Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

RefSeq database growth influences the accuracy of k-mer-based species identification

Daniel J. Nasko, Sergey Koren, Adam M. Phillippy, Todd J. Treangen
doi: https://doi.org/10.1101/304972
Daniel J. Nasko
1Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sergey Koren
2Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, Maryland, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Adam M. Phillippy
2Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, Maryland, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Todd J. Treangen
1Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: treangen@umd.edu
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Article usage

Article usage: May 2018 to March 2023

AbstractFullPdf
Apr 201822060561
May 20183500110
Jun 2018208081
Jul 2018179043
Aug 2018110050
Sep 2018183086
Oct 2018153092
Nov 2018127064
Dec 201847036
Jan 201935015
Feb 201942028
Mar 201926022
Apr 201931212
May 201929219
Jun 201935119
Jul 201928119
Aug 2019281033
Oct 201921514
Nov 201914178
Dec 201933913
Jan 202045812
Feb 2020161215
Mar 20201099
May 202014616
Jun 20201549
Jul 20201649
Aug 20202367
Sep 202022119
Oct 20201386
Nov 202036108
Dec 20201348
Jan 202129810
Feb 20211497
Mar 202123127
Apr 202126149
May 20211346
Jun 20211353
Jul 20211148
Aug 2021847
Sep 2021839
Oct 20211818
Nov 202112912
Dec 20211012
Jan 20221448
Feb 2022903
Mar 20221105
Apr 20221649
May 2022648
Jun 2022736
Jul 20221031
Aug 20221143
Sep 20221338
Oct 20221202
Nov 202214012
Dec 2022945
Jan 2023394
Feb 2023713
Mar 2023721
Back to top
PreviousNext
Posted April 19, 2018.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
RefSeq database growth influences the accuracy of k-mer-based species identification
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
RefSeq database growth influences the accuracy of k-mer-based species identification
Daniel J. Nasko, Sergey Koren, Adam M. Phillippy, Todd J. Treangen
bioRxiv 304972; doi: https://doi.org/10.1101/304972
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
RefSeq database growth influences the accuracy of k-mer-based species identification
Daniel J. Nasko, Sergey Koren, Adam M. Phillippy, Todd J. Treangen
bioRxiv 304972; doi: https://doi.org/10.1101/304972

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Subject Areas
All Articles
  • Animal Behavior and Cognition (4241)
  • Biochemistry (9173)
  • Bioengineering (6806)
  • Bioinformatics (24064)
  • Biophysics (12156)
  • Cancer Biology (9565)
  • Cell Biology (13825)
  • Clinical Trials (138)
  • Developmental Biology (7658)
  • Ecology (11737)
  • Epidemiology (2066)
  • Evolutionary Biology (15543)
  • Genetics (10672)
  • Genomics (14362)
  • Immunology (9513)
  • Microbiology (22905)
  • Molecular Biology (9129)
  • Neuroscience (49127)
  • Paleontology (358)
  • Pathology (1487)
  • Pharmacology and Toxicology (2584)
  • Physiology (3851)
  • Plant Biology (8351)
  • Scientific Communication and Education (1473)
  • Synthetic Biology (2301)
  • Systems Biology (6206)
  • Zoology (1303)