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SUMMARY 15 

 16 

While the fetal immune system defaults to a program of tolerance, there is concurrent 17 

need for protective immunity to meet the antigenic challenges after birth. Activation of fetal T cells 18 

is associated with fetal inflammation and the termination of pregnancy, yet which fetal T cells 19 

contribute to this process is poorly understood. Here we show a transcriptionally distinct 20 

population of pro-inflammatory T cells that predominates in the human fetal intestine. Activation of 21 

PLZF+ T cells results in rapid production of Th1 cytokines and is inhibited upon ligation of surface 22 

CD161. This mechanism of fetal immune suppression may inform how immune dysregulation 23 

could result in fetal and neonatal inflammatory pathologies such as preterm birth. Our data 24 

support that human development of protective adaptive immunity originates in utero within the 25 

specialized microenvironment of the fetal intestine.  26 

 27 

INTRODUCTION 28 
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 29 

The developing human immune system is uniquely adapted for fetal survival within the semi-30 

allogeneic environment in utero as well as for neonatal protection after contact with the many 31 

antigenic challenges encountered after birth. Unlike mice, which lack peripheral T cells in utero, 32 

human T cells begin to populate peripheral organs (including mucosal sites) by 11-14 weeks of 33 

gestation 1,2. While naïve fetal T cells preferentially generate induced regulatory T cells upon 34 

antigen encounter in the periphery 3, there is evidence of protective fetal adaptive immunity in 35 

response to pathogens and vaccines 4-6. However, activated T cells are associated with the fetal 36 

inflammatory response and contribute to the comorbidities associated with preterm birth 7-11. The 37 

concurrent development of fetal tolerogenic and protective T cell programs indicate that human 38 

immune development may be more nuanced than previously appreciated.  39 

 40 

The presence of functional memory T cells in the fetus and infant 12-15 indicate that adaptive 41 

immune memory originates in utero. However, the spatial compartmentalization of human T cell 42 

differentiation and function suggests that the effector capacity of the fetal immune response 43 

cannot be inferred from blood 13,16,17. The existence of organized intestinal lymphoid structures as 44 

early as the second trimester of gestation 18, along with the environmental, maternal, and self-45 

antigens within swallowed amniotic fluid, points to an instructive role for the intestinal mucosa in 46 

the development of fetal adaptive immunity.  47 

  48 

In this study, we performed a detailed examination of fetal lymphoid and mucosal TCR CD4+ T 49 

cells. We identified a polyclonal population of IFN-producing T cells characterized by expression 50 

of the transcription factor Promyelocytic Leukemia Zinc Finger (PLZF) and the C-type lectin 51 

CD161. These Va7.2- PLZF+ CD161+ TCR+ CD4+ T cells preferentially accumulate in the 52 

lamina propria (LP) of the small intestine and possess a resident memory phenotype inferred 53 

from expression of CD69 and CD103 19. We demonstrate that Va7.2- PLZF+ CD161+ TCR+ 54 

CD4+ T cells, herein referred to as polyclonal intestinal (pi) PLZF+ CD161+ T cells, are 55 

transcriptionally distinct and possess a type 1 T helper (Th1) functional signature, which identifies 56 
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them as a major effector population in the fetal intestine. We also show that the ability of these 57 

fetal T cells to produce IFN is positively associated with advancing gestation. We found that 58 

Lectin-like transcript 1 (LLT1), the ligand for CD161, was uniquely expressed by resident 59 

macrophages of the intestine, and that ligation of CD161 inhibited the TCR-mediated activation of 60 

pi-PLZF+ CD161+ T cells. We propose a model in which functional maturation of pi-PLZF+ 61 

CD161+ T cells occurs under steady state in a spatially segregated manner in the lamina propria 62 

of the intestine, where CD161 mediates immune suppression and allows for induction of immunity 63 

uncoupled from inflammation. The ability  of pi-PLZF+ CD161+ T cells to respond to both TCR- 64 

and cytokine-mediated signaling suggests a potential for these cells to contribute to the multitude 65 

of inflammatory pathologies associated with premature birth. Our identification of the suppressive 66 

role of CD161 points to a putative therapeutic target to control the fetal inflammatory response for 67 

which there is currently no effective therapy. 68 

 69 

 70 

RESULTS 71 

 72 

Memory PLZF+ CD4+ T cells are highly enriched in the fetal small intestine 73 

The human fetal thymus produces a subset of CD4+ T cells which express the transcription factor 74 

PLZF and are distinct from iNKT cells and MAIT cells1 20. To explore whether PLZF+ T cells 75 

contribute to the development of protective immunity in utero, we examined their distribution in 76 

mucosal and lymphoid tissue. PLZF expression was abundant among lamina propria (LP) CD4+ T 77 

cells of the fetal small intestine (Fig. 1a). As many human innate cells express PLZF (cite), we 78 

restricted our analysis to TCR+ Va7.2- CD4+ T cells, which excluded innate lymphoid cells, MAIT 79 

cells, and  T cells (Supplementary Fig. 1). PLZF+ T cells accounted for ~30% of all intestinal 80 

V7.2- TCR+ CD4+ T cells, whereas they averaged <10% of CD4+ T cells across all other 81 

lymphoid and non-lymphoid sites with the exception of the appendix (Fig. 1b, c). Adult human 82 

PLZF+ T cells often co-express the C-type lectin CD161, which identifies T cells with innate 83 

characteristics 21. The majority of intestinal PLZF+ T cells and ~ half of those in the appendix were 84 
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CD161+, whereas less than half of PLZF+ T cells across other sites expressed CD161 (Fig. 1b, d). 85 

Consistent with the reported decline in thymic production of PLZF+ CD4+ T cells with advancing 86 

gestation 20,22, PLZF+ CD4+ T cells are essentially undetectable in term cord blood (CB) and adult 87 

peripheral blood (aPB), and we used aPB samples as internal controls between experiments 88 

(Extended Fig. 1a-b).  89 

 90 

Previous studies have identified memory T cells in fetal and neonatal small intestine 12,13,23,24, 91 

which led us to examine the maturation state of intestinal T cells on the basis of CD45RA and 92 

CCR7 expression. The majority of intestinal PLZF+ CD4+ T cells had a CD45RA- CCR7- effector 93 

memory (TEM) phenotype (85% of PLZF+CD161+ and 60% of PLZF+ CD161-) and contained 94 

significantly less naïve cells than PLZF- T cells (Extended Fig. 1c & Fig. 1e). This held true across 95 

multiple tissues, where PLZF+ CD161+ T cells were significantly more likely than PLZF- T cells to 96 

possess a TEM phenotype in the MLN, and trended towards more TEM in the appendix and spleen 97 

(Extended Fig. 1d). In contrast, PLZF- CD4+ T cells had a more even distribution of naïve, central 98 

memory (TCM) and TEM cells, similar to that reported for infant and pediatric intestine 12,13. Most 99 

intestinal PLZF+ T cells were CD69+, and ~20% also expressed CD103 consistent with a resident 100 

memory (TRM) phenotype (Extended Figure 2e) 13,16,25. Overall, a TRM phenotype was most 101 

frequent among intestinal PLZF+CD161+ T cells (Fig. 1f).  102 

 103 

PLZF+ CD161+ CD4+ T cells are a transcriptionally distinct population of mucosal T cells  104 

To investigate whether intestinal PLZF+ T cells represent a distinct population of fetal T cells, we 105 

determined their global gene expression profile and examined their relationship to innate, semi-106 

invariant Va7.2+ T cells and to conventional PLZF- CD4+ memory T cells (Extended Fig. 2a). We 107 

sorted semi-invariant innate T cells on the basis of TCR+ V7.2+ CD161+ cells 26,27, of which the 108 

majority (>75%) were also IL18R+ (Extended Fig. 2b).  Although not exclusive for mucosal-109 

associated invariant T (MAIT) cells, this subset is enriched for MAIT cells 28. We identified 110 

additional surface markers that allowed us to separate PLZF+ from PLZF- memory CD4+ T cells 111 

(Extended Fig. 2b, c, Supplementary Table 1). The expression of ZBTB16, IL18R, PDCD1, and 112 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 21, 2018. ; https://doi.org/10.1101/305128doi: bioRxiv preprint 

https://doi.org/10.1101/305128


KLRB1 (the respective genes for PLZF, IL18R, PD1 and CD161) mirrored their protein 113 

expression and validated our sorted T cell populations and our gene expression analysis 114 

(Extended Fig. 2d). Intestinal PLZF+ T cells formed a spatially separate group from either semi-115 

invariant innate T cells or PLZF- memory T cells, reflecting a divergent transcriptional state by 116 

principal component analysis (PCA) (Fig. 2a). PLZF+ T cells were highly distinct by principal 117 

component (PC) 1 (23% of variance) and segregated between PLZF- T cells and semi-invariant 118 

innate T cells along PC2 (19.9% of variance), suggesting shared attributes with these 119 

populations. Twice as many genes were enriched in PLZF+ relative to PLZF- memory T cells 120 

(499) as compared to semi-invariant innate T cells (278) (>2-fold, FDR<0.05)(Fig. 2b).  121 

 122 

We first focused on the genes that differentiated PLZF+ T cells from conventional PLZF- T cells 123 

and utilized the Human Protein Cell Atlas as a reference to identify genes that cluster together by 124 

cell type using correlation analysis 29.  This identified 6 clusters, of which clusters 2 and 4 were 125 

comprised predominantly of myeloid-associated genes (Fig. 2c, Extended Fig. 3a). Among the 126 

myeloid genes in cluster 4 were those associated with immune regulation (GAB2, NLRP3, 127 

TGFB1, and C3AR1), while myeloid-enriched genes in cluster 2 were involved in lipid metabolism 128 

(PPARG, PLIN2, and NFIL3) (Extended Fig 3b). Cluster 6 was enriched for stem cells and 129 

contained genes involved in the cell cycle from which we inferred that PLZF+ T cells were likely 130 

proliferating in vivo (Extended Fig. 3b, Supplementary Figure 2).  Cluster 1 was enriched for 131 

genes associated with immune activation and overlapped with effector memory T cells, NK cells, 132 

and  T cells suggestive of effector properties including Th1-like and cytotoxic functions 133 

(Extended Fig. 3b, Supplementary Figure 2). This correlation analysis allowed us to extrapolate 134 

function based on expression overlap with other cell types, and revealed an atypical composition 135 

of myeloid-, lymphoid-, and stem cell-associated genes in PLZF+ T cells.  136 

A striking difference in the genes differentially expressed between PLZF+ T cells and semi-137 

invariant innate T cells was the diversity of TCR usage. A number of TRAV regions were enriched 138 

in PLZF+ T cells, while semi-invariant innate T cells displayed preferential expression of TRBV9, 139 

TRBV7-9, and TRBV6-4 which have been associated with MAIT cells 30,31 (Extended Fig. 3d). 140 
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The polyclonal nature of PLZF+ T cells was supported by variable V use among both PLZF+ and 141 

PLZF- T cells and was comparable to that reported in fetal blood 32 with no single chain 142 

accounting for >10% of TCR V families (Extended Fig. 3e).  143 

 144 

We identified a core signature of 111 genes that were enriched, and 137 genes that were 145 

depleted in PLZF+ T cells compared to both PLZF- T cells and semi-invariant innate T cells 146 

(>2FC; FDR<0.05) (Fig. 2d, Extended Fig. 3f).  PLZF+ T cells demonstrated distinct gene 147 

expression profiles enriched in immune activation pathways, as well as genes involved in the 148 

regulation of the immune response (Fig. 2d). Specifically, the core signature of PLZF+ T cells 149 

contained transcripts involved in T cell activation (IL2, CD40LG, IL18R1, IL2RB, MAP3K8, 150 

PIK3R1), as well as T cell regulation (DUSP4, DUSP5, DUSP6, LRIG1, and DTX1).  Among the 151 

genes specifically depleted in PLZF+ T cells were those required for lymph node homing and 152 

tissue egress (SELL, CCR7, S1PR1, KLF2) 19, supporting the characterization of these cells as 153 

human TRM cells. We therefore define a transcriptionally unique subset of polyclonal intestinal 154 

PLZF+ CD4 T cells, which share gene expression profiles with innate immune cells suggestive of 155 

a rapid effector phenotype. However, the presence of numerous negative T cell regulators among 156 

the gene signature of PLZF+ T cell points to cell-intrinsic mechanisms of regulation to promote 157 

immune homeostasis in utero. 158 

PLZF+ CD4 T cells possess Th-1 effector function  159 

Lamina propria PLZF+ T cells produced large amounts of the Th1 cytokines TNF and IFN upon 160 

short-term polyclonal activation by Phorbol 12-myristate 13-acetate (PMA) and Ionomycin, and 161 

expression of CD161 did not predict cytokine production among PLZF+ T cells (Fig. 3a, Extended 162 

Fig. 4a, b). Among CD4 T cells, IFN was predominantly produced by PLZF+ cells, and intestinal 163 

PLZF+ T cells produced more IFN than those of the mesenteric lymph node (MLN), spleen, or 164 

thymus (Fig. 3b). While PLZF+ T cells also made more TNF than their PLZF- counterparts, 165 

production of TNF was less anatomically restricted and was already evident in >20% of thymic 166 

PLZF+ T cells (Fig. 3c). Further, the capacity of PLZF+ T cells to produce IFN was directly 167 
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correlated with advancing gestation, but this association was not significant for TNF, nor 168 

between either cytokine and PLZF- T cells (Fig. 3d, e & Extended Fig. 4c, d). Consistent with the 169 

presence of IL-2 in their core signature, intestinal PLZF+ T cells produced more IL-2 than PLZF- T 170 

cells, however production of IL-2 was equally abundant among MLN T cells (Extended Fig. 4e, g). 171 

In contrast to Th1-asociated cytokines, IL-8 production was equivalent between PLZF+ and PLZF- 172 

T cells and was lower in the intestine compared to the MLN (Extended Fig. 4f, h). Thus, in 173 

addition to a core transcriptional signature, PLZF+ T cells possess a Th1-type functional profile 174 

and are an abundant source of IFN in the fetal immune system.  175 

 176 

TCR-dependent and TCR-independent activation of PLZF+ T cells  177 

We next assessed the signals required to trigger cytokine production in mucosal PLZF+ T cells 178 

and examined their response to stimulation through the T cell receptor (TCR). PLZF+ T cells are 179 

more responsive to short-term (12-16hrs) in vitro activation by anti-CD3/anti-CD28 monoclonal 180 

antibodies (mAb) than PLZF- T cells, as indicated by higher production of both IFN and TNF, 181 

which more closely approximated their PMA/Ionomycin induced potential (Fig. 4a, b, Extended 182 

Fig. 5a, b). The identification of both IL18R1 and IL18RAP within the core gene signature of 183 

PLZF+ T cells led us to additionally assess their response to TCR-independent activation. 184 

Intestinal PLZF+ T cells produced IFN in response to the combination of IL-12 and IL-18, but not 185 

to either cytokine alone (Fig. 4c). Stimulation with both IL-12 and IL-18 was able to approximate 186 

the levels of IFN production observed in response to PMA, yet failed to elicit production of TNF 187 

(Extended Fig. 5c). Intestinal PLZF+ T cells were more responsive to both TCR- and cytokine-188 

mediated activation than those in the thymus, which failed to produce significant levels of IFN 189 

and suggested that maturation and acquisition of effector function occurred in the periphery 190 

(Extended Fig. 5d). Therefore, we examined whether the memory phenotype of intestinal CD4 T 191 

cells was indicative of different functional capacities. We found that the majority of the IFN 192 

produced by intestinal CD4+ T cells in response to either TCR signaling or cytokines alone 193 

displayed an effector memory phenotype (PLZF+ > PLZF- T cells) (Extended Fig. 5e), and that 194 

PLZF+ TEM cells produced significantly more IFN than PLZF- TEM cells (Fig. 4d). Mucosal PLZF+ 195 
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T cells are therefore poised to generate a pro-inflammatory response to either TCR- and/or 196 

cytokine-mediated activation, suggesting that their effector potential may be uniquely adapted for 197 

mucosal immune surveillance.   198 

 199 

CD161 inhibits cytokine production in PLZF+ T cells 200 

The abundance of polyclonal intestinal (pi) PLZF+ T cells capable of responding to two different 201 

methods of activation lead us to hypothesize that the behavior of these cells would be tightly 202 

regulated.  The c-type lectin CD161 is expressed by the majority of intestinal pi-PLZF+ T cells and 203 

has been ascribed conflicting roles in either the activation or inhibition of different human immune 204 

cells 21,33,34. LLT1, the natural ligand for CD161, was present on intestinal CD14+ antigen 205 

presenting cells (APCs), whereas CD11c+ CD14- dendritic cells (DCs) lacked expression of LLT1 206 

(Extended Fig. 6a, Fig. 5a). Intestinal CD14+ APCs were CD68+, CD163+, CD209+, expressed 207 

intermediate levels of HLA-DR, and lacked expression of CD103, consistent with a tissue-resident 208 

macrophage phenotype 35,36  (Extended Fig. 6b). Macrophage LLT1 expression was not uniform 209 

between samples, however LLT1 expression was consistently absent from intestinal DCs (Fig. 210 

5b). The observed variability in LLT1 expression suggested that this ligand was acquired, which 211 

prompted us to look for LLT1 expression across tissues with similar populations of APCs. A 212 

similar CD14+ CD11c- macrophage population in MLN and the appendix mirrored LLT1 213 

expression of intestinal macrophages (Extended Fig. 6c, d),  and led us to explore the role of 214 

CD161 in the regulation of fetal pi-PLZF+ T cells. We found that engagement of CD161 during 215 

classical TCR activation resulted in potent inhibition of pi-PLZF+ T cells, reducing production of 216 

both IFN and TNF (Fig. 5c, d). While two different clones of monoclonal antibodies to CD161 217 

were equally effective at high dose (10g/mL), clone HP3G10 consistently performed better at 218 

lower doses (10-1 to 10-2g/mL) (Fig. 5c, d). In contrast, cross-linking of CD161 did not inhibit 219 

IFN production by PLZF+ T cells in response to cytokine stimulation (Fig. 5e).  220 

 221 

DISCUSSION 222 

 223 
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We have identified a polyclonal effector T cell population with a unique transcriptional profile and 224 

Th1 functional properties which is abundant in the human fetal small intestine. The transcriptome 225 

of pi-PLZF+ T cells displayed an unusual enrichment in myeloid-associated genes compared with 226 

conventional CD4 T cells, which predicted the strong effector properties of these cells. In 227 

conjunction with the ability to respond to cytokines independently of TCR activation, these gene 228 

signatures highlight the innate-like qualities of pi-PLZF+ T cells, reminiscent of murine fetal CD5+ 229 

B cells and TCR T cells 37-39, as well as fetal MAIT cells and iNKT cells 24,27. Unlike classic 230 

innate-like T cells, MsFITs expressed a polyclonal TCR repertoire and accounted for up to half of 231 

all CD4 T cells in the intestine. The dominant presence of Th1 pi-PLZF+ T cells with a distinct and 232 

atypical transcriptome and shared attributes with innate immune cells suggests a role as a first 233 

line of defense in utero and early life. 234 

 235 

In utero development presents unique antigenic pressures to the fetus that might drive the 236 

development and expansion of pi-PLZF+ T cells. Fetal T cells mount an antigen specific response 237 

to semi-allogeneic maternal cells present within human fetal tissues, and fetal and neonatal T 238 

cells show increased self-reactivity 3,40-42 . Further, recent reports of bacterial presence in human 239 

meconium and amniotic fluid 43-45 challenge the paradigm that the fetus develops within a sterile 240 

environment in utero. Intestinal MsFITs are functionally and anatomically positioned to encounter 241 

antigen within swallowed amniotic fluid and could mount an immediate protective response. The 242 

development of tissue resident T cell memory is closely coupled to anatomic location 19, and is 243 

reflected in the increased ability of intestinal pi-PLZF+ T cells to produce Th1 cytokines, as well as 244 

the preferential expression of the inhibitory receptor CD161. Multiple regulatory transcripts are 245 

present in the core gene signature of pi-PLZF+ T cells, and we discovered CD161-mediated 246 

inhibition pi-PLZF+ T cells as a previously unknown mechanism of immune suppression. The 247 

presence of LLT1 on intestinal macrophages suggests they likely work in parallel with other 248 

regulatory mechanisms to promote tolerance in utero 3,46-48. We propose that as in the adult, there 249 

is regional compartmentalization of the fetal effector response, and that the intestine is a 250 

specialized niche which supports the development of protective immunity in utero. 251 
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 252 

 253 

Material and Methods 254 

Human tissues. All human tissue obtained for analysis in this study was obtained with approval from and 255 

under the guidelines of the UCSF Committee on Human Research. Human fetal tissue (small intestine, 256 

appendix, mesenteric lymph node (MLN), spleen, liver, and thymus) was obtained under the auspices of 257 

UCSF Committee on Human Research (CHR) approved protocols at 15-23 gestational weeks from San 258 

Francisco General Hospital after informed consent from elective termination of pregnancy. Samples were 259 

excluded in the case of (1) known maternal infection, (2) intrauterine fetal demise, and/or (3) known or 260 

suspected chromosomal abnormality. Adult peripheral blood mononuclear cells (PB) derived from TRIMA 261 

residues from TRIMA Apheresis collection kits were obtained from healthy donors after informed consent at 262 

the Blood Centers of the Pacific. Umbilical cord blood (CB) from term infants was obtained in acid citrate 263 

dextrose by sterile cordocentesis from the University of Texas MD Anderson Cancer Center in Houston, 264 

Texas.   265 

 266 

Cell Isolation. PBMCs from adult and cord blood were isolated by Ficoll-histopaque (Sigma Aldrich) 267 

gradient centrifugation and cryopreserved in freezing medium composed of 90% FBS + 10% DMSO 268 

(ATCC). Fetal organs were collected into cold RPMI with 10% FCS, 10 mM HEPES, penicillin, streptomycin, 269 

0.1 mM 2-β-mercaptoethanol, 2 mM L-glutamine, and nonessential amino acids (cgRPMI medium), 270 

transported on ice and processed within 2 hours of collection. The small intestine was dissected from the 271 

mesentery, cut longitudinally, and meconium was removed with gentle scraping. The intestine was cut into 272 

1cm sections and mucus was removed with three washes in 1mM DTT in PBS for 10 minutes. The epithelial 273 

layer was removed with three washes in 1mM EDTA in PBS for 20 minutes. The intestine, MLN, liver, and 274 

spleen were digested with freshly prepared 1mg/mL Collagenase IV (Life Technologies) and 10mg/mL 275 

DNAse (Roche) in cgRPMI for 30 minutes, and dissociated cells were filtered through a 70um strainer. Cells 276 

were separated in a 20%-40%-80% Percoll density gradient at 400 x g for 40 minutes.  T cells were 277 

recovered at the 40-80% interface and APCs were recovered at the 20-40% interface, and all cells washed 278 

twice in cgRPMI. All washes and incubations were performed in a shaking (200rpm) water bath at 37°C. 279 

Thymocytes were isolated by gently pressing small pieces of thymus though a 70um strainer. Viability was 280 

measured with Trypan Blue (Sigma Aldrich).  281 
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Antibodies and flow cytometry. Intestinal lamina propria (LP) T cells were isolated by negative selection 282 

using the Easy Sep Human T cell isolation kit (STEMCELL Technologies).  Isolated cells were incubated in 283 

2% FCS in PBS with 1mM EDTA (staining buffer) with human Fc block (STEMCELL Technologies) and 284 

stained with fluorochrome-conjugated antibodies against surface markers. Intracellular protein detection was 285 

performed on fixed, permeabilized cells using the Foxp3/Transcription Factor Staining Buffer set (Tonbo 286 

Biosciences). Mouse anti-human mAbs used in this study include: TCRβ Percp-e710 (Clone IP26, 287 

eBioscience Cat. No. 46-9986-42), Vα7.2 Biotin and BV605 (Clone 3C10, BioLegend Cat. No. 351720), CD4 288 

APC H7 (Clone L200, BD Pharmingen Cat. No. 560837), CD8α FITC and PE (Clone B7-1, BD Pharmingen 289 

Cat. No. 557226), CD45RA PE (Clone HI100, BD Pharmingen Cat. No. 555489), CCR7 BV421 (Clone 290 

G043H7, BioLegend Cat. No. 353208), CD69 PE (Clone FN50, BioLegend Cat. No. 310906), CD103-FITC 291 

(Clone Ber-ACT8, BD Pharmingen Cat. No. 550259), PLZF-APC (Clone 6318100, R&D Cat. No. IC2944A), 292 

CD161-BV711 (Clone DX12, BD Biosciences Cat. No. 563865), IL18Rα-PE (Clone H44, BioLegend Cat. No. 293 

313808), PD-1 BV605 (Clone EH12.2H7, BioLegend Cat. No. 329924), IFNγ-FITC (Clone 25723.11, BD 294 

Biosciences Cat. No. 340449) TNFα-PE Cy7 (Clone MAB11, BD Pharmingen Cat. No. 557647), IL-2 (Clone 295 

5344.11, BD Cat. No. 340448), IL-8 BV421 (Clone G265-8, BD Biosciences Cat. No. 563310), CD45 APC 296 

(Clone HI30, Tonbo Cat. No. 20-0459), CD14 BV605 (Clone M5E2, BD Pharmingen Cat. No. 564054), 297 

CD11c BB515 (Clone B-ly6, BD Pharmingen Cat. No. 564491), HLA-DR APC-R700 (Clone G46-6, BD Cat. 298 

No. 565128), CD3 BV510 (Clone HIT3α, BD Cat. No. 564713), CD19 BV510 (Clone SJ25C1, BD Cat. No. 299 

562947), CD56 BV510 (Clone NCAM16.2, BD Cat. No. 563041), CD68 PE Cy7 (Clone FA-11, BioLegend 300 

Cat. No. 137016), CD163 BV711 (Clone GHI/61, BioLegend Cat. No. 333630), CD209 PerCP Cy 5.5 (Clone 301 

DCN46, BD Pharmingen Cat. No. 558263), LLT1 PE (Clone 402659 R&D Cat. No. FAB3480P). TCRβ 302 

repertoire profiling was performed by staining with the IOTest Beta Mark TCR V β Repertoire Kit (Beckman 303 

Coulter). TCR repertoire profiling was performed by staining with the IOTest Beta Mark TCR V beta 304 

Repertoire Kit (Beckman Coulter). All cells were stained with Aqua LIVE/DEAD Fixable Dead Cell Stain Kit 305 

(Invitrogen) to exclude dead cells from analysis. All data were acquired with an LSR/Fortessa Dual SORP 306 

flow cytometer (BD Biosciences) and analyzed with FlowJo V10.0.8 (TreeStar) software.  307 

 308 

Immunohistochemistry. Intestinal sections were dissected and fixed in 4% paraformaldehyde for 10 309 

minutes and subsequently passed through a sucrose gradient prior to embedding in OCT. Embedded 310 

sections were then frozen on dry ice and stored at -80°C. 10um thin cryosections were obtained using a 311 

cryostat and mounted on frosted charged slides. Histological work, imaging, and image processing was 312 
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performed by the Gladstone Institutes’ Histology & Light Microscopy Core. Slides were fixed in acetone for 5 313 

minutes at –20°C, rehydrated in PBS for 10 minutes, rinsed in 0.05% PBS-Tween, and permeabilized in 314 

0.1% PBS-TritonX-100 for 15min at room temperature (RT). Slides were then blocked using 1% BSA, 0.1% 315 

Fish skin gelatin, 0.5% TritonX-100, 0.05% Na-Azide in PBS for 2 hours and stained with purified anti-CD3 316 

(clone Hit3a; BD Pharmingen, cat. # 555336) and anti-PLZF (clone NBPI-80894, Novus Biologicals, cat. 317 

NBPI-80894) overnight at 4°C, followed by anti-CD4-eFluor 570 (N1UG0, Thermo-Fisher, cat. # 41-2444-82) 318 

at RT for 3 hours. Slides were then incubated with secondary antibodies goat anti-mouse-DyLight 488 319 

(Thermo Fisher, cat. # 35502) and goat anti-rabbit 633 (Thermo Fisher, cat. # A-21070) for 1 hour at RT, 320 

stained with DAPI (Invitrogen) for 10 min at RT, and mounted with Fluormount-G (EMS). Images were 321 

captured with a Zeiss Cell Observer Spinning Disk microscope (Carl Zeiss Microscopy, Thornwood, NY) 322 

equipped with 405nm, 488nm, 561nm, 633nm lasers, Prime 95b sCMOS camera (Photometrics, Tucson, 323 

AZ) and Zeiss Zen imaging software. 324 

 325 

T cell stimulation and CD161 inhibition. For detection of basal cytokine potential, single cell suspensions 326 

from various tissues were cultured directly ex vivo in a 96-well U-bottom plate in cgRPMI and stimulated with 327 

50ng/ml phorbol myristate acetate (PMA) (Santa Cruz Biotechnology) and 5ug/ml ionomycin (Sigma-Aldrich) 328 

in the presence of Brefeldin A (Sigma-Aldrich) for 3 hours at 37°C in 4% O2 to mimic intra-uterine hypoxia. 329 

Alternatively, T cells were cultured at 250k/well in 96-well plates and stimulated with plate-bound anti-CD3 330 

(clone HIT3a) at 1ug/ml and soluble anti-CD28 (CD28.2) at 2ug/ml, or cells were activated with IL12 and 331 

IL18 (PeproTech) at 50ng/mL for 12hours at 37°C in 4% O2, and Brefeldin A was added for the last 4 hours. 332 

After stimulation, cells were stained for intracellular cytokine production as described above. For the 333 

inhibition assays, LP T cells were first incubated with anti-CD161-Biotin mAb (HP3G10, Biolegend or 191B8, 334 

Miltenyi Biotec) and isotype controls IgG1 (MPOC-21, BioLegend) and IgG2a (MPOC-173, BioLegend) for 335 

15 minutes, washed, and cross-linked with anti-Biotin Cocktail (STEMCELL Technologies) during stimulation 336 

with anti-CD3/anti-CD28 or cytokines as described above.  337 

 338 

T cell isolation and RNA extraction for RNA sequencing. PLZF+ and PLZF- CD4+ TCR+ T cells were 339 

sorted using a FACS Aria2 SORP (BD Biosciences). T cells were isolated as described above from the 340 

intestine of 5 individual samples, and MAIT cells were pooled from the intestine and MLN for RNA 341 

sequencing (RNAseq) as outlined in Extended Fig. 2a and 104 cells were collected per subset for each 342 
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sample. Post-sort purity was determined by flow cytometry following intracellular staining for PLZF as above 343 

and was >92% for PLZF- T cells and MAIT cells, and >87% for PLZF+ T cells.  RNA was extracted and 344 

purified with the Dynabeads mRNA DIRECT Purification Kit (Thermo Fisher Scientific). mRNA libraries were 345 

constructed using the Nugen/Nextera XT Library Prep Kit (Illumina), and 15 samples (5 donors, 3 T cell 346 

subsets) were sequenced on an Illumina HiSeq 4000 by the Functional Genomics Core Facility at the 347 

University of California, San Francisco. The reads from the Illumina Hi-seq sequencer in fastq format were 348 

verified for quality control using fastqc software package and reads were aligned to the Human genome 349 

(hg38) and read counts aggregated by gene using the Ensembl GRCh38.78 annotation using STAR 49. 350 

Differential gene expression analysis was performed with DESeq2 v1.16.1 package 50.  351 

Statistical analysis. Groups were compared with Prism Version 5 software (GraphPad) using the Wilcoxon 352 

matched-pairs signed rank test or the Kruskal Wallis with Dunn’s Multiple comparison test. Box plot 353 

rectangles show first to third quartile, the line shows the median and the whiskers represent minimum and 354 

maximum values, unless otherwise stated. Correlation analysis was measured by Spearman correlation 355 

coefficient. Bar plots represent the mean and the standard error of the mean. p<0.05 was considered 356 

significant. Principle component analysis and accompanying confidence intervals were performed using 357 

combined functions in the R packages ‘stats’, ‘vegan’, and ‘ggplot2’, and PERMANOVA analysis was used 358 

assess the significance of the Euclidean distances between the groups. Heatmaps were generated using the 359 

R packages ‘heatmap’ and ‘circlize’. A co-expression analysis was performed for the differentially expressed 360 

(DE) genes using the Human Primary Cell Atlas 29. This atlas contains 713 microarray samples of a wide 361 

range of pure cell types and states. The complexity of the dataset was reduced to the median gene 362 

expression per cell state (N=157), and Spearman correlation coefficients were calculated for each pair of DE 363 

genes, revealing clusters of genes that are co-expressed in the same set of cell types.  Gene clusters were 364 

analyzed for overlap with KEGG and GO biological processes gene sets using the Molecular Signatures 365 

Database (MSigDB) 51,52. No statistical methods were used to predetermine sample size. The experiments 366 

were not randomized and the investigators were not blinded to allocation during experiments and outcome 367 

assessment. 368 

 369 

Data and software availability. RNA-Seq data that support the findings of this study have been deposited 370 

in NCBI BioProject with the primary accession code PRJNA438160. 371 

(http://www.ncbi.nlm.nih.gov/bioproject/438160). Further data that support the findings of this study are 372 

available from the corresponding authors upon request.  373 
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Figure 1: The fetal small intestine is enriched for PLZF+ CD4+ T cells
a, Representative imaging (40x) of PLZF expression in the lamina propria of the small intestine (n=3). b, Representative flow plots of PLZF and 
CD161 expression among CD4+ T cells in fetal tissues. c, Frequencies of PLZF+ CD4+ T cells and d, Proportion of CD161+ cells among PLZF+ 
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