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Abstract 

Methods for using GWAS to estimate genetic correlations between pairwise combinations of traits have 

produced “atlases” of genetic architecture. Genetic atlases reveal pervasive pleiotropy, and genome-wide 

significant loci are often shared across different phenotypes. We introduce genomic structural equation 

modeling (Genomic SEM), a multivariate method for analyzing the joint genetic architectures of complex 

traits. Using formal methods for modeling covariance structure, Genomic SEM synthesizes genetic 

correlations and SNP-heritabilities inferred from GWAS summary statistics of individual traits from 

samples with varying and unknown degrees of overlap. Genomic SEM can be used to identify variants 

with effects on general dimensions of cross-trait liability, boost power for discovery, and calculate more 

predictive polygenic scores. Finally, Genomic SEM can be used to identify loci that cause divergence 

between traits, aiding the search for what uniquely differentiates highly correlated phenotypes. We 

demonstrate several applications of Genomic SEM, including a joint analysis of GWAS summary 

statistics from five genetically correlated psychiatric traits. We identify 27 independent SNPs not 

previously identified in the univariate GWASs, 5 of which have been reported in other published GWASs 

of the included traits. Polygenic scores derived from Genomic SEM consistently outperform polygenic 

scores derived from GWASs of the individual traits. Genomic SEM is flexible, open ended, and allows 

for continuous innovations in how multivariate genetic architecture is modeled. 
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Genomic Structural Equation Modeling 

Genome-wide association studies (GWASs) are rapidly identifying loci affecting multiple 

phenotypes.1,2 Moreover, using cross-trait versions of methods such as genomic-relatedness-based 

restricted maximum-likelihood (GREML)3 and LD-score regression (LDSC)4 researchers have identified 

genetic correlations between diverse traits, e.g., polycystic ovary syndrome and pubertal timing,5 

amyotrophic lateral sclerosis (ALS) and schizophrenia,6 and anorexia nervosa and obsessive-compulsive 

disorder.7 More generally, these analyses are suggestive of constellations of phenotypes affected by 

shared sources of genetic liability, but they do not permit the causes of the observed genetic correlations 

to be investigated systematically. Here we introduce Genomic Structural Equation Modeling (Genomic 

SEM), a new method for modeling the multivariate genetic architecture of constellations of traits and 

incorporating genetic covariance structure into multivariate GWAS discovery. Genomic SEM formally 

models the genetic covariance structure of GWAS summary statistics from samples of varying and 

potentially unknown degrees of overlap, in contrast to methods8 that model phenotypic covariance 

structure using raw data. Moreover, Genomic SEM allows the user to specify and compare a range of 

different hypothesized multivariate genetic architectures, which improves upon existing approaches for 

combining information across genetically correlated traits to aid in discovery.9 

One powerful feature of Genomic SEM is the capability to model shared genetic architecture 

across phenotypes with factors that may be treated as broad genetic liabilities. This allows researchers to 

identify variants with effects on general dimensions of cross-trait liability, boost power for discovery, and 

calculate more valid and predictive polygenic scores. Genomic SEM can also evaluate whether the 

multivariate genetic architecture implied by a specific model is applicable at the level of individual 

variants using developed estimates of heterogeneity. When certain SNPs only influence a subset of 

genetically correlated traits, a key assumption of other multivariate approaches is violated.9 SNPs with 

high heterogeneity estimates can be flagged as likely to confer disproportionate or specific liability 

toward individual traits or disorders, can be removed when constructing polygenic risk scores, or studied 

specifically to understand the nature of heterogeneity. These heterogeneity estimates act as safeguards 

against false inference when considering a locus specific to one trait in its effect on a set of correlated 

traits. 

We validate key properties of Genomic SEM with a series of simulations and illustrate the 

flexibility and utility of Genomic SEM with several analyses of real data. These include a joint analysis of 

GWAS summary statistics from five genetically correlated psychiatric case-control traits: schizophrenia, 

bipolar disorder, major depressive disorder (MDD), post-traumatic stress disorder (PTSD), and anxiety. 

We model genetic covariances among the traits using a general factor of psychopathology (p), for which 

we identify 27 independent SNPs not previously identified in the univariate GWASs, 5 of which can be 
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validated based on separate GWASs. Polygenic scores derived using this p-factor consistently outperform 

polygenic scores derived from GWASs of the individual traits in out-of-sample prediction of psychiatric 

symptoms. Other demonstrations include a multivariate GWAS of neuroticism items, an exploratory 

factor analysis of anthropometric traits, and a simultaneous analysis of the unique genetic associations 

between schizophrenia, bipolar disorder, and educational attainment.  

 

Results 

Genomic SEM is a Two-Stage Structural Equation Modeling approach.10-12 In Stage 1, the 

empirical genetic covariance matrix and its associated sampling covariance matrix are estimated. The 

diagonal elements of the sampling covariance matrix are squared standard errors (SEs). The off-diagonal 

elements index the extent to which sampling errors of the estimates are associated, as may be the case 

when there is sample overlap across GWAS. In principle, these matrices may be obtained using a variety 

of methods for estimating SNP heritability, their genetic covariance, and their SEs. Here we use a novel 

version of LDSC that accounts for potentially unknown degrees of sample overlap by populating the off-

diagonal elements of the sampling covariance matrix. The same strengths, as well as assumptions and 

limitations that are known to apply to LDSC13,14 apply to its extension used here and to Genomic SEM. In 

Stage 2, a SEM is estimated by minimizing the discrepancy between the model-implied genetic 

covariance matrix and the empirical covariance matrix obtained in the previous stage. We highlight 

results from weighted least squares (WLS) estimation that weights the discrepancy function using the 

inverse of the diagonal elements of the sampling covariance matrix, and produces model SEs using the 

full sampling covariance matrix. In the Online Supplement, we report results from an alternative normal 

theory maximum likelihood (ML) estimation method. We evaluate fit with the standardized root mean 

square residual (SRMR), model c2, Akaike Information Criteria (AIC), and Comparative Fit Index (CFI; 

Online Method).11,15 

Genomic SEM can be employed as a tool for multivariate GWAS based on univariate summary 

statistics. First, the genetic covariance matrix and its associated sampling covariance matrix are expanded 

to include SNP effects. A Genomic SEM is then specified in which SNP effects occur at the level of a 

latent genetic factor defined by several phenotypes, at the level of the genetic component of each of 

several (potentially genetically correlated) phenotypes, or some combination of the two. The Genomic 

SEM is then run once per SNP (or each set of SNPs, should the user incorporate multiple SNPs into a 

model) to obtain its effects within the multivariate system.  

We provide an index that quantifies the extent to which an observed vector—consisting of 

univariate regression effects of a given SNP on each of the phenotypes—can be explained by a common 

pathway model that assumes that the effects on the phenotypes are entirely mediated by the common 
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genetic factor(s). In other words, the index enables the identification of loci that do and do not operate on 

the individual phenotypes exclusively by way of their associations with the common factor(s). Because of 

its intuitive and mathematical similarity to the meta-analytic Q-statistic used in standard meta-analyses to 

index heterogeneity of effect sizes16 we label this heterogeneity statistic, QSNP. QSNP is a c2-distributed test 

statistic with larger values indexing a violation of the null hypothesis that the SNP acts entirely through 

the common factor(s) (Online Method).   

 

Validation via Simulation 

We performed 100 runs of Genomic SEM on raw individual-level genotype data for which we 

simulated multivariate phenotypic data to conform to a single genetic factor model (a latent trait that 

partially causes 5 observed outcomes). Across the 100 simulations Genomic SEM estimates closely 

matched the parameters specified in the generating population (Supplementary Fig. 1). Model SEs also 

closely matched the standard deviations of parameter estimates. We also compared fit statistics (CFI, 

AIC, and model c2) for the correctly specified common factor model and two deliberately misspecified 

models: (i) a model in which all indicators were constrained to have the same factor loading, and (ii) a 

model for which the loading of the third indicator was set to 0. As expected, results indicated that the 

common factor model matching the generating population was favored ≥ 99% of the time across model 

fit indices (Supplementary Fig. 2).   

 

Confirmatory Factor Analysis of Genetic Covariance Matrices 

We provide two examples of confirmatory factor analysis (CFA) using Genomic SEM. We 

specifically factor analyze a genetic covariance and sampling covariance matrix with estimates populated 

from multivariable LDSC for psychiatric traits and for indicators of neuroticism. Recent findings indicate 

that the comorbidity across psychiatric disorders is captured by a latent, general psychopathology factor 

that is known as the p-factor and is widely supported based on previous results.17,18 We tested for the 

presence of a genetic p-factor using Genomic SEM with European-only summary statistics for 

schizophrenia, bipolar disorder, major depressive disorder (MDD), post-traumatic stress disorder (PTSD), 

and anxiety (Table S1 for phenotypes and sample sizes). Model fit was adequate (c2(5) = 89.55, AIC = 

109.5, CFI = .848, SRMR = .212).1 Results indicated that schizophrenia and bipolar disorder loaded the 

strongest onto the genetic p-factor (Supplementary Fig. 3), a pattern of findings that closely replicates 

prior phenotypic findings.19 We next tested for the presence of a single neuroticism factor using summary 

                                                   
1 For large samples, model c2, such as those observed in GWAS, is expected to be highly significant and is more 
appropriate in Genomic SEM as a means of comparing nested models. 
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statistics from 12 item-level indicators from UK Biobank (UKB; Table S1) as estimated using the Hail 

software.20 Model fit was good (c2(54) = 4884.10, AIC =4932.10, CFI = .893, SRMR = .109). Results 

revealed a common neuroticism factor with strong positive loadings for all indicators (Supplementary Fig. 

4).   

 

Exploratory Factor Analysis of a Genetic Covariance Matrix 

Exploratory factor analysis (EFA) was applied to the genetic covariance matrix for nine 

anthropometric traits from the EGG and GIANT consortia (Table S1). A heatmap of the genetic 

correlation matrix suggests two primary factors that index overweight and early life-growth phenotypes 

(Supplementary Fig. 5). Results of the EFA indicated that two factors explained 60% of the total genetic 

variance. A follow-up CFA (Supplementary Fig. 6) within Genomic SEM was specified based on the 

EFA parameter estimates (standardized loadings > .2 were retained). The CFA showed good fit to the 

data (c2(25) = 10397.45, AIC = 10437.45, CFI = .951, SRMR = .089). Results indicated highly significant 

loadings, and a small correlation between the two factors (rg = .11, SE = .03, p < .001). This indicates that 

early life physical growth is modestly associated with later life obesity traits via genetic pathways.  

 

Genetic Multivariable Regression (Replicating GWIS) 

Nieuwboer et al. (2016)21 use summary statistics for educational achievement (EA)22 and both 

schizophrenia and bipolar disorder23 to determine if genetic correlations with EA are driven by variation 

specific to either disorder. EA is genetically correlated with schizophrenia (rg = .148, SE = .050, p = .003) 

and bipolar disorder (rg = .273, SE = .067, p < .001). Using a method called genome-wide inferred 

statistics (GWIS), they find that the correlation of EA with schizophrenia unique of bipolar is small (rg = 

.040, SE = .082, p = .627), whereas the genetic correlation between bipolar unique of schizophrenia and 

EA is far less attenuated (rg = .218, SE = .102, p = .032). We use Genomic SEM with the aim of 

replicating these results using a conceptually similar, but statistically distinct, framework. We present this 

example to demonstrate that Genomic SEM is not limited to factor analytic models, but can be used to 

construct and test an array of hypotheses using a general SEM approach.  

Using the same univariate GWAS summary statistics employed in the original application of 

GWIS, we used Genomic SEM to fit a structural multivariable regression model in which the genetic 

component of EA was simultaneously regressed onto the genetic components of schizophrenia and 

bipolar disorder. Fit indices are not reported as this was a fully saturated model (i.e., df = 0). Results 

confirmed the findings by Nieuwboer et al. (2016);21 the conditional standardized association between 

schizophrenia and EA was quite small (bg = -.016, SE = .096, p = .867), whereas there was a strong 
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conditional standardized association between bipolar disorder and EA (bg = .283, SE = .113, p = .012; 

Supplementary Fig. 7).  

 

SNP Effects 

A powerful application of Genomic SEM is to include individual SNP effects in both the genetic 

covariance matrix and the sampling covariance matrix, in order to estimate the effect of a given SNP on 

the latent genetic factor(s). If the summary statistics are composed of M different SNPs, then M models 

are estimated to obtain genome-wide summary statistics for the latent factor. We apply this method to the 

p-factor and neuroticism models presented above. LD-independent hits are defined here as r2 < .1 in a 

500-kb window, with the exception of a 1-mb window for chromosomes 6 and 8. The effect of 128 

independent loci crossed the threshold for genome wide significance for the p-factor (p < 5 × 10−8; 

Supplementary Figs. 8-9 for QQ-plot and Manhattan plot of univariate estimates; Figs. 1 and 2 for factor 

model and Manhattan plots). Of the 128 loci, 27 independent loci were not previously identified in any of 

the univariate GWAS (Table 1, Table S2). Of these 27 loci, five were identified as either genome wide 

significant or suggestive of significance (p < 1 × 10−5) in an outside study of an overlapping trait. The 

effect of 118 loci crossed the threshold for genome wide significance for neuroticism, with 38 loci not 

identified in the univariate item-level GWASs (Table S3). Intercepts from LDSC analyses of the 

summary statistics produced by Genomic SEM indicated that results were not due to uncontrolled 

inflation for either the p-factor (intercept = .987, SE = .014) or neuroticism (intercept = .997, SE = .001).  
 

General Trends. Mean c2 statistics were higher for the Genomic SEM-derived summary statistics of 

common factors relative to univariate indicators (Table 1). It is important to note here that, whereas 

Genomic SEM may boost power in many cases, this is not the primary purpose of the method. Rather, it 

is to identify the relation between SNPs and observed phenotypes as meditated through a user-specified 

model and to concurrently evaluate the construct validity of said model. Inspecting the distribution of 

univariate p-values for the newly identified SNPs for the general factors indicated that these SNPs were 

generally characterized by relatively low p-values, albeit not low enough to cross the genome-wide 

significance threshold for any individual phenotype (Supplementary Figs. 10-11).  

 

QSNP Results. Results revealed 1 and 69 independent QSNP loci for the p-factor and neuroticism, 

respectively (Fig. 2; Supplementary Fig. 12 for QQ-plot). For neuroticism, significant QSNP estimates were 

obtained for SNPs that were highly significant for some traits but not others (Table S4; Supplementary 

Fig. 13). The association between p-values for SNP effects and QSNP estimates were minimal 

(Supplementary Fig. 14). Comparing the QSNP estimates for these SNPs with those that were identified as 
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significant for only the p-factor or neuroticism indicated that SNPs not identified for the common factors 

were characterized, as would be expected, by larger QSNP estimates (i.e., greater heterogeneity in 

individual effects; Supplementary Fig. 15). Intercepts from LDSC analyses of the Q statistics also 

indicated that results for QSNP were not attributable to inflation (p-factor: intercept = .978, SE = .009; 

neuroticism: intercept = .963, SE = .009). Slopes from these LDSC analyses indicated genetic signal in 

heterogeneity (p-factor: Z = 13.65, p-value = 6.68E-42; neuroticism: Z =  30.23, p-value = 9.98E-201).  
 

Performance under controlled missingness.  We contrast estimates obtained from the common factor 

model of neuroticism described above with estimates for a GWAS with an imposed missing structure. We 

first transformed the binary scale neuroticism items into a smaller number of quantitative scores. To do 

so, we created three parcels of neuroticism items consisting of 4 items each with scores ranging from 0 to 

4, at which point it is appropriate to treat the parcel as continuous.24 Parcels were constructed based on 

factor loadings obtained using EFA of the genetic covariance matrix of the neuroticism items (Table S5). 

Of the 300,000 participants, 100,000 non-overlapping participants were removed from two of the three 

parcels for missing data models. The most well-powered results were for Genomic SEM of the individual 

neuroticism items presented above, indicating that construction of composite indices via averaging, 

though convenient, removes multivariate information that can otherwise be retained with Genomic SEM 

(Table S6). Genomic SEM analyses that incorporated supplemental information from parcels containing 

imposed missing data consistently outperformed GWAS of individual parcels with complete data, and 

performed nearly as well as analyses of complete data across all three parcels.  

 

Parcel Comparison of QSNP. Using the three constructed parcels without any missing data, the distribution 

of p-values was compared across SNPs with high (p < 5e-8) and low (p > 5e-3) QSNP estimates from the 

item-level Genomic SEM analysis of neuroticism and that that were genome wide significant hits in at 

least one of the parcels. These results indicated that, for SNPs with a higher QSNP for the common factor, 

there was more discordance of effect sizes among three lower-order factors relative to SNPs that 

produced lower heterogeneity estimates (Supplementary Fig. 16). The average difference between the 

highest and lowest –log10 p-values was 10.56 and 4.96 for high and low QSNP, respectively. This suggests 

that QSNP is appropriately indexing discordance in SNP level effects across genetically correlated 

indicators.  

 

Polygenic Prediction. We re-estimated the p-factor model using the summary statistics from the SCZ and 

MDD GWASs that did not overlap with the UKB dataset, in order to predict psychiatric symptoms in 

UKB (Supplementary Fig. 17 for phenotypic model). We compared the magnitude of out-of-sample-
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prediction for the p-factor PGSs predicting the phenotypic p-factor and individual psychiatric domains 

relative to the prediction using PGSs derived from univariate summary statistics (Fig. 3, Table S7). The 

PGSs for the genetic p-factor predicted more variance in depression, psychotic experiences, mania, 

anxiety, PTSD and a phenotypic p-factor than any univariate PGS.  

 

Biological Annotation. The biological function of the SNPs related to the p-factor and neuroticism was 

examined using DEPICT.25 Table 1 presents the number of enriched gene sets, prioritized genes, and 

enriched tissues and cell types across the univariate statistics and common factors (Supplementary Tables 

S8-S16 for detailed output). Common factors produced far more informative results than the individual 

indicators. As expected, all of the tissue enrichment for the common factors was identified in the nervous 

system (Fig. 4). Neuroticism prioritized genes indicated a central role of synaptic activity (e.g., STX1B, 

NR4A2, PCLO), including glutamatergic neurotransmission (GRM3). The p-factor gene sets were largely 

characterized by communication between neurons (e.g., “dendrite development”, “dendritic spine”, 

“abnormal excitatory postsynaptic potential”). Biological annotation of QSNP statistics for neuroticism 

indicated that genes within the 69 loci related to neuroticism, but not through a single factor, include: 

GRIA1, a glutamate receptor subunit (i.e. involved in signaling is excitatory neurons) which has 

previously been related to schizophrenia,26 chronotype,27 and autism;28 and PCDH17, a gene involved in 

cellular connections in the brain that has been related to intelligence.29  

 

Discussion 

Genomic SEM is a novel method for modeling the multivariate genetic architecture of 

constellations of genetically correlated traits and incorporating genetic covariance structure into 

multivariate GWAS discovery. In contrast to methods8 that model phenotypic, rather than genetic 

covariance structure, and rely on raw data, Genomic SEM employs summary GWAS data to model 

genetic covariance structure. Genomic SEM is computationally efficient, accounts for potentially 

unknown degrees of sample overlap, and allows for flexible specification of covariance structure, such 

that several broad classes of structured covariance models can be applied. The Genomic SEM approach 

shares benefits of some existing approaches9 for boosting power by combining information across 

genetically correlated phenotypes. However, Genomic SEM uniquely allows one to compare different 

hypothesized genetic covariance architectures and to incorporate such architectures into multivariate 

discovery. Importantly, shared genetic liabilities across phenotypes can be explicitly modeled as factors 

that may be treated as broad genetic risk factors with equally broad downstream consequences. 

 In contrast to approaches that assume homogeneity of effects across SNPs,9 Genomic SEM 

includes diagnostic indices for its key assumptions, including a test for heterogeneity, QSNP, that can be 
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applied at the level of the individual SNPs. This offers the unique ability to identify SNPs that confer 

specific risk to individual disorders, symptoms, or indicators. This question may be of particular interest 

as the large degrees of genetic overlap identified across phenotypes (e.g., bipolar disorder and 

schizophrenia) beg the question: what are the genetic causes of phenotypic divergence? Whereas previous 

GWASs have combined items tapping genetically-related phenotypes into a single score, or even 

combined cases with different diagnoses to obtain a shared genetic effect, Genomic SEM allows 

researchers to interrogate shared genetic effects between diagnoses or indicators, while concurrently 

testing for causes of divergence (i.e., loci that are related only to a specific phenotype, or subset of 

phenotypes, but not the more general liability). In the context of neuroticism, for example, we identified 

69 loci that were significantly involved in one manifestation of neuroticism but whose effects were not 

shared through a common factor, offering novel evidence of biological heterogeneity in the etiology of a 

construct long thought to be unidimensional. Because Genomic SEM relies only on GWAS summary 

data, it can be applied to a broad spectrum of traits, including gene expression, hormones, metabolites, 

brain structure and functions, behaviors, and psychiatric disorders and medical diseases. 
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Software 

GenomicSEM software is an R package that is available from GitHub at the following URL: 

https://github.com/MichelNivard/GenomicSEM 

The GenomicSEM R package can be installed directly at: 

https://github.com/MichelNivard/GenomicSEM/wiki. 

Example GenomicSEM code, including code used to produce results is provided for each set of analyses 

at the following online wiki: https://github.com/MichelNivard/GenomicSEM/wiki. 
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Table 1. Summary of multivariate (Genomic SEM) and univariate GWAS results. 

  

Lead SNPs 
(p < 5 × 10-8) QSNP hits Unique 

Hits 
No. of 

gene sets 

No. 
prioritized 

genes 

No. 
tissues 

and cells 

Mean 
c2 

P-Factor 
Genomic 
SEM (WLS) 128 1 (1) 31 (4) 71 37 24 1.88 

Schizophrenia 127 - 34 (0) 2 25 21 1.82 
Bipolar 4 -  4 (0)   0 0 0 1.15 
MDD 5 -  5 (0) 0 0 0 1.31 
PTSD 0 -  0 (0)     0 0 0 1.01 
Anxiety 1 -  1 (0)     0 0 0 1.03 

Neuroticism 
Genomic 
SEM (WLS) 118 69 (6) 38 (0) 1 19 20 1.64 

Mood 43 - 19 (5) 0 0 15 1.37 
Misery 31 - 6 (4) 0 0 0 1.32 
Irritability 36 - 17 (4) 0 0 0 1.37 
Hurt Feelings 24 - 11 (0) 0 0 0 1.33 
Fed-up 38 - 21 (6) 0 0 0 1.36 
Nervous 41 - 25 (12) 0 0 0 1.36 
Worry 56 - 26 (6) 0 13 0 1.46 
Tense 19 - 10 (3) 0 0 0 1.32 
Embarrass 17 - 6 (2) 0 0 0 1.33 
Nerves 12 - 7 (3) 0 0 0 1.26 
Lonely 6 - 4 (3) 0 0 0 1.19 
Guilt 21 - 8 (1) 0 0 0 1.28 

Note. In parentheses for QSNP reports how many QSNP hits were in LD with hits identified as significant for 
the common factor. Unique hits for the common factor refers to lead SNPs that were not in LD with hits for 
the individual indicators. Unique hits for the individual indicators refers to hits for the respective indicator 
that were not in LD with hits for the common factor. Unique hits for the common factor excluded hits in LD 
with QSNP hits. For unique hits for indicators, values in parentheses indicate whether any of these hits were 
identified as significant for QSNP. For unique hits for the common factor, values in parentheses indicate hits 
that were in LD with previously reported indicator hits that were removed due to missing values across the 
other indicators. The single QSNP hit for WLS estimation of the p-factor was significant for both the common 
factor and schizophrenia. For the common factor and the indicators, independent hits were defined using a 
pruning window of 500 kb and r2 > 0.1. For chromosomes 6 and 8, an additional pruning filter was used of 
1,000,000 kb and r2 > 0.1 to account for long-range LD due to the MHC region and pericentric inversion, 
respectively. For univariate statistics, we used only the SNPs present across all indicators in order to 
facilitate a direct comparison to Genomic SEM results. 
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Fig. 1. Genomic SEM solutions for p-factor and neuroticism factor models with SNP effect. 
Standardized results from using Genomic SEM (with WLS estimation) to construct a genetically defined 
p-factor of psychopathology (panel a) and a genetic neuroticism factor (panel b) with a lead independent 
SNP predicting the factors. SEs are shown in parentheses. For a model that was standardized with respect 
to the outcomes only, the effect of the SNP was -.093 (SE = .017; SNP variance = .252) for the p-factor, 
and for neuroticism the SNP effect was -.042 (SE = .007, SNP variance = .432); this can be interpreted as 
the expected standard deviation unit difference in the latent factor per effect allele. SCZ = schizophrenia; 
BIP = bipolar disorder; DEP = major depressive disorder; PTSD = post-traumatic stress disorder; ANX = 
anxiety. Irr = irritability; Feel = sensitivity/hurt feelings; fed-up = fed-up feelings; emb = worry too long 
after embarrassment. 
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Fig 2. Manhattan plots of unique, independent hits from Genomic SEM. Genomic SEM (with WLS estimation) was used to conduct multivariate GWASs of the p-
factor (panel a) and neuroticism (panel b). Manhattan plots are shown for SNP effects (left panels) and for QSNP (right panels). The gray dashed line marks the 
threshold for genome wide significance (p < 5 × 10-8). In all four panels, black triangles denote independent hits for SNP effects from the GWAS of the general factor 
that were not in LD with independent hits for the univariate GWAS or hits for QSNP. In all four panels, purple diamonds denote independent hits for the SNP effects 
from univariate GWASs that were not in LD with independent hits from the GWAS of the general factor. Grey stars denote independent hits for QSNP.  
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Fig. 3. Out-of-sample prediction using Genomic SEM based and univariate based polygenic scores. Polygenic scores (PGSs) were 
constructed using the same set of SNPs for all predictors. R2 (%) on the y-axis indicates the percentage of variance (possible range: 0-100) 
explained in the outcome unique of covariates. The summary statistics for Genomic SEM were estimated using WLS. Error bars indicate 95% 
confidence intervals estimated using the delta method. Phenotypes were constructed for European participants in the UKB for five symptom 
domains and for a general p factor spanning all five symptom domains.  
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Fig. 4. Biological annotation of Genomic SEM results for p-factor, neuroticism, and QSNP of neuroticism. Results from tissue enrichment 
analyses conducted using DEPICT based on Genomic SEM results for the p-factor (panel a), neuroticism (panel b) and QSNP estimation for 
neuroticism (panel c) using WLS estimation. The red, dashed line indicates the false discovery rate at .05. As expected, the majority of enriched 
tissues were in the nervous system for both common factors and QSNP estimate.
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Online Method 

 

Overview of Genomic SEM 

In Genomic SEM, the user specifies a multivariate system of regression and covariance 

associations involving the genetic components of phenotypes with one another and/or more general latent 

factors. These associations are represented by parameters that may be fixed or freely estimated, so long as 

the model is statistically identified (e.g., the number of freely estimated parameters does not exceed the 

number of nonredundant elements in the genetic covariance matrix being modeled). A set of parameters   

( ) is estimated such that the fit function indexing the discrepancy between the model-implied 

covariance matrix  and the empirical covariance matrix S is minimized. Model fit is considered 

good when ∑(θ) closely approximates S. 

 

Form of Structured Covariance Models 

Genomic SEM provides substantial user flexibility with respect to the particular SEM that is 

specified to produce the model-implied covariance matrix that approximates the empirical 

covariance matrix, S. SEMs can be partitioned into two sets of equations, one describing the measurement 

model, and the other describing the structural model. In the measurement model, the genetic components 

of k “indicator” phenotypes are described as linear functions of a smaller set of m (continuous) latent 

variables, . In this equation, is a  vector of indicators,  is a  vector of residuals, 

 is an  vector of latent variables, and  is a  matrix of factor loadings, i.e. regressions 

relating the latent variables to the set of indicators. In a typical application of Genomic SEM, each 

indicator is a function of exactly one of the latent variables (though this so-called “simple structure” 

restriction may be relaxed). In a confirmatory factor analysis (CFA) model, only the measurement model 

is specified, and the set of latent variables are allowed to freely covary. Thus, the model-implied 

covariance matrix of a CFA is , where  is an  latent variable covariance 

matrix and  is a  matrix of covariances among the residuals, . Typically,  is diagonal, which 

implies that indicators are mutually independent conditional on the set of latent variables. That constraint 

may be relaxed such that select pairs of indicators are allowed to covary over and above their associations 

via the latent variable structure (i.e., residual covariances are allowed). CFA models are typically used to 

assess the strength of relations between sets of indicators and their respective underlying latent variables, 

as well as to assess the fit of a measurement model to data. A well-fitting CFA model implies that the 

latent variable structure is able to account for the observed covariances among a set of indicator variables. 

q

( )qS

( )qS

y = Λη+ ε y 1k ´ ε 1k ´

η 1m´ L k m´

( ) +q ¢Σ = ΛΨΛ Θ Ψ m m´

Θ k k´ ε Θ
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When a theory aims to explain associations among latent variables, a structural model can be 

added to the measurement model to produce a full SEM. The structural model of a SEM relates latent 

variables to each other via directed regression coefficients. It can be written in matrix notation as 

, where  is an  matrix of regression coefficients that relate latent variables to each 

other and  is an  vector of latent variable residuals. The model implied covariance matrix of 

observed variables is , where  is an identity matrix.30 Thus, 

in a full SEM, the empirical matrix is represented by a set of parameters that relate observed variables to 

latent variables, and relate latent variables to each other in a series of linear equations.  

 

Path Diagrams 

 SEMs can be represented graphically as path diagrams representing regression and covariance 

relations among variables.31 In path diagrams, observed variables are represented as squares and 

unobserved (i.e., latent) variables are represented as circles. Regressions relationships between variables 

are represented as one-headed arrows pointing from the independent variable to the dependent variable. 

Covariance relationships between variables are represented as two-headed arrows linking the two 

variables. The variance of a variable (i.e., the covariance between a variable and itself), is represented as a 

two-headed arrow connecting the variable to itself. In Genomic SEM, we represent the genetic component 

of each phenotype with a circle, as the genetic component is a latent variable that is not directly measured, 

but is inferred from LDSC (it is the phenotype itself that is observed in the raw data that is used to 

produce the summary statistics). SNPs are directly measured, and are therefore represented as squares. 

When all elements in a SEM are represented and correctly specified in a path diagram, the diagram 

contains the full system of algebraic equations needed to estimate the full set of SEM parameters, , and 

produce the model-implied covariance matrix, . 

Stage 1 Estimation 

In Stage 1, the empirical genetic covariance matrix (S) and its associated sampling covariance 

matrix (VS) are estimated using our multivariable extension of LDSC. S is a symmetric matrix with 

SNP heritabilities on the diagonal and genetic covariances (σgi,gj) between phenotypes i and j off the 

diagonal. The genetic covariance between phenotypes i and j can be computed as the genetic correlation 

scaled relative to the total genetic variance of each of the two contributing phenotypes (themselves scaled 

to unit variances),  . Thus, the genetic covariance matrix of order k has 

 nonredundant elements. It can be written as:  

η = Βη+ ζ B m m´

ζ 1m´

( ) ( ) ( ) +q ¢ ¢-1 -1Σ =Λ I -B Ψ I -B Λ Θ I k k´

q

( )qS

k k´

2 2
, ,gi gj g i gj i jr h hs × ×=

( )* 1 / 2k k k= +
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To produce unbiased SE estimates and test statistics, we require the asymptotic sampling 

covariance matrix, VS, of the LDSC estimates that is composed of all nonredundant elements in the S 

matrix. Thus, it is a symmetric matrix of order .The diagonal elements of VS are sampling variances, 

that is, squared SEs of the elements in S. The off-diagonal elements of VS are sampling covariances that 

indicate the extent to which the sampling distributions of the variance and covariance estimates in S 

covary with one another, as would be expected when there is overlap among the samples from which the 

terms are estimated. 

 The diagonal elements of VS are estimated using a jackknife resampling procedure in the bivariate 

version of LDSC that is currently available by its original developers.4,32 The LDSC function introduced 

in the GenomicSEM software package expands the jackknife procedure to the multivariable context in 

order to produce sampling covariances (which index dependencies among estimation errors) among the 

elements of S, needed to populate the off-diagonal elements of VS.  

 

Stage 2 Estimation 

In Stage 2, the genetic covariance matrix obtained in the previous stage, S, is used to estimate the 

parameters in a SEM. In this stage, we allow for both weighted least squares (WLS) and normal theory 

maximum likelihood (ML) estimators. WLS does not strictly require positive definite S and VS matrices, 

but may still benefit from positive definiteness during optimization. ML estimation requires both S and VS 

to be positive definite. The GenomicSEM software package therefore smooths  S and VS to the nearest 

positive definite matrices prior to Stage 2 estimation using the R function nearPD.33 
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The fit function minimized in the diagonally weighted version of WLS estimation that is standard 

in the GenomicSEM software package is the following:  

 , 

where  is the diagonal of the asymptotic covariance matrix, VS. We choose the diagonally 

weighted version of WLS because it is more tractable to implement for large (highly multivariate) 

matrices and is more stable than fully weighted WLS in finite samples.34,35 We denote the parameter 

estimates produced in Stage 2 (whether by WLS or ML estimation) as . 

ML estimation proceeds by minimizing the following fit function:  

  

where  is the covariance matrix implied by the set of parameter estimates. Note that, while the 

formulation of the ML fit function does not explicitly include a weight matrix, it is asymptotically 

equivalent to a more general formulation that is identical to the WLS fit function, with 

, where   is the duplication matrix of order k, in place of . Thus, 

the difference between ML and WLS estimation can be construed as a difference in weight matrices only. 

A comparison between ML and WLS results can be found in the Online Supplement (Supplementary 

Figs. 18-22, Table S17). 

WLS estimation more heavily prioritizes reducing misfit in those cells in the S matrix that are 

estimated with greater precision. This has the desirable property of potentially decreasing sampling 

variance of the Genomic SEM parameter estimates, which may boost power for SNP discovery and 

increase polygenic prediction. However, because the precision of cells in the S matrix is contingent upon 

the sample sizes for the contributing univariate GWASs, WLS may produce a solution that is dominated 

by the patterns of association involving the most well powered GWASs, and contain substantial local 

misfit in cells of S that are informed by lower powered GWASs. In other words, WLS relative to ML may 

more heavily prioritize minimizing sampling variance of the parameter estimates in the so-called variance 

bias tradeoff.36 We expect that this will only occur when the model is overidentified (i.e., df  > 0), such 

that exact fit cannot be obtained, and that divergence in WLS and ML estimates will be most pronounced 

when there is lower sample overlap and the contributing univariate GWASs differ substantially in power. 

ML estimation may be preferred when the goal is to most evenly weight the contribution of the univariate 

sample statistics. 

Both WLS and ML fit functions will produce consistent estimates of the model parameters when 

the model is true.35 However, the “naïve” SEs and fit statistic produced in Stage 2 estimation will be 

( ) ( )( ) ( ) ( )( )1
WLS SF S diag V Sq q q-¢= -S -S

( )Sdiag V

q

( ) ( ) ( ){ }1log logMLF S tr S kq q q-= S - + S -

( )qS

( ) ( )( )1 1.5 k kD Dq q- -¢ S ÄS kD ( )Sdiag V
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incorrect, because neither estimator uses the full VS matrix in estimation. Thus, robust corrections must be 

applied to produce consistent estimates of SEs and test statistics. The correct sampling covariance matrix 

of the Stage Two, Genomic SEM parameter estimates (i.e., ) can be obtained using a sandwich 

correction:11,35  

 

where is the matrix of model derivatives evaluated at the two-stage parameter estimates 

 ,  is the naïve Stage 2 weight matrix that takes its form depending on the estimation method used 

(WLS or ML), and VS is the sampling covariance matrix of S obtained using multivariable LDSC. 

 It may not always be possible to obtain the full sampling covariance matrix, VS. For example, for 

highly sensitive data only the matrix S and the SEs of its elements may be available (i.e., the diagonal of 

VS). However, we note that when there is low sample overlap across the GWAS’s for each phenotype, off-

diagonal elements of the sampling covariance matrix are small and pragmatically ignorable. Moreover, in 

other contexts with complete sample overlap, SE inflation of the SEM parameters estimated using 

diagonally-weighted versions of WLS has been estimated to be less than 8%8 without robustness 

corrections, and nil with robustness corrections.35 

 

Incorporation of Individual SNP Effects 

Several steps are needed to incorporate individual SNP effects into Genomic SEM. The first step 

requires that the inputted genetic covariance matrix be expanded to include covariances between the SNP 

and the latent genetic components of each of the phenotypes, g1 through gk: 

 

  

The sampling covariance matrix, VS, associated with this expanded S covariance matrix includes a 

number of components. The sampling variances and sampling covariances of the latent genetic variances 

(SNP heritabilities) and genetic covariances are obtained from the multivariable LDSC approach 

introduced above. The SNP variance (derived from reference panel data) is treated as fixed, and its 
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sampling variance and sampling covariance with all other terms are fixed to 0 (or to a very small value to 

facilitate computational tractability). The sampling covariances of the SNP-genotype covariances with 

one another are obtained using cross-trait LDSC intercepts (which represent sampling correlations 

weighted by sample overlap) after being rescaled relative to the sampling variances of the respective 

SNP-genotype covariances.9,37 Finally, the sampling covariance of the SNP-genotype covariances with 

the genetic variances and genetic covariances are fixed to 0, as sampling variation of the SNP-genotype 

covariance is expected to be independent of the test statistics of all LD blocks except the one it occupies. 

Because the sampling variance of the heritabilities and genetic correlations derive from sampling 

variability in the test statistics within all of the LD blocks, their sampling covariances with a single SNP 

effect is expected to approach 0. 

 

Standardization and Scaling of Summary Statistics for Multivariate GWAS 

Typically, GWAS summary statistics for quantitative phenotypes are not reported in terms of 

covariances, but are reported as ordinary least squared (OLS) unstandardized regression coefficients, with 

the phenotypes standardized prior to analyses (i.e., the coefficients are standardized with respect to the 

outcome, but not the predictor). In order to transform these partially standardized regression coefficient 

(bSNP,P) of a SNP effect on phenotype P to a covariance, we multiply by the variance of scores on the 

SNP. The variance ( ) of scores (0, 1, 2) of a biallelic autosomal SNP is estimated as 2×(MAF×(1-

MAF)), assuming Hardy-Weinberg-Equilibrium, where MAF is the minor allele frequency, typically 

obtained from a reference sample. As the latent genetic factors estimated in LDSC are scaled relative to 

unit-variance scaled phenotypes (by virtue of the SNP heritability estimates being placed on the diagonal 

of S), no further scaling is needed to transform this SNP-phenotype covariance into a SNP-genotype 

covariance. 

When OLS regression coefficients and standard errors are provided from an analysis in which the 

phenotype has not been standardized prior to analyses, or only Z statistics or p-values (for which Z 

statistics can be readily obtained) are provided, the partially standardized regression coefficients and their 

standard errors can be obtained as  ,   , and , where 

is equal to the regression coefficient for the OLS GWAS of the unstandardized phenotype. These derived 

partially standardized coefficients are then transformed into covariances by multiplying by the variance of 

scores on the SNP, as per above. 

When the GWAS summary statistics are reported for logistic regressions of liabilities for 

categorical outcomes (e.g. case/control status) on the SNP, the logistic regression coefficients can be 
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transformed into covariances as above, by multiplying by the SNP variances. However, it is appropriate to 

further transform the coefficients such that they are scaled relative to unit-variance scaled liability. This 

can be achieved by dividing by  , as a logistic regression model implies a residual 

variance of . If GWAS summary statistics are reported for odds ratios (ORs), they can be transformed 

to logistic regression coefficients by taking their natural logarithm. Standard errors for the logistic 

regression coefficient are obtained as SEOR/OR. The coefficients and their SEs should further be 

transformed such that they are scaled relative to unit-variance scaled phenotypes, as per above. Note that 

when the outcomes are categorical, the liability scale heritabilites and genetic covariances from 

multivariable LDSC (and not what are referred to as the “observed scale” heritabilities and genetic 

covariances) should be used to populate the S matrix. This has the desirable property of both modeling the 

continuous scale of risk in the population and providing estimates that are independent of the observed 

prevalence of the categorical outcomes. 

On occasion, summary statistics will be provided from OLS GWASs of categorical outcomes 

(e.g., case/control status). Such an analysis is sometimes referred to as a linear probability model, as it 

(incorrectly) assumes that the association between the predictor and the probability in being in the 

comparison (e.g. case) group relative to the reference (e.g. control) group is linear. Parameters from the 

linear probability model are dependent not only on the strength of the association between the SNP and 

the continuous underlying liability, but also on the MAF and the proportion of comparison group 

members (cases) in the sample. Thus, parameters from the linear probability model cannot be used 

directly in Genomic SEM. However, particularly in the case of complex traits, for which the effect sizes 

for individual SNPs are small, results from the linear probability model can be used to very closely 

approximate logistic regression coefficients and standard errors that are amenable for use in Genomic 

SEM.38  The  ,   , and , where is 

equal to the regression coefficient from the linear probability model, is the expected logistic 

regression coefficient that is derived from the linear probability model results, v is equal to the proportion 

of cases in the sample, and  is the variance of the SNP, computed from its MAF obtained from a 

reference sample, as per above. To scale the derived logistic coefficient such that it is scaled relative to 

unit-variance scaled liability, the coefficient should be divided by . Lloyd-Jones et al. 

(2018)38 report that in a real data analysis of UKB data, the exponentiated regression coefficient (i.e., the 
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odds ratio) obtained directly from a logistic regression-based GWAS and that derived from the linear 

probability model-based GWAS was nearly perfect (R2 > 98%, slope ≈ 1). We have verified this nearly 

perfect correspondence in our own simulations (Supplemental Fig. 23). 

 

Model Fit Statistics 

Model c2 is an index of exact fit of a SEM. It indexes whether the model-implied genetic 

covariance matrix, , differs from the empirical genetic covariance matrix, S. Model c2 can also be 

used as a relative fit index for comparing nested models. Conventional SEM approaches to indexing 

model c2 are based on formulas that directly incorporate N. Because there is not an N that directly 

corresponds to the genetic covariance matrix that is modelled by Genomic SEM in the same way that N 

typically corresponds to an observed covariance matrix, we derived a formula for estimating model c2 

that does not require N, but instead incorporates the sampling covariance matrix of the model residuals. 

This is done in two steps. In Step 1, the proposed model (e.g., a common factor model) is estimated. In 

Step 2, all of the Step 1 estimates are fixed, and the residual covariances and residual variances of the 

indicators are freely estimated. Residual variances are estimated in Step 2 by estimating the variances of k 

residual factors defined by the indicators. This provides an estimate of the discrepancy between the model 

implied and observed covariance matrices, , along with the sampling covariance matrix (VR) 

of R. While the discrepancy between model implied and observed covariance matrices can be computed 

simply by deriving covariance expectations from the Step 1 model and subtracting the observed 

covariance matrix, such an approach would not provide the corresponding VR matrix necessary for the 

calculations below. The VR matrix is expected to be positive semidefinite and, consequently, have no 

negative eigenvalues. Therefore, the VR matrix has the following eigendecomposition:  

VR = (P1 P0) !	#	$	$	$ % &
'(	)	
'*	) + 

where P1 is a matrix of principal components (eigenvectors) of VR, and , is a corresponding diagonal 

matrix consisting of non-zero eigenvalues. P0 reflects the null space of VR. Projecting Ri—a vector of 

residual covariances estimated from the Step 2 Model—onto P1 and adjusting for corresponding 

eigenvalues, we have that: 

-
.(
			/'(	)012(0, 67) 

Therefore, 

01′P1,
-1

P1′01 � c2 (r) 

( )qS

( )ˆR S q= -S
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This equation produces a test statistic that is c2 distributed with degrees of freedom (r) equal to the 

difference between the number of nonredundant elements (k*) in the empirical covariance matrix (S) and 

the number of freely estimated parameters in the proposed model. 

The Comparative Fit Index (CFI) is a test of approximate model fit. CFI indexes the extent to 

which the proposed model fits better than a model that allows all phenotypes to be heritable, but assumes 

that they are genetically uncorrelated. The c2 statistic can be used to calculate CFI by calculating a second 

c2 statistic for a so-called independence model, i.e. a model that estimates genetic variances of all 

phenotypes but assumes all genetic covariances to be zero, such that ∑(θ) is diagonal. CFI is calculated 

using the formula below,39 with f = c2 – degrees of freedom: 

 f(Independence Model) – f(Proposed Model) 

         f(Independence Model) 

For the c2 of the independence model, a model is estimated in Step 1 that includes only the 

variance of the indicators and no common factor. In Step 2, these variances are fixed and the covariances 

among the indicators and variances of k residual factors defined by the indicators are estimated and used 

to populate the same equation above used to calculate the proposed model c2.  

Akaike Information Criterion (AIC) is a relative fit index that balances fit with parsimony, and 

can be used to compare models regardless of whether they are nested. AIC is calculated as: 

AIC = c2 + 2 × fp, 

where fp is the number of free parameters in the model.40  

Standardized Room Mean Square Residual (SRMR) is an index of approximate model fit that is 

calculated as the standardized root mean squared difference between the model-implied and observed 

correlations in  and S, respectively.41 Higher SRMR values indicate a larger discrepancy between 

 and S. It is positively-biased, with larger bias resulting when the contributing univariate GWAS 

samples are lower powered.  

 

Validation via Simulation. A generating population with a common factor model defined by four, five, or 

six indicators was used to examine the null distribution of the newly derived c2 test statistic using a set of 

1,000 simulations per model. These simulations did not include individual genotypes, and were simulated 

solely based on a generating factor structure. For the six indicator models the standardized factor loadings 

in the generating population were .42, .64, .22, .59, .19, and .64. The four and five indicator models 

specified the same factor loadings, excluding the last, or last two loadings, respectively. To allow for 

potential misfit between the model-implied and observed variances, the variance of the indicators was not 

( )qS

( )qS
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standardized. Results indicated that the two-step procedure described above produced a test statistic 

equivalent to the c2 statistic calculated by lavaan from the raw data (Supplementary Fig. 24 and Table 

S18). For a c2 distributed test-statistic, the mean of the null sampling distribution should match the df of 

the test. As expected, the distribution of the test-statistic conformed to a c2 distribution with an average 

approaching the df (Supplementary Fig. 25). Calculated CFI values were also highly consistent with those 

observed using the CFI statistic provided by lavaan when using raw data (Supplementary Fig. 26, Table 

S18). Calculated AIC values were not contrasted with those obtained using the lavaan package in R in the 

simulations below as the software uses a formula that includes a log-likelihood estimate contingent on the 

provided sample size.   

 
QSNP Test of Heterogeneity 

As with the computation of model c2 outlined above, QSNP is calculated using a two-step 

procedure. In Step 1, a common pathway model is fit in which both factor loadings, the SNP effect on the 

common factor(s), and the residual variances of the common and unique factors are freely estimated (with 

one factor loading fixed to unity for factor identification and scaling). No paths representing direct effects 

of the SNP on the genetic components of the individual phenotypes are estimated. In Step 2, a common 

plus independent pathways model is specified, in which the factor loadings and the SNP effect on the 

common factor are fixed to the values estimated in Step 1, and direct effects of the SNP on individual 

indicators and the residual variances of each indicator are freely estimated. Supplementary Fig. 27 depicts 

this model, as applied to a single common factor model, with parameters that are fixed in Step 2 depicted 

in red and those that are freely estimated in Step 2 depicted in black.  

Null Distribution of QSNP. To verify that the null distribution for QSNP is c2 distributed, a set of simulations 

specified a generating population in which the direct effects of the SNP on the indicators were entirely 

mediated through the common factor (i.e., QSNP = 0). Each simulation included 1,000 datasets, with N = 

100,000 completely overlapping participants per dataset. All simulated datasets were analyzed using both 

WLS and ML. We examined three models with F = 1 factor, and k = 4, 5, or 6 phenotypes. Table S19 

presents descriptive statistics for QSNP. Using a genome wide significance threshold, in all cases the false 

discovery rate for QSNP was 0, and the power to detect a SNP effect on the common factor was 1. Both 

WLS and ML estimation produced mean estimates of QSNP that were approximately equal to the df of the 

corresponding model. Supplementary Fig. 28 depicts the sampling distributions of QSNP estimated using 

WLS or ML. Supplementary Fig. 29 plots QSNP from these two estimation methods against c2 

distributions and against one another. These results indicate that both estimation methods produce results 

that are approximately c2 distributed. 
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Genomic SEM Simulation Procedure 

In order to evaluate the ability of Genomic SEM to capture the genetic factor structure in the 

generating population, the GCTA package3 was used to generate 100 sets of 6 independent, 100% 

heritable phenotypes (“orthogonal genotypes”) to pair with genotypic data for 39,909 randomly selected, 

unrelated individuals of European descent from UKB data for the 1,209,498 SNPs present in HapMap3. 

The generating list of causal SNPs was set to 10,000 for all 600 genotypes, with the specific list of causal 

variants sampled with replacement from the 1,209,498 SNPs. One of the six orthogonal genotypes per set 

was designated an index of the general genetic factor and the remaining five were designated indices of 

domain-specific genetic factors. All of these orthogonal genotypes were scaled to M=0, SD=1. Five new 

correlated genotypes were then constructed, each as the weighted linear combination of the general 

genetic factor and one domain-specific genetic factor. Weights for contribution of the general genetic 

factor were λFg,k =.70, .60, .50, .40, and .30, for correlated genotypes 1-5, respectively. Weights for the 

domain-specific factors were :(1 −	λ>?,@/ ). Phenotypes were then each constructed as the weighted 

linear combination of one of the correlated genotypes and domain-specific environmental factors 

(randomly sampled from a normal distribution with M=0, SD=1). Heritabilities for phenotypes 1-5 were 

set to ℎ@/=35%, 40%, 50%, 60%, and 70%, respectively, such that the weights for the genotypes were 

:ℎ@/ and the weights for the environmental factors were :(1 − ℎ@/). We choose these figures to stabilize 

the properties of the distributions across simulations at 100 replications with N~39K each. We expect that 

with lower SNP h2’s, the same patterns would hold, albeit at larger sample sizes. Each of the 500 

phenotypes (100 sets of 5 phenotypes) was then analyzed as a univariate GWAS in PLINK42 to produce 

univariate GWAS summary statistics. Our multivariable LDSC function was then used to construct 100 

sets of 5×5 genetic covariance matrices (S) and associated sampling covariance matrices (VS), and 

Genomic SEM was used to fit a one factor model to each set.  

 

Quality Control Procedures  

LD-Score Regression. For the p-factor, neuroticism, and anthropometric traits, quality control (QC) 

procedures for producing the S and VS matrix followed the defaults in LDSC. We recommend using these 

defaults for multivariable LDSC, including removing SNPs with an MAF < 1%, information scores < .9, 

SNPs from the MHC region, and filtering SNPs to HapMap3. Quality control procedures for the 

multivariable regression example mirrored those used by Nieuwboer et al. (2016)21 for comparative 

purposes. More specifically, SNPs were excluded with MAFs < .05 as determined by the HapMap 
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Consortium,43 and with information values less than 0.9 or greater than 1.1. SNPs were also filtered to 

HapMap3.  

 

Multivariate GWAS. To obtain summary statistics for multivariate GWAS, we recommend using QC 

procedures of removing SNPs with an MAF < .01 in the reference panel, and those SNPs with an INFO 

score < 0.6. MAFs were obtained for the current analyses using the 1000 Genomes Phase 3 reference 

panel. Using these QC steps, 1,979,881 SNPs were present across schizophrenia, bipolar disorder, MDD, 

PTSD, and anxiety. For neuroticism, there were 7,265,104 SNPs that were present across all phenotypes. 

These QC procedures are the defaults for the processing function within the GenomicSEM package. The 

regression effects for the univariate indicators of the p-factor were standardized using the procedure for 

logistic coefficients outlined above. Regression effects for neuroticism indicators were converted from 

linear probability to logistic coefficients and then standardized with respect to the variance in the 

outcome.  

 

Out-of-Sample Prediction  

Genomic SEM analyses that were used to produce the summary statistics for construction of 

polygenic scores for out-of-sample prediction omit the PGHC MDD 2018 GWAS and SCZ 2018 GWAS 

and replace them with the PGC MDD 201344 and PGC SCZ 201445 GWAS to prevent overlap between 

discovery and target samples. This resulted in a Genomic SEM-based multivariate GWAS using 930,581 

SNPs. Analyses used to construct a phenotypic p-factor for polygenic prediction in the UKB dataset were 

restricted to data on up to N=332,050 European participants. The Genomic SEM of the p-factor employed 

case-control GWAS statistics to construct summary statistics for a general factor of liability for clinically-

severe levels of psychopathology as the discovery phenotype. For out-of-sample prediction, we selected a 

set of psychiatric symptoms (rather than diagnoses) to construct liability for general and domain-specific 

factors of psychiatric symptomology across the subclinical-to-clinical ranges as the target phenotypes. 

From the UKB dataset, we chose symptoms falling within the following domains: psychosis, mania, 

depression, post-traumatic stress, and anxiety. We fit a confirmatory factor model (diagram shown in 

Supplementary Fig. 29) to the phenotypic symptom endorsements, treating them as ordered categorical 

variables. Analyses were run in Mplus,46 with the target phenotypes—the p-factor and each of the 

individual domains—specified as latent variables. To construct PGSs, we removed from both the p-factor 

and univariate summary statistics the 5 SNPs that were identified as having genome-wide significant QSNP 

estimates for ML, along with SNPs that were in LD with these SNPs using an r2 threshold of 0.1 and 500-

kb window. PGSs were constructed using PRSice,47 with LD clumping was set to r2 > 0.25 over 250kb 

sliding windows. PGSs for the p-factor were based on the WLS and ML summary statistics produced 
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using Genomic SEM. We ran PGS analyses using a p-value threshold of 1.0 (i.e., we used all available 

SNPs apart from those removed due to QSNP analyses). In order to maintain comparability, PGSs for the 

univariate summary statistics were constructed based on the same SNPs with which the PGSs for the p-

factor were constructed. In the confirmatory factor models, we included controls for age, sex, genotyping 

array, and 40 principal components of ancestry in conjunction with the PGS predictor. 

 

Clumping and Biological Annotation 

 Lead SNPs for univariate indicators and the common factors were identified using the clumping 

algorithm in PLINK.42 We defined LD-independent SNPs using an r2 threshold of 0.1 and a 500-kb 

window using the same 1000 Genomes Phase 3 reference panel used for obtaining MAF. For 

chromosomes 6 and 8 an additional pruning filter was used of 1,000,000 kb and r2 > 0.1 to account for 

long-range LD due to the MHC region and pericentric inversion, respectively. The lead SNPs identified 

using PLINK were entered into DEPICT. Prioritized genes, enriched gene sets, and enriched tissues were 

identified using the standard false discovery rate of 5%.  

 

Description of GenomicSEM Software 

 The Genomic SEM software package, GenomicSEM, is written as an R package and is available 

through GitHub at https://github.com/MichelNivard/GenomicSEM. GenomicSEM contains several 

functions, including procedures for QCing and standardizing summary statistics, a function for producing 

genetic covariance matrices (SLD) and their associated sampling covariance matrices (VLD) using a 

multivariable extension of LD Score regression, functions for fitting Genomic Structural Equation Models 

to S and VS, and functions for adding SNP level data to the S and VS matrices that are used for implementing 

Genomic SEM for multivariate GWAS discovery. Functions include both pre-specified models (e.g., a 

single common factor model) and user-specified models. Output includes both unstandardized and 

standardized solutions, along with the fit indices described above. WLS estimation is the default in the 

GenomicSEM package. GenomicSEM uses the lavaan Structural Equation Modeling package48 as the 

primary workhorse for model specification and numerical optimization. We also provide limited support for 

OpenMx.49 To run the multivariable LDSC function on five phenotypes takes ~15 minutes. For models of 

multivariate genetic architecture that do not incorporate individual SNP effects, the typical run time is ~1 

second on a laptop. Using parallel processing implemented in the GenomicSEM package on an 8-core 

laptop, a multivariate Genomic SEM GWAS with five indicators and ~1 million SNPs took ~8 hours. 
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