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The cellular age distribution of hierarchically organized tissues can reveal
important insights into the dynamics of cell differentiation and self-renewal
and associated cancer risks. Here, we examine theoretically the effect of pro-
genitor compartments with varying differentiation and self-renewal capaci-
ties on the resulting observable distributions of replicative cellular ages. We
find that strongly amplifying progenitor compartments, i.e. compartments
with high self-renewal capacities, substantially broaden the age distributions
which become skewed towards younger cells with a long tail of few old cells.
However, since mutations predominantly accumulate during cell division, a
few old cells may considerably increase cancer risk. In contrast, if tissues
are organised into many downstream compartments with low self-renewal
capacity, the shape of the replicative cell distributions in more differenti-
ated compartments are dominated by stem cell dynamics with little added
variation. In the limiting case of a strict binary differentiation tree without
self-renewal, the shape of the output distribution becomes indistinguishable
from the shape of the input distribution. Our results suggest that a compar-
ison of cellular age distributions between healthy and cancerous tissues may
inform about dynamical changes within the hierarchical tissue structure, i.e.
an acquired increased self-renewal capacity in certain tumours.

1. Introduction
Many tissues in multicellular organisms resemble a compartmentalised struc-
ture with a hierarchy of cells at different stages of differentiation and func-
tion. This hierarchy is usually fuelled by a few stem cells that ideally can
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self-renew indefinitely, whereas the majority of the tissue consists of shorter-
lived differentiated cells that emerge from these stem cells [1–3].

In most tissues it is thought that stem cells divide infrequently, while
their progenitors and further differentiated cells divide more frequently to
ensure tissue function under homeostasis [4]. Such structures allow both the
production of many cells in a short time and the reduction of the risk for
the accumulation of somatic mutations within the stem cell compartment [1,
5–10].

Due to these pronounced dynamical disparities in hierarchical tissues,
replicative age — the number of divisions a cell has undergone — can be an
important observable providing information about the structure and cellular
dynamics within these tissues. Since many somatic mutations are acquired
during cell divisions [11, 12], we would expect replicative age also to be
strongly correlated with different cancer risks in different hierarchical tissues
[13–15]. In the context of ageing, the focus is typically on changes within the
stem cell compartment, since stem cells have the ability to self-renew and
persist long enough to become relevant for organismal ageing [16, 17]. It is
generally assumed that replicative cell age in downstream compartments is a
good proxy for replicative stem cell age. For example, some of us previously
developed and tested a mathematical model for human hematopoietic stem
cell ageing based on replicative ages in human lymphocytes and granulocytes
[18].

Cellular dynamics in hierarchically organised tissue structures can be hard
to explore experimentally due to the large scaling difference between differ-
entiation levels [19] and the challenges to correctly assign cells to specific
differentiation stages. One possibility to assess the age distribution of a cell
population is to measure the telomere length of the cellular chromosomes.
Telomeres are the protective, non-coding ends of chromosomes, consisting
of the same short DNA sequence repeated thousands of times. Telomeres
typically shorten with each cell division [20–22]. Cells with critically short
telomeres enter replicative senescence, which is thought to be a cancer sup-
pression mechanism [23]. Moreover, critically short telomeres are often as-
sociated with genome instability and corresponding increased risk of cancer
[24]. For our purpose, telomere length distributions can be thought of as a
measure for the cellular replicative age distribution. They can be assessed
in tissue samples [25, 26] which are for example especially accessible in dif-
ferentiated tissue in the hematopoietic system and thus in principle would
also allow for some time resolution within healthy human individuals [18].

However, to truly infer stem cell dynamics from replicative age distri-
butions in differentiated cells, a more detailed understanding of the differ-
entiation processes and their impact on the replicative age distributions is
necessary. Here, we develop a mathematical framework that allows us to
describe the distribution of replicative cellular ages across several hierarchi-
cal levels of differentiation. Thereby, we demonstrate how the distribution
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Figure 1: Sketch of the basic model. (a) Three different modes of cell division in
the focal progenitor compartment. Blue cells are cells within the compartment,
red cells differentiated and leave the compartment. The replicative age of a cell
in the specific compartment is j, increasing by one in each cell division. (b) Full
model for ageing in progenitor compartment. The number of cell in each age class
is nj, and all cells age according to the modes of cell division (a). The cell influx
~ι into the compartment has a certain distribution of replicative age ιj. The cell
outflux from the compartment includes all differentiating cells and is denoted by
the distribution ~ω.

of replicative ages in differentiated cell populations can provide insights into
the properties of the dynamics within the underlying tissue.

2. Model
In the following, we present a mathematical description for the replicative
age distributions within compartmentalized tissue structures (fig. 1). First,
we discuss the simplest case of only two compartments - one stem cell com-
partment and the focal downstream progenitor compartment. We then ask
what is the distribution of replicative ages of cells in the progenitor compart-
ment provided a continuous influx of cells from the stem cell compartment.
We do not discuss the time dynamics on the stem cell level explicitly. The
time evolution of replicative age distributions in stem cell compartments and
the resulting potential influx distributions for progenitor compartments are
discussed in detail in [18].

We assume that in the progenitor compartment there are nj cells of each
replicative age class j. Progenitor cells divide with proliferation rate r and
after each division the replicative age of both daughter cells increases by one
j → j + 1. Each daughter cell can in principle take a different cell fate that
contributes differently to the distribution of replicative ages (fig. 1A). In
general, the following outcomes are possible after a single cell division
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(i) With probability p a cell self-renews symmetrically, both daughter cells
stay in the same compartment and increase their cellular age by one
(nj → nj − 1, nj+1 → nj+1 + 2)

(ii) With probability d a cell differentiates symmetrically, effectively remov-
ing it from the compartment of differentiated cells (nj → nj − 1).

(iii) With probability 1− p− d a cells divides asymmetrically, with one cell
staying in the pool of differentiated cells while the other cell leaves the
compartment [27] (nj → nj − 1, nj+1 → nj+1 + 1).

We choose the influx of cells from the stem cell compartment to be a con-
stant rate ιj that might differ for each cellular age j. Below we will give
explicit examples for different distributions of ιj. We assume the dynamics
on the stem cell level to be much slower compared to downstream compart-
ments and hence consider the influx ιj into the progenitor compartment to
be constant over time.

Using the above, we can formulate differential equations for the change of
the number of cells in each age class nj. Thereby, we account for the loss of
cells due to proliferation and subsequent differentiation and gain of cells due
to symmetric self-renewal and cell influx from the stem cell compartment,

∂nj

∂t
=


ι0 − rn0 j = 0

ιj − rnj + (1 + p− d)︸ ︷︷ ︸
α

rnj−1 j ≥ 1 , (1)

where we set α = 1 + p − d to be the self-renewal parameter which criti-
cally determines the most relevant results of our model. Since p and d are
probabilities with p+ d ≤ 1, the self-renewal parameter can be in the range
0 ≤ α ≤ 2. However, since we are interested in homeostasis and not an
exponentially growing tissue, the symmetric division probability p in our
case must be smaller than the symmetric differentiation probability d and
therefore 0 ≤ α < 1.

The above system of ordinary differential equations can be solved analyt-
ically (see appendix E). However, as we assume that the dynamics on the
level of stem cells is much slower compared to progenitor compartments we
can investigate the equilibrium solutions n∗

j to equation 1 for each age class
j. The equilibrium solutions can be obtained via recursion by setting ∂nj

∂t
= 0

(see appendix A). The general solution is

n∗
j =

j∑
k=0

ιk
r
αj−k (2)

which is equivalent to a convolution sum of the influx ιk and αk

r
between zero

and j.
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Figure 2: Several downstream compartments amplifying the rate of cell
production from influx to outflux. In each compartment there are self-renewal
or differentiation processes as described in figure 1. Each cell division thereby
leads to an increase of replicative age and changes the age distribution of the
corresponding compartment. Self renewal occurs proportional to the self-renewal
parameter α, whereas differentiated cells are produced with 1 − α and go into
the next downstream compartment. The compartment number c is shown as
superscript, the total number of compartments is C = 4.

2.1. Multiple compartments
In reality, most tissues will consist of multiple progenitor cell compartments.
It is thus natural to ask how multiple downstream compartments affect cel-
lular age distributions. To answer this question, we can generalise our previ-
ous framework. Differentiated cells in a downstream compartment are either
produced by symmetric differentiation with probability d or by asymmetric
division with probability 1− p− d. If we denote the output of cells per unit
of time for each age class as ωj, we can write

ωj = (1− p− d)rnj−1 + 2drnj−1

= (2− α)rnj−1.

To allow for multiple compartments, we can identify the output distribu-
tion of a compartment c and the input distribution of the next downstream
compartment c+ 1,

ι
(c+1)
j = ω

(c)
j . (3)

Total cell outflux For our purpose it is desirable to compare the effect of
different tissue structures, that is a different number of total compartments
C, but with the same tissue function, that is the same total outflux of fully
differentiated cells. In our model, the total outflux of differentiated cells
Ω =

∑
j ωj is determined by the total influx of cells I =

∑
j ιj, the number

of compartments C and the self-renewal parameter α. We therefore choose
α such that the total output of cells remains constant, i.e. assuring certain
replenishing needs of a specific tissue. For this we formulate differential
equations for the change of the total number of cells N (c) =

∑
j n

(c)
j in each
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of the compartments c with a compartment specific proliferation rate for
each cell r(c) by collecting all influx and outflux terms:

∂N (0)

∂t
= (α− 1)r(0)N (0) + I

∂N (c)

∂t
= (α− 1)r(c)N (c) + (2− α)r(c−1)N (c−1).

Here, I is the total influx into the first compartment (c = 0) (i.e. the sum
of all direct stem cell derived progenitors per time unit). The total outflux
Ω is related to the number of cells in the last compartment N (C−1) via

Ω = (2− α)r(C−1)N (C−1).

Under steady state conditions, the above equations can be solved explicitly
for the self-renewal parameter α (see appendix B):

α =

C

√
Ω
I
− 2

C

√
Ω
I
− 1

. (4)

This allows us to adjust the self-renewal parameter α such that the outflux
Ω remains constant given an influx I for any number of compartments C.
However, since the self-renewal parameter is constrained 0 ≤ α < 1 (see
above section) the minimum amplification of cell production is given by(
Ω
I

)
min

= 2C corresponding to α = 0.

2.2. Properties of the replicative age distribution
Mean and variance The mean and variance of the replicative age dis-
tribution under steady state conditions can be calculated analytically, see
appendix C. The mean µ of the replicative age distribution in the progenitor
compartment increases compared to the influx based on the self-renewal α
to

µ = 〈j〉n∗ = 〈j〉ι +
α

1− α
= µι +

α

1− α
,

where 〈j〉n∗ is the first moment of the replicative age distribution in the focal
progenitor compartment and 〈j〉ι = µι is the average replicative age of the
influx. Note that the average replicative age of the outflux µω = 〈j〉ω is
increased by one to account for the extra differentiation step

µω = 〈j〉ω = µ+ 1 =
1

1− α
. (5)

The minimal increase of the mean between influx and outflux for no self-
renewal (α = 0) is therefore equal to one.
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The variance σ2 of the replicative age distribution increases similarly as
the mean above

σ2 = 〈j2〉ι − 〈j〉2ι +
α

(1− α)2
= σ2

ι +
α

(1− α)2
. (6)

Here, σ2
ι denotes the variance of the replicative age distribution of the influx.

Generally, also the higher moments 〈jγ〉n∗ of the replicative age distribu-
tion can be calculated based on the moments of the influx distribution 〈jβ〉ι
with β ≤ γ. The corresponding calculations and results are shown in the
appendix section C.

Limiting behavior For very low self-renewal, α � 1, the only age class of
influx that significantly contributes to the age distribution n∗

j in equation 2
is ιk=j, as it is in zeroth order of α. The influx of all other age classes is of
higher order of self-renewal α and will therefore vanish for α � 1 such that

n∗
j ≈

ιj
r
.

Hence, the outflux distribution will look approximately like the influx dis-
tribution.

To evaluate the impact of the progenitor compartment on the replicative
age distribution in the limit of high self-renewal 1 − α � 1, we rewrite
equation 2 to

n∗
j =

αj

r

j∑
k=0

ιk
αk

.

The limiting behavior therefore strongly depends on the age distribution of
the influx ιk. If the influx has an upper bound K on replicative age, such
that for all k ≥ K holds ιk � αk, the sum in the above equation is constant
and the distribution of replicative age will decline exponentially

n∗
j ∝

αj

r
for j ≥ K.

If, on the other hand, the influx distribution ιk is not declining fast enough
and is in the same order as αk (ιk ≥ αk), we can not make a general prediction
for this limit.

3. Results
It seems natural to suspect that the specific distribution of replicative ages
in downstream compartments strongly depends on the distribution of cel-
lular ages within the stem cell compartment. In the following, we present
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the resulting age distributions for various different influx distributions. Addi-
tionally we will compare tissue structures with many subsequent downstream
compartments and a low probability for self-renewal against having only very
few compartments with a high probability for self-renewal.

An important parameter for the age distribution in the progenitor com-
partment is α = 1+p−d which depends on both the probability for symmet-
ric splitting and symmetric differentiation and critically defines the total size
of the compartment as well as the amount of cells produced (appendix B).
For a compartment model of hematopoiesis with many differentiation steps
as for example in [1, 28], α would be around 0.3, whereas for other models
with fewer compartments α would need to be higher to allow for sufficient
output of fully differentiated cells per unit time [29–31].

3.1. A single progenitor compartment
Here we discuss the distributions of replicative age in the special case of a
single progenitor compartment given four different influx distributions from
the stem cell compartment. All distributions are calculated analytically and
the corresponding calculations can be found in the appendix D.1 and 3.1.3.
Realisations of the resulting replicative age distributions are shown in figure
3.

3.1.1. Identical replicative cellular age influx

We first discuss the simplest case for a cellular age distribution on the stem
cell level that is all stem cells have identical replicative age v. This results
in a delta function input ιk = rsδ(k − v), where δ(x) is the Dirac delta
distribution and rs is the rate of cell production. Together with equation 2
this implies for the age distribution

n∗
j =

rs
r

j∑
k=0

δ(k − v)αj−k

=

{
rs
r
αj−v for j ≥ v

0 else
, (7)

The resulting distribution is shown in figure 3A. Cellular ages within the
single progenitor compartment follow an exponential distribution that ap-
proaches zero faster for smaller self-renewal parameters α and always has
the maximum at the influx replicative age v.

3.1.2. Geometrically distributed replicative cellular age influx

The former section is of course an oversimplification. We expect some form
of distributed cellular ages on the stem cell level. We first discuss the pos-
sibility of a geometrically distributed replicative age ιk = rsλ

k(1 − λ) with
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Figure 3: Distributions of replicative age in the first progenitor compart-
ment for varying influx distributions from the stem cell compartment.
(a) Influx of only a single replicative age ιk = δ(k − v) with parameter v = 5.
(b) Influx given by a geometric distribution with many young and fewer old cells
ιk = λk(1 − λ). The distribution parameter is λ = 0.85. (c) Model based in-
flux for purely asymmetric divisions on the stem cell level resulting in a Poisson
distribution ιk = λk

k!
e−λ [18]. Parameter λ = 10. (d) A model based influx with

symmetric divisions (probability ps = 0.1) also result in differently normalized
Poisson distribution ιk = t∗ λ̃

k

k!
e−λ̃ with a more pronounced difference to the age

distribution for purely asymmetric divisions at older ages of the stem cell pool.
In (c) and (d) the underlying parameters for λ and λ̃ are the same (section 3.1.3
for details).

distribution parameter λ and total cell influx rs as input from the stem
cell level. This replicative age distribution resembles the distribution in the
first progenitor compartment for an influx with identical replicative age from
the stem cell compartment as shown in the previous section (Sec. 3.1.1); it
would therefore correspond to the second downstream compartment for that
specific influx.

The resulting age distribution within this progenitor compartment - equa-
tion 2 - can be solved analytically (see appendix D.1):

n∗
j =

{
rs
r
(1− λ)λ

j+1−αj+1

λ−α
for α 6= λ

rs
r
(1− λ)αj(j + 1) for α = λ
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These age distributions are shown for different self-renewal parameters α
in figure 3B. For low self-renewal, the shape of the replicative age in the
progenitor compartment strongly resembles that of the influx distribution,
i.e. a monotonically decreasing function of replicative age. For large self-
renewal α ≥ 0.5, however, the distribution of replicative cellular ages in
equilibrium becomes increasingly independent of the influx distribution and
very similar to the age distributions resulting from other influx distributions,
see e.g. figure 3 C and D.

3.1.3. Influx from stem cell pool with random stem cell divisions

We previously investigated the dynamics within the stem cell compartment
given that stem cell proliferations are independent and distribution times
are exponentially distributed [18]. Once a stem cell is picked for division it
either divides symmetrically with probability ps, resulting in two stem cells,
or asymmetrically with probability 1 − ps, resulting in one progenitor and
one stem cell. Now we ask how influx from such a stem cell pool percolates
through the hierarchy.

Asymmetric stem cell divisions Exclusively asymmetric divisions (ps = 0)
on the stem cell level result in a Poisson distribution of replicative age [18]
and the corresponding influx into the progenitor compartment is given by

ιk = rsN0e
− rst
N0

(
rst
N0

)k

k!
.

The distribution depends on age t, proliferation rate rs, as well as the initial
number of cells N0 in the stem cell compartment. We can set λ = rst

N0
to see

that this is a Poisson distribution multiplied by rsN0:

ιk = rsN0
e−λλk

k!

with a time dependent rate parameter λ = λ(t).
The corresponding sum from equation 2 can be solved analytically (see

appendix D.2) and the distribution of replicative age becomes

n∗
j =

rs
r
N0

αje
λ
α
(1−α)

j!
Γ(j + 1, λ

α
),

where Γ(a, x) =
∫∞
x

ta−1e−t dt is the upper incomplete gamma function [32].
The above distribution of replicative age is shown in figure 3C for various

values of the self-renewal probability α. The normalization factor rsN0 is
set to one, as this does not change the general shape of the underlying
distribution. Similar to our previous observations, the age distribution is
heavily skewed towards younger cells. This effect is more pronounced for
higher values of α, corresponding to more cells in the compartment.
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Symmetric stem cell divisions The age distributions for a growing stem
cell compartment due to occasional symmetric stem cell self-renewals with
probability ps > 0 is given by [18]

ιj = rs(1− ps)
N0

j!

(
1 + ps
ps

)j
−ps
√
t∗ lnj(t∗)

with t∗ = rspst
N0

+ 1. Here the exact distribution depends explicitly on the
initial number of stem cells N0 and the ageing factor t∗, which itself depends
on the relative increase of the stem cell pool size during time t given a
symmetric division probability ps and a proliferation rate rs. However, the
distribution is again a Poisson distribution with a different normalization.
This becomes apparent if we substitute λ̃ = 1+ps

ps
ln(t∗) and get

ιj = rs(1− ps)N0t
∗ e

−λ̃λ̃j

j!

The solution of the convolution sum in equation 2 is therefore the same as
for purely asymmetric stem cell divisions and the corresponding calculations
are identical (if we exchange λ → λ̃) (appendix 3.1.3),

n∗
j =

rs(1− ps)

r
N0t

∗α
je

λ̃
α
(1−α)

j!
Γ(j + 1, λ̃

α
).

The shape of the resulting influx distribution therefore varies only slightly
from the asymmetric case and differences in the age distribution of the pro-
genitor compartment are minimal (fig. 3 C and D). However, the difference
in average replicative age on the stem cell level is conserved in the progenitor
compartment and still can be used to distinguish between those processes
on the stem cell level [18].

3.2. Multiple compartments
In most organs, the maturation of functional tissue specific cells requires mul-
tiple stages of differentiation. We therefore generalize our approach above
and discuss the impact of multiple subsequent non-stem cell compartments
on the replicative age distribution within such hierarchical tissue organiza-
tions.

Impact of the number of compartments In order to deduce the impact of
the number of compartments on the age distributions, we vary the number of
compartments by simultaneously keeping the final outflux of cells constant.
This requires an adjustment of the self-renewal parameter α accordingly and
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Figure 4: Comparison of different total number of progenitor compartments
C for different influx age distributions. The self-renewal parameter α is
adjusted such the total outflux Ω is the same for each C. The influx distributions
are the same as in figure 3: (a) Influx with a single age. (b) Influx age geometrically
distributed. (c) Model based influx for purely asymmetric divisions on the stem
cell level. (d) Model based influx with symmetric divisions. For comparison of
the influx ~ι with the resulting outflux ~ω, the distributions are normalized (all
parameters as in figure 3).

is motivated by the idea that certain tissues might require a certain constant
cell replenishment per unit time, but this could in principal be achieved in
different tissue architectures. We use the same principal influx distributions
from the stem cell compartment discussed above, see figure 3. Solutions in
this section were obtained by numerically calculating the sums of equation
2.

Figure 4 shows the resulting replicative age distributions for a broad range
of compartment numbers. Interestingly, the age distribution in the final
compartment is very sensitive to the number of compartments, even though
the total cell number amplification of the compartments is the same by con-
struction. For a large number of compartments and corresponding small self-
renewal α the shape of the influx distribution is basically conserved through
all stages of the hierarchy, especially for the extreme case of a purely binary
tree (α = 0) where the shape of the distributions is unchanged but only
shifts towards older replicative age.

For the other extreme case of only one or two downstream compartments
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Figure 5: Mean µ and variance σ2 of replicative age distributions per com-
partment. Influx age distribution is the Poisson distribution with a mean and
variance of λ = 10 as in figure 3(c); the x-axis shows the progression through
the compartments c

C
. To compare different tissue structures, the self-renewal pa-

rameter α is adjusted for the same output of cells as in figure 2. (a) The mean
of replicative age increases slightly faster for high self-renewal. (b) The variance
of replicative age increases also linearly, however, the impact of the self-renewal
parameter α is much more pronounced: for α = 0 there is no change, but for
α = 0.67 there is a drastic increase of the standard deviation per compartment.

(α ≈ 1), the distribution of replicative age is almost flat, such that the
frequency of young cells is the same as the frequency of very old cells. Note,
however, that in this case the steady state assumption might be violated
as the time to reach homeostasis, i.e. the state where the system does not
change anymore, might exceed realistic biological time scales. This is shown
in the appendix section E in more detail.

However, distributions of replicative age become similar already for inter-
mediate, but biologically still high, values of self-renewal α ≈ 0.5. It might
therefore be impossible to distinguish between age distributions on the stem
cell (influx) level from measurement in the differentiated tissue alone, pro-
vided there is considerable self-renewal in non-stem cell compartments. This
is especially surprising considering the extreme differences in influx distri-
butions, for example delta distributed (fig. 4A) and Poisson distributed
(fig. 4C and 4D), which become seemingly undistinguishable in downstream
compartments (at equilibrium). This effect is reminiscent of the law of large
numbers for random variables, where the sum of independent random vari-
ables tends to a normal distribution regardless the actual distribution of the
random variable.

Mean and variance through multiple compartments In a system with
multiple downstream compartments it is also interesting to see how mean
and variance of replicative age change from compartment to compartment.
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As shown in equations 5 and 6 for a single progenitor compartment, mean
and variance increase linearly from compartment to compartment with a
slope of 1

1−α
for the mean and α

(1−α)2
for the variance. Strong self-renewal

therefore has a more pronounced effect on the variance than the mean due
to the quadratic term in the denominator.

Figure 5 shows the mean and variance of replicative age for multiple sub-
sequent compartments for different total number of compartments, but as
above with the same tissue function, that is the same overall cell produc-
tion. In this example, the variance for strong self-renewal, α = 0.67, at the
second out of ten compartments is already larger than in the last compart-
ment for the case of lower self-renewal, α = 0.34, even though there are five
compartments more in the latter case. The impact on the mean of the dis-
tribution throughout the compartments is not nearly as pronounced. Since
both, mean and variance, only depend on self-renewal α and the number of
compartments, in principle stem cell dynamics can be inferred from compar-
ing mean and or variance of telomere length distributions over time [18, 33],
as long as the general tissue structure and dynamics does not change.

Change of replicative age distribution in CML Chronic myeloid leukemia
(CML) is a cancer of the hematopoietic system that can be characterized by
enhanced self-renewal of cancerous cells in the progenitor compartments com-
pared to healthy cells [34]. Here we compare the replicative age distribution
for different self-renewal probabilities in the same tissue structure. For this,
the tissue consists of 29 downstream compartments with either self-renewal
probability p = 0.15 for healthy cell [1] or self-renewal p = 0.28 for cancerous
cells [34] and without asymmetric division (d = 1−p), leading to self-renewal
parameters αhealthy = 0.3 or αCML = 0.56.
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Figure 6: Replicative age distributions for healthy hematopoiesis and for
hematopoiesis under chronic myeloid leukemia (CML). The self-renewal
parameter α is the same in all 29 downstream compartments, α = 0.3 for healthy
and α = 0.56 for cancerous hematopoiesis [34]. With CML, the replicative age
distribution is much wider and shifted to a higher mean.

The resulting distributions are shown in figure 6. For CML both mean and
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standard deviation are strongly increased compared to healthy hematopoiesis,
which can be measured by comparing telomere length distributions dur-
ing treatment of the disease [35]. We accordingly expect that both mean
and standard deviation will decrease under successful treatment, when self-
renewal in progenitor compartments normalizes again, which is consistent
with available clinical data [36].

4. Discussion
While the age structure of cells within a tissue is driven by the age structure
of the tissue specific stem cells, the progenitor compartments can substan-
tially alter this age distribution. From a perspective of signal processing,
they act as a filter that transforms an input signal (in our case a distribu-
tion) into an output signal. The properties of this filter are restricted by
the biological structure of the tissue. Two limiting cases are of particular
interest:

(i) Focussing on a compartment that is weakly amplifying (α � 1), such
that the number of output cells is approximately twice the number of
input cells, the replicative age distribution in the progenitor compart-
ment resembles that of the influx distribution. Only the average age of
the cells is then increasing with the compartment number, even in tis-
sues with many subsequent downstream compartments, such as blood
[1].

(ii) For intermediate to high self renewal (large α), the distributions of cell
replicative age in a differentiated tissue with multiple progenitor com-
partments are virtually indistinguishable from one another, even for
influxes with completely different replicative age distributions. Mea-
suring replicative age distributions in differentiated tissue, for example
via telomere lengths [18, 33], may therefore be more informative about
the tissue structure and dynamics than the dynamics within the long
lasting stem cell level.

Cellular age is explored in many experimental studies (e.g. [37] gives a nice
overview) and in multiple models [38, 39]. Some of these models also take
the effect of replicative ageing into account [18, 39, 40]. However, replica-
tive ageing in differentiated tissues is often overlooked, since here the cell
turnover is very high and mutation accumulation as well as loss of func-
tion in these cells might not be as clinically relevant as in stem cells or early
progenitor cells. On the other hand, we show that understanding the replica-
tive ageing of differentiated cells and the resulting age distributions in the
cell population can lead to a much better understanding of tissue dynamics
from measurements. Previous models of replicative ageing in a tissue hierar-
chy including stem cells and progenitor cells focussed strongly on the total
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replication limit of cells [41, 42]. However, it is not clear whether or not
fully differentiated cells are close to the end of their replicative life-span in
vivo. Thus, we instead addressed the change in replicative age distributions
going through possibly multiple rounds of differentiation without taking a
potential maximum replicative age into account.

When comparing the distributions of replicative age between individuals
or at different time points (or, for most practical purposes, their average
and variance), changes of replicative age in the differentiated tissue might
not always point towards changed dynamics on the stem cell level, but to-
wards abnormal dynamics in the progenitor compartments. Accordingly,
we would expect to observe these differences in replicative age distributions
in certain diseases that change proliferation and differentiation character-
istics in the progenitor compartments. Examples of this include chronic
myeloid leukemia, acute promyelocytic leukemia and some other forms of
acute myeloid leukemia where a progenitor cell in the ’middle’ of the hier-
archy acquires novel properties. For example, increased self renewal would
lead to a increase of average cellular age [29, 34, 35, 43].

An important complication that we have not considered here is that real
tissues are often found in dynamical regimes that change the cellular age dis-
tribution over time. In multicellular organisms the rates for self-renewal and
for symmetric differentiation or cell death are variable and tightly regulated
by a variety of feedback mechanisms [44]. In this way, a tissue can respond to
environmental conditions such as injury or infections. However, we only con-
sidered the case of homeostasis and assume that the compartment structure
is approximately in a steady state. While this strong assumption allows for
a considerable spectrum of observable age distributions in the differentiated
tissue, we expect to vary this distribution even more in dynamical settings.

In conclusion, the distribution of replicative age can reveal properties of
compartmentalised tissue in multicellular organisms and can inform about
changes from healthy tissue due to diseases that change the proliferation
characteristics of the cells. Understanding the replicative age distributions
of tissue in multicellular organisms can therefore lead to further knowledge
of tissue dynamics and ultimately reveal insights about additional disease
risks and disease characteristics.

Availability of source code The data for the figures in this manuscript
was either calculated analytically or solved numerically by using the Scipy
library for python. The scripts to create our results figures can be accessed
at https://github.com/marvinboe/DownstreamReplAge.
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A. Steady state distribution
Here we show the general solution for the steady state distribution of replica-
tive age inside a downstream compartment for any input distribution ~ι. The
differential equations for the number of cells in each replicative age class are:

ṅj =


ι0 − rn0 j = 0

ιj − rnj + (1 + p− d)︸ ︷︷ ︸
=α

rnj−1 j ≤ 1

We then start by setting the equation for n0 to zero, such that

ṅ0 = ι0 − rn0 = 0 ⇒ n∗
0 = ι0/r.

We use this result to solve for n1 and then continue recursively until we find
the general solution for nj:

ṅ1 = 0 = ι1 − rn1 + αrn0 ⇒ n∗
1 =

1
r
(αι0 + ι1)

ṅ2 = 0 = ι2 − rn2 + αrn1 ⇒ n∗
2 = αn1 + ι2/r

= 1
r
(α2ι0 + αι1 + ι2)

... ...

⇒ n∗
j =

1

r

(
ι0α

j + ι1α
j−1 + ...+ ιj−1α + ιj

)
,

which can be written in the more compact form

n∗
j =

1

r

j∑
k=0

ιkα
j−k.

B. Total cell number amplification
Here we start again by writing down the differential equations for the total
number of cells N (c) in each of the compartments c with proliferation rates
r(c). Additionally we have the total influx I into the first compartment (c =
0), and similarly the total outflux Ω from the last compartment (c = C−1).

dN (0)

dt
= (p− d)r(0)N (0) + I = (α− 1)r(0)N (0) + I

dN (c)

dt
= (α− 1)r(c)N (c) + (2− α)r(c−1)N (c−1)

Ω = (2− α)r(C−1)N (C−1).
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As in the calculation above we assume our compartment to be in the steady
state and set the above differential equations to zero.

0 =
dN (0)

dt
= (α− 1)r(0)N (0) + I ⇒ N (0) =

I

(1− α)r(0)

0 = (α− 1)r(1)N (1) + (2− α)r(0)N (0) ⇒ N (1) =
(2− α)r(0)

(1− α)r(1)
N (0).

The same calculation can be done for each compartment c:

0 = (α− 1)r(c)N (c) + (2− α)r(c−1)N (c−1)

⇒ N (c) =
(2− α)r(c−1)

(1− α)r(c)
N (c−1) =

(2− α)2r(c−1)r(c−2)

(1− α)r(c)r(c−1)
N (c−2) = ... =

(2− α)cr(0)

(1− α)cr(c)
N (0).

From this follows for the total outflux Ω

⇒ Ω = (2− α)r(C−1)N (C−1) = (2− α)r(C−1) (2− α)C−1r(0)

(1− α)C−1r(C−1)
N (0) =

(2− α)C

(1− α)C
I.

By rearranging this for α we get

α =

C

√
Ω
I
− 2

C

√
Ω
I
− 1

.

C. Mean and variance of replicative age
distribution
To calculate the moments of the replicative age j in the progenitor com-
partment, we need to normalize the replicative age distribution n∗

j in the
steady state by the total number of cells in the progenitor compartment
N∗ =

∑∞
j=0 n

∗
j . We can then write down the m-th moment of the age j in

the progenitor compartment

〈jm〉n? =

∞∑
j=0

jmn∗
j

∞∑
j=0

n∗
j

=

∞∑
j=0

jmαj

r

j∑
k=0

ιk
αk

∞∑
j=0

αj

r

j∑
k=0

ιk
αk

=

∞∑
j=0

jmαj
j∑

k=0

ιk
αk

∞∑
j=0

αj
j∑

k=0

ιk
αk

.

By changing the order of summation in the denominator we get
∞∑
j=0

αj

j∑
k=0

ιk
αk

= α0 ι0
α0

+ α1
( ι0
α0

+
ι1
α1

)
+ α2

( ι0
α0

+
ι1
α1

+
ι2
α2

)
+ . . .

= ι0(1 + α1 + α2 + . . . ) + ι1(1 + α1 + α2 + . . . ) + . . .

=
∞∑
k=0

ιk

(
∞∑
j=0

αj

)
=

∞∑
k=0

ιk

(
1

1− α

)
.
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Similarly, we change the order of summation in the nominator to

∞∑
j=0

jmαj

j∑
k=0

ιk
αk

= 0mα0 ι0
α0

+ 1mα1
( ι0
α0

+
ι1
α1

)
+ 2mα2

( ι0
α0

+
ι1
α1

+
ι2
α2

)
+ . . .

= ι0(0
m + 1mα1 + 2mα2 + . . . ) + ι1(1

m + 2mα1 + 3mα2 + . . . ) + . . .

=
∞∑
k=0

ιk

(
∞∑
j=0

(j + k)mαj

)
.

We then rewrite the above binomial to (j + k)m =
∑m

i=0

(
m
i

)
kijm−i and

rearrange the sums to

∞∑
k=0

ιk

(
∞∑
j=0

(j + k)mαj

)
=

∞∑
k=0

ιk

(
∞∑
j=0

[
m∑
i=0

(
m

i

)
kijm−i

]
αj

)

=
∞∑
k=0

ιk

[
m∑
i=0

(
m

i

)
ki

(
∞∑
j=0

jm−iαj

)]

=
m∑
i=0

(
m

i

)( ∞∑
k=0

kiιk

)(
∞∑
j=0

jm−iαj

)

=
m∑
i=0

(
m

i

)( ∞∑
k=0

kiιk

)
S(m−i),

where in the last step we defined the sum which is independent of the influx

Sm =
∞∑
j=0

jmαj.

The next step is to put together the nominator and denominator and to
insert the moments of the replicative age distribution of the influx 〈jm〉ι:

〈jm〉n? =

m∑
i=0

(
m
i

)
S(m−i)

(
∞∑
k=0

kiιk

)
(

1
1−α

) ∞∑
k=0

ιk

= (1− α)
m∑
i=0

(
m

i

)
Sm−i〈ji〉ι, (8)

which is the general solution for any moment of the replicative age distribu-
tion.

To get an expression for the mean and variance, we have to solve Sm for

23

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 20, 2018. ; https://doi.org/10.1101/305250doi: bioRxiv preprint 

https://doi.org/10.1101/305250
http://creativecommons.org/licenses/by-nc-nd/4.0/


m = 0, 1, 2:

S0 =
∞∑
j=0

αj =
1

1− α

S1 =
∞∑
j=0

jαj = α
∂

∂α

∞∑
j=0

αj

= α
∂

∂α

1

1− α
=

α

(1− α)2

S2 =
∞∑
j=0

j2αj =
∞∑
j=0

(
α2 ∂

2αj

∂α2
+ jαj

)

= α2 ∂2

∂α2

∞∑
j=0

αj + α
∂

∂α

∞∑
j=0

αj

=
2α2

(1− α)3
+

α

(1− α)2

Generally, for m > 0 the sum Sm is by definition the polylogarithm
Li−m(α) [45] with negative order m and can be written as

Li−m(α) =
1

(1− α)m+1

m−1∑
k=0

E(m, k)αm−k,

with the Eulerian numbers E(n, k) =
∑k+1

j=0(−1)j
(
n+1
j

)
(k + 1− j)n.

By using the general solution equation 8 and the above solutions for Sn

for n = 0, 1, 2 we can calculate the mean µ and variance σ2 of the replicative
age distribution:

µ = 〈j〉n∗ =
α

1− α
+ 〈j〉ι =

α

1− α
+ µι

σ2 = 〈j2〉n∗ − 〈j〉2n∗ = 〈j2〉ι − 〈j〉2ι +
α

(1− α)2
= σ2

ι +
α

(1− α)2
,

where we used the mean µι and the variance σ2
ι of the influx distribution.

D. Replicative age distributions for specific influx
D.1. Geometric influx
Here we calculate the distribution of replicative age in the steady state re-
sulting from geometrically distributed age of the influx ιk = λk(1 − λ) by
solving equation 2:

n∗
j =

j∑
k=0

λk(1− λ)αj−k.
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Now we factor out all factors independent of k and substitute x := λ
α
:

n∗
j = (1− λ)αj

j∑
k=0

xk.

By using the results for the geometric sum
j∑

k=0

xk = (x(j+1)−1)
(x−1)

for x 6= 1 we
get

n∗
j =

{
(1− λ)λ

j+1−αj+1

λ−α
for α 6= λ

(1− λ)αj(j + 1) for α = λ
.

D.2. Poisson influx
To find the replicative age distribution in the progenitor compartment for
Poisson distributed influx, we have to solve the following sum:

n∗
j =

j∑
k=0

e−λλk

k!
αj−k.

By factoring out all factors independent of k, we arrive at

n∗
j = e−λαj

j∑
k=0

λk

αk

1

k!
.

Now we substitute x = λ
α

and note that for the upper incomplete gamma
function Γ(a, x) =

∫∞
x

ta−1e−t dt and integer values of j the following equality
holds [32]:

Γ(j + 1, x) = j!e−x

j∑
k=0

xk

k!
.

Using this we get

n∗
j =

αje

(
λ
α
−λ

)
j!

Γ(j + 1, λ
α
).

as the desired result.

E. Time to steady state
Equation 1 can be solved analytically to get an estimate for the time until
steady state is reached. In the following we solve the equations for an initially
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empty progenitor compartment, which gives us an estimate to the relaxation
time until steady state is reached. For this we start by solving the equation
for the first replicative age class j = 0 and then subsequently for all others:

dn0

dt
= ι0 − rn0 ⇒ n

(h)
0 (t) = Ce−rt variation of parameter C → C(t)

⇒ ∂C

∂t
e−rt − Cre−rt + rCe−rt = ι0 ⇒ C = ι0

r
(ert − 1)

⇒ n0(t) =
ι0
r
(1− e−rt)

This we plug into the differential equation for the next age class
dn1

dt
= ι1 + αrn0 − rn1 = ι1 + αι0(1− e−rt)− rn1

which can be solved in the same way

n1(t) =
(ι1 + ι0α)

r
(1− e−rt) + αι0te

−rt.

Now we use the steady state values of the main text (equation 2), n∗
j =

j∑
k=0

ιkα
j−k

r
, which allows us to rewrite the above equation to

n1(t) = n∗
1(1− e−rt) + αrn∗

0te
−rt.

For the third age class we get

n2(t) = n∗
2(1− e−rt) + α2r2 t

2

2!
n∗
1e

−rt + αrn∗
0
t
1!
e−rt.

From this we can infer the general solution

nj(t) = n∗
j(1− e−rt) +

j−1∑
m=0

(αrt)(j−m)

(j−m)!
n∗
me

−rt,

which as expected goes towards the equilibrium solutions n∗
j for the limit

of time t to infinity. Figure E.1A shows the time evolution of of nj for
different age classes j. Approach to steady state for this specific value of
α is relatively fast. To compare the time until steady state is reached for
different values of α, we numerically calculated the time until nj reached
99% of the equilibrium value n∗

j and the results are shown in figure E.1B.
As expected, for large α the time to reach steady state increases drastically,
since many more downstream compartments have to be filled due to the long
tail towards old ages in the distribution of replicative age. Also for higher age
classes, in this case j = 20 for example, time to steady state is much longer
as all changes have to go through the previous age classes first. However,
since the steady state value in this case is close to zero and the influx into
this compartment is even smaller, our assumption of a quasi-static process
is still valid.
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Figure E.1: Time to the steady state for different parameters. (a) The number
of cells nj for various age classes j increases until the steady state is reached, earlier
compartments reach the steady state faster (α = 0.3). (b) Time to approach
equilibrium solutions for different age classes j in a single progenitor compartment
for different self-renewal parameters α. The influx age is Poisson distributed with
λ = 10 (see section 3.1.3).
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