic stress, and hormone treatments were defined as those that had an absolute 612 

log2 fold change ≥1 and adjusted p<0.05 following analysis using the affy and limma packages 613 

in R (54, 55). For each gene, the number of conditions in which the gene in question was 614 

significantly differentially regulated was also calculated. This resulted in 16 expression values 615 

that were used as model features (Dataset S2). 616 

For each expression dataset (development, abiotic, biotic, and hormone), Pearson 617 

Correlation Coefficients (PCC) were calculated between each gene and genes in the same 618 

paralogous cluster as defined by ORTHOMCL v1.4 (56). For the gene in question, the maximum 619 

PCC <1 for genes in the paralog cluster was used as the PCC value. In addition to examining 620 

expression correlation, co-expressed genes in the biotic stress, abiotic stress, diurnal, and 621 

developmental datasets were classified into co-expression clusters using K-means, approximate 622 

kernel K-means, c-means, and hierarchical clustering algorithms as described in our earlier 623 

study (26) resulting in 5,303 binary features. For K-means-related analyses, the within cluster 624 

sum of squares was plotted against the number of clusters, and K was chosen based on the 625 

number of clusters at the elbow or bend of the plot.  Gene clusters that were significantly 626 
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enriched in SM or GM genes were identified using Fisher’s exact tests (adjusted-p<0.05). The 627 

number of AraNet gene network interactions ((34); http://www.functionalnet.org/aranet/), number 628 

of protein interactions (33), domain number, and amino acid length were calculated in our earlier 629 

study (37). There were 23 model features related to PCC values, significant cluster 630 

membership, and gene network data (Dataset S2).  631 

Conservation, duplication, methylation, histone modification, and genome location 632 

related features 633 

Nonsynonymous (dN)/synonymous (dS) substitution rates between plant homologs, core 634 

eukaryotic gene status, nucleotide diversity data, Fay and Wu's H and MacDonald-Kreitman test 635 

statistics were the same as used in our earlier study (37, 57, 58). The timing of duplication of an 636 

A. thaliana gene X was defined based on a comparison of the BLAST scores between X and its 637 

closest paralog Y (SX,Y) and between X and its closest homolog Z in each of 15 other plant 638 

species (SX,Z): Arabidopsis lyrata, Capsella rubella, Brassica rapa, Theobroma cacao, Populus 639 

trichocarpa, Medicago truncatula, Vitis vinifera, Solanum lycopersicum, Aquilegia coerulea, 640 

Oryza sativa, Amborella  trichopoda, Picea abies, Selaginella moellendorffii, Physcomitrella 641 

patens, and Marchantia polymorpha. Among cases where SX,Z > SX,Y, the species with gene Z 642 

most distantly related to A. thaliana was identified. Thus, gene X duplication likely occurred 643 

immediately prior to the divergence between A. thaliana and the species harboring gene Z 644 

(Dataset S2). Pseudogenes were defined using a published pipeline (53). The lethal gene 645 

scores, which represent the relative likelihood that a mutation in a gene is lethal, and additional 646 

gene duplication-related features, including gene family size, rates of synonymous substitutions, 647 

α and β/γ whole genome duplication status, and tandem duplicate status (Dataset S2), were 648 

obtained from (37). 649 

CG methylation and log2 fold change of histone marks relative to background were taken 650 

from (37). The average of the log2 fold change of each histone mark was calculated for all 651 

histones that overlapped with a gene. There were 37 feature values related to conservation, 652 

duplication, methylation, and histone modification (Dataset S2). Three approaches were used to 653 

evaluate the degree of metabolic gene clustering (see SI Methods).  654 

 655 

Machine learning classification of SM and GM genes 656 

The prediction models were built based on 10,243 features using the Random Forest 657 

(RF) and Support Vector Machine (SVM) algorithms implemented using the python package sci-658 

kit learn (59). To build binary machine learning models, we used three benchmark sets 659 

(benchmark1, 2, and 3). For each benchmark set, SM and GM genes were first divided into a 660 

modeling set (90%) and a hold-out set for independent validation (10%). Since there were 661 

significantly more GM genes than SM genes, 100 balanced data sets were constructed by 662 

randomly selecting GM genes equal to the number of SM genes in each balanced set. 663 

Additionally, ten-fold cross validation was performed for 100 random draws of a balanced data 664 

set for each machine learning run, and grid searches were performed to obtain the best 665 

performing parameters for each model. Performance of the RF and SVM models was 666 

determined by both AuROC, or the area under the plot of the true positive (TP) rate against the 667 

false positive (FP) rate, calculated in R by the ROCR package, and F-measure, the harmonic 668 

mean of precision (TP/TP+FP) and recall (TP/TP+FN), where FN= false negative. A confidence 669 
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score between 0 and 1 was produced by the model and was used as the SM prediction score. 670 

For the procedure to define threshold SM score classifying a gene as SM or not, the 671 

performance measures used, and the random background model, see SI Methods. 672 

Definition of DA and JC genes for multi-class classification 673 

Dual-annotation (DA) genes are genes annotated as both GM and SM pathway genes in 674 

AraCyc. This was for testing if DA genes belong to a class of its own, distinct from either GM 675 

and SM genes. Junction (JC) genes were defined based on the pathway annotation data 676 

(pathway.dat) from the PlantCyc A. thaliana v.12 dataset. Two types of JC genes were defined. 677 

For each reaction R in a GM pathway, if R was also found in an SM pathway, R was defined as 678 

a type 1 JC reaction, and the gene(s) encoding enzyme(s) for R was(were) referred to as type 1 679 

JC genes. Type 2 JC genes were identified based on the overlaps between the final products of 680 

GM pathways and the beginning substrate of SM pathways (Figure 5A). For a metabolic 681 

intermediate or product M in a GM pathway, if M was used as a substrate in an SM pathway, 682 

then the GM reaction(s) RG responsible for producing M and the SM reaction(s) RS using M as a 683 

substrate were defined as type 2 JC reactions. The genes encoding enzymes for RG and RS 684 

were referred to as type 2 JC genes. Two three-class models were built. The first SM/GM/DA 685 

model used SM, GM, and DA genes (benchmark4) as the three classes. The second 686 

SM/GM/JC model used SM, GM, and JC genes (benchmark5). For the three-class models the 687 

same Python package sci-kit learn and the same algorithms (RF and SVM) as the binary 688 

classification models were used; the only difference was that three class labels were used 689 

instead of two. 690 
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 699 

Figure Legends 700 

Figure 1. Gene Ontology and AraCyc annotation of specialized and primary metabolism 701 
genes. (A) Overlap between Gene Ontology (GO)/AraCyc primary metabolism (PM) and 702 
secondary metabolism (SM) gene annotations. The number of genes in an intersection or in a 703 
complement set are shown. Three benchmark SM/GM gene sets were defined: benchmark 1 704 
(Union), benchmark 2 (AraCyc), and benchmark 3 (Intersection) (see Methods). The table to 705 
the right shows the genes (labeled with lowercase letters in the Venn diagram) included in each 706 
benchmark set. (B) GO term enrichment in SM genes (left panel) and in GM genes (right panel). 707 
The three columns show statistics for GM/SM genes that are GO-annotated, AraCyc-annotated, 708 
or belong to a combined set (union between GO and AraCyc).  Rows: GO terms. Color: 709 
represents the q-value (multiple testing corrected p-value) of the Fisher’s exact test for a GO 710 
term enriched in either GM (blue) or SM (red) genes (Dataset S2). White: no significant 711 
enrichment. 712 
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Figure 2. Differences in expression and co-expression characteristics of benchmark1 SM 713 
and GM genes. (A) Distributions of SM (red) and GM (blue) gene expression-related values 714 
calculated from the development dataset. Level: microarray intensity. Expression breadth: the 715 
number of tissues/developmental stages in which a gene is expressed. Expression variation: 716 
median absolute deviation/median. (B) Distributions of the number of conditions in which a gene 717 
is up- or down-regulated in the abiotic stress (root and shoot) and biotic stress (shoot) datasets. 718 
(C) Distributions of maximum Pearson Correlation Coefficients (PCC) values between SM or 719 
GM genes and their paralogs in four expression datasets. All test statistics from (A-C) were 720 
generated using Mann-Whitney U tests. (D) Distributions of maximum PCC between GM-GM 721 
(light blue), GM-SM (dark blue), SM-GM (light purple), and SM-SM (pink) gene pairs using the 722 
same expression datasets as in (C). (E) Clustering of SM and GM genes based on their 723 
expression patterns in the diurnal development and stress datasets with six algorithms: HA 724 
(hierarchical, average linkage), HC (hierarchical, complete linkage), HW (hierarchical, Ward’s 725 
method), CM (c-means), KM (k-means), and AK (approximate k-means). Row: a benchmark 726 
SM/GM gene. Blue and red shading: the gene belongs a cluster with an over-represented 727 
number of GM genes and SM genes, respectively, compared with the background (p<0.05, 728 
Fisher’s exact test). 729 

Figure 3. Differences in the duplication timing, degree of selective pressure, paralog-730 
related features, and functional likelihood between benchmark1 SM and GM genes. (A) 731 
The distribution of duplication time points (y-axis) for each GM/SM gene (x-axis). Left/middle 732 
panel: a black line indicates that the GM (left panel) or SM (middle panel) gene in question likely 733 
duplicated prior to the divergence between the A. thaliana lineage and the species lineage to 734 
the left of the black line. Species order: based on the time of divergence from A. thaliana. Right 735 
panel: each bar represents the log2 ratio (x-axis) between the proportions of SM and GM genes 736 
duplicated at each duplication time point (y-axis). For full species names, see Methods. (B-F) 737 
Density plots showing SM (pink) and GM (blue) gene feature distributions. Test statistics were 738 
generated using Mann-Whitney U tests. (B) Median nonsynonymous substitution 739 
rate/synonymous substitution rate (dN/dS) values between A. thaliana SM/GM genes and their 740 
A. thaliana paralogs or best matching homologs in six other species, arranged based on the 741 
time of divergence from A. thaliana. (C) The number of A. thaliana paralogs of SM or GM genes. 742 
(D) The maximum percent identity of an SM or GM gene to its paralogs. (E) The dS distribution 743 
between each SM or GM gene and its paralog. (F) The functional likelihood ranging from 0 to 1, 744 
which indicates the likelihood that a gene is under selection.  745 

Figure 4. SM gene prediction model performance based on benchmark2. (A) AuROC 746 
curves of binary SM/GM prediction models built with Support Vector Machine (SVM) and 747 
Random Forest (RF) algorithms. TPR: true positive rate. FPR: false positive rate. (B) SM score 748 
distributions for benchmark GM, benchmark SM, hold-out SM (not included in models), 749 
unannotated enzyme, glucosinolate pathway, p450, terpene synthase, and methyltransferase 2 750 
(methyltr_2) domain-containing genes. Dotted line: SM score threshold (see Methods). Red 751 
and blue shading indicate genes predicted to be SM and GM genes, respectively. (C) The most 752 
important features for SM (red) and GM (blue) gene predictions. (D-G) Distributions of the 753 
values of representative, predictive features for correctly and incorrectly predicted SM and GM 754 
genes. Black horizontal bar: median. Overall p-values were from Kruskal-Wallis test to evaluate 755 
differences between classes. The Dunn post hoc test was used to test differences between 756 
classes (Dataset S3). (D) Functional likelihood. (E) dN/dS between A. thaliana and P. 757 
trichocarpa homologs. (F) Sizes of gene families the four categories of genes belong to. (G) 758 
Expression breadth in the development dataset. 759 
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Figure 5.  Three-class models for classifying SM/GM/DA and SM/GM/JC. (A) Definition of 760 
DA (dual annotation) and JC (junction) genes. For JC genes, four sub-classes were defined 761 
based on the degree of connectivity, defined as the number of connecting reactions in the 762 
metabolic network based on AraCyc annotations. a-o: SM/GM enzymes that are annotated as 763 
GM (blue), SM (red), or DA (green outline), or are defined as JC (orange). JC reaction products 764 
and substrates are in black and grey, respectively.  (B) Distributions of SM scores based on the 765 
binary model built using benchmark2 data for GM, SM, DA, JC (all), and JC subclass genes. (C-766 
F) Ternary plots showing the score distributions for GM (C), SM (D), DA (E), and JC (F) genes 767 
based on the SM/GM/DA model. The g (blue), s (red), d (green), and j (orange) labels indicate 768 
the peak gene density areas (brighter yellow) occupied by GM, SM, DA, and JC genes, 769 
respectively. (G-J) Ternary plots showing the score distributions for GM (G), SM (H), JC (I), and 770 
DA (J) genes based on the SM/GM/JC model. The color scheme follows that in (C-F). 771 
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