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ABSTRACT

Genome reduction is pervasive among maternally-inherited bacterial endosymbionts. This genome reduction can eventually
lead to serious deterioration of essential metabolic pathways, thus rendering an obligate endosymbiont unable to provide
essential nutrients to its host. This loss of essential pathways can lead to either symbiont complementation (sharing of the
nutrient production with a novel co-obligate symbiont) or symbiont replacement (complete takeover of nutrient production by
the novel symbiont). However, the process by which these two evolutionary events happen remains somewhat enigmatic
by the lack of examples of intermediate stages of this process. Cinara aphids (Hemiptera: Aphididae) typically harbour two
obligate bacterial symbionts: Buchnera and Serratia symbiotica. However, the latter has been replaced by different bacterial
taxa in specific lineages, and thus species within this aphid lineage could provide important clues into the process of symbiont
replacement. In the present study, using 16S rRNA high-throughput amplicon sequencing, we determined that the aphid Cinara
strobi harbours not two, but three fixed bacterial symbionts: Buchnera aphidicola, a Sodalis sp., and S. symbiotica. Through
genome assembly and genome-based metabolic inference, we have found that only the first two symbionts (Buchnera and
Sodalis) actually contribute to the hosts’ supply of essential nutrients while S. symbiotica has become unable to contribute
towards this task. We found that S. symbiotica has a rather large and highly eroded genome which codes only for a handful of
proteins and displays extensive pseudogenisation. Thus, we propose an ongoing symbiont replacement within C. strobi, in
which a once ”competent” S. symbiotica does no longer contribute towards the beneficial association. These results suggest
that in dual symbiotic systems, when a substitute co-symbiont is available, genome deterioration can precede genome reduction
and a symbiont can be maintained despite the apparent lack of benefit to its host.
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Introduction

Many insects with a nutrient restricted diet, depend on vertically-inherited obligate nutritional symbionts1–8. These symbionts
evolved from once free-living bacterial lineages9–11 and have undergone a series of genomic and phenotypic changes resulting
from relaxed selection, continuous bottlenecks, and their metabolic adaptation to the sustained association with their host12–15.
These alterations include genome reduction, a simplified metabolism specialised on supplying the host with essential nutrients
lacking from its diet, drastic changes in cellular shape, and G+C (uncommon) or A+T-biased genomes.

Aphids (Hemiptera: Aphididae) generally house the obligate vertically-transmitted endosymbiotic bacterium Buchnera in
specialised cells called bacteriocytes16–18. This obligate symbiont is capable of producing essential amino acids (hereafter
EAAs) and B vitamins19–24 that are lacking from the host diet (plant phloem)20, 25, 26, and thus insures the correct development
of its host20, 27–29. Buchnera underwent a massive genome reduction and established as an obligate symbiont before the
diversification of aphids. This is evidenced by its almost-universal presence in aphids16, 30, the high degree of genome synteny
displayed among distantly-related strains of Buchnera31, 32, and their consistently small genomes. Aphid species from the
Lachninae subfamily have been found to harbour Buchnera strains that have ancestrally lost the capacity to synthesise biotin and
riboflavin33–36, two essential B vitamins. For the provision of these nutrients, Lachninae aphids and their Buchnera now rely on
different co-obligate endosymbionts, most often S. symbiotica35–38. Accordingly, Cinara species (Aphididae: Lachninae) have
been consistently found to host an additional bacterial co-obligate symbiont, most commonly S. symbiotica38–41. An ancestral
reconstruction on the symbiotic associations of Cinara with fixed additional symbionts suggests that S. symbiotica was likely
the original co-obligate endosymbiont, but has been replaced several times by other bacterial taxa41. These new symbionts
are phylogenetically affiliated to different lineages, mainly including known aphid facultative symbiotic ones (e.g. Fukatsuia,
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Sodalis, and Hamiltonella).
Most of our current knowledge from these co-obligate endosymbionts comes from the endosymbiont S. symbiotica

harboured by Lachninae aphids. These symbionts display very different genomic features, ranging from strains holding rather
large genomes rich in mobile elements to small genomes rich in A+T and deprived of mobile elements42. The S. symbiotica
strain held by the aphid Cinara tujafilina (hereafter SsCt), shares a high genomic similarity to the facultative strain harboured
by the pea aphid Acyrthosiphon pisum (hereafter SsAp)35. This reflects the early stage of genome reduction SsCt is at, which is
characterised by a moderately reduced and highly rearranged genome (when compared to free-living relatives), an enrichment
of mobile elements (hereafter MEs), and a large-scale pseudogenisation35, 43–47. On the other side, the co-obligate S. symbiotica
from Tuberolachnus salignus (hereafter SsTs) shows a very small and gene dense genome36, similarly to ancient obligate
endosymbionts such as Buchnera31–33, 48, 49, Blochmannia50–52, or Blattabacterium53–58. Sitting in between SsCt and SsTs,
the S. symbiotica strain housed by Cinara cedri (hereafter SsCc) shows intermediate characteristics between a larger and
highly-pseudogenised genome and a small and compact one37. In Cinara aphids, S. symbiotica has undergone symbiont
replacement in different lineages, and thus the endosymbionts’ genomes of species within this genus could provide important
clues into reductive genome evolution and the process of symbiont replacement.

Within the aphid Cinara strobi, Jousselin et. al.59 first reported on the presence of Sodalis, Wolbachia, and Serratia bacteria
as putative secondary symbionts present in one population of this aphid species using 16S rRNA high-throughput amplicon
sequencing. Later, deeper analysis using this same technique showed that only two of these additional symbionts were actually
fixed across different populations of C. strobi41, being these Sodalis and S. symbiotica. The former was found to be very
abundant in both the amplicon sequencing read set and the whole-genome one. On the other hand, S. symbiotica was found
consistently in a lower percentage than Sodalis in all but one sample, and was even found to be almost absent in another one
(thus leading to its characterisation as a non-fixed symbiont). Further analysis of the riboflavin- and biotin-related biosynthetic
genes revealed that Sodalis was able to supplement the previously identified auxotrophies developed by Buchnera strains from
Lachninae aphids. This suggested that C. strobi most likely represented a case of co-obligate symbiont replacement, in which
the former S. symbiotica was replaced by a younger Sodalis symbiont. However, this results left one unanswered question:
What role, if any, is played by the prevalent S. symbiotica strain?. We hypothesised that this bacterium could either represent
a widely-spread facultative lineage (probably resembling SsAp), a transitional state in the symbiont replacement process, or
a persistent S. symbiotica strain associated to the ancestor of C. strobi that had established a tripartite mutualistic symbiotic
association.

To explore this question, we characterised the symbiotic community of additional populations of C. strobi and defined
the fixed bacterial associates of this species. In addition, we assembled the genome of S. symbiotica from this aphid species
and evaluated the metabolic capacity of its fixed symbiotic cohort to supply the aphid with EAAs, B vitamins, and other
cofactors. Our results suggest that C. strobi houses an ancient, now dispensable, S. symbiotica secondary symbiont along with a
co-obligate symbiotic consortium made up of Buchnera and its new partner, Sodalis.

Materials and Methods

Aphid collection, DNA extraction, and sequencing
C. strobi individuals were collected in 2015 from five colonies throughout the South Eastern Canada (supplementary table S1 in
supplementary file S1, Supplementary Material online) and then kept in 70% ethanol at 6◦C.

For 16S amplicon sequencing, individual aphids were washed three times in ultrapure water and total genomic DNA was
extracted with the DNEasy Blood & Tissue Kit (Qiagen, Germany), according to the manufacturer’s recommendations. The
recovered DNA was then eluted in 70 µL of ultrapure water. We amplified a 251 bp portion of the V4 region of the 16SrRNA
gene60, using universal primers, and performed targeted sequencing of indexed bacterial fragments on a MiSeq (Illumina)
platform61, following the protocol described in Jousselin et. al.59.

For whole-genome sequencing, we prepared DNA samples enriched with bacteria following a slightly modified version of
the protocol by Charles and Ishikawa62 as described in Jousselin et. al.59. For this filtration protocol 15 aphids for one colony
were pooled together. Extracted DNA was used to prepare 2 custom paired-end libraries in France Génomique. Briefly, 5ng of
genomic DNA were sonicated using the E220 Covaris instrument (Covaris, USA). Fragments were end-repaired, 3’-adenylated,
and NEXTflex PCR free barcodes adapters (Bioo Scientific, USA) were added by using NEBNext R© Ultra II DNA library prep
kit for Illumina (New England Biolabs, USA). Ligation products were were purified by Ampure XP (Beckman Coulter, USA)
and DNA fragments (>200 bp) were PCR-amplified (2 PCR reactions, 12 cycles) using Illumina adapter-specific primers and
NEBNext R© Ultra II Q5 Master Mix (NEB). After library profile analysis by Agilent 2100 Bioanalyser (Agilent Technologies,
USA) and qPCR quantification using the KAPA Library Quantification Kit for Illumina Libraries (Kapa Biosystems, USA), the
libraries were sequenced using 251 bp paired-end reads chemistry on a HiSeq2500 Illumina sequencer. Additionally, we used
reads recovered from paired-end Illumina sequencing of the same colony previously reported in Meseguer et. al.41.
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16S rRNA amplicon taxonomic assignment
We used Mothur v1.3.363 to assemble paired-end reads and filter out sequencing errors and chimeras. In brief, the overlapped
paired-end reads were assembled with the make.contigs function, and the contigs exceeding 280 bp in length were excluded
from further analyses. Remaining unique contigs were then aligned with the V4 portion of reference sequences from the SILVA
database v11964. Sequences that did not align with the V4 fragment were excluded from further analyses. The number of
reads resulting from sequencing errors was then reduced by merging rare unique sequences with frequent unique sequences
with a mismatch of no more than 2 bp relative to the rare sequences (pre.cluster command in Mothur). We then used the
UCHIME program65 implemented in Mothur to detect chimeric sequences and excluded them from the data set. Following
Jousselin et. al.59, for each sequence, the number of reads per sample was transformed into percentages using an R script and
used to compile a frequency table (supplementary table S2 in supplementary file S1, Supplementary Material online). We then
removed individual sequences representing less than 1/1,000 of the reads in each sample. Sequences represented by such a
small proportion of the reads were generally not arthropod endosymbionts and, in most cases, were not found across PCR
replicates of the same sample, suggesting that they could represent contaminants or spurious sequences.

Taxonomic assignation of the remaining sequences was conducted using the RDP classifier66 with the SILVA database
v119 and BLASTN67 (only the best hits were reported and when hits with similar scores were found a ”multi-affiliation” was
reported). Using these assignations and the table of sequence frequencies per sample, we plotted the bacterial composition of
each sample. To simplify representation of the results, when different unique sequences were assigned to the same bacterial
species (or genus), their frequencies were added.

Genome Assembly and Annotation
Illumina reads were right-tail clipped (using a minimum quality threshold off 20) using FASTX-Toolkit v0.0.14
(http://hannonlab.cshl.edu/fastx toolkit/, last accessed December 8 2017). Reads shorted than 75 after the aforementioned
clipping were dropped. Additionally, PRINSEQ v0.20.468 was used to remove reads containing undefined nucleotides as well
as those left without a pair after the filtering and clipping process. The resulting reads were assembled using SPAdes v3.10.169

with the options --only-assembler option and k-mer sizes of 33, 55, 77, 99, and 127. From the resulting contigs, those that
were shorter than 200 bps were dropped. The remaining contigs were binned using results from a BLASTX70 search (best hit
per contig) against a database consisting of the Pea aphid’s proteome and a selection of aphid’s symbiotic bacteria proteomes
(supplementary table S3 in supplementary file S1, Supplementary Material online). When no genome was available for a
certain lineage, closely related bacteria were used. The assigned contigs were manually screened using the BLASTX web
server (searching against the nr database) to insure correct assignment. This binning process confirmed the presence of the
previously reported putative co-obligate symbionts41, 59 (Buchnera aphidicola and a Sodalis sp.) as well as other additional
symbionts. The resulting contigs were then used as reference for read mapping and individual genome assembly using SPAdes,
as described above, with read error correction.

The resulting genomes were annotated using a series of specialised software. First, open reading frame (ORF) prediction
was done using prodigal, followed by functional prediction by the BASys web server71. In order to validate start codons,
ribosomal binding sites were predicted using RBSfinder72. This was followed by non-coding RNA prediction using infernal
v1.1.273 (against the Rfam v12.3 database74), tRNAscan-SE v2.075, and ARAGORN v1.2.3676. This annotation was followed
by manual curation of the genes on UGENE v1.28.177 through on-line BLASTX searches of the intergenic regions as well
as through BLASTP and DELTA-BLAST78 searches of the predicted ORFs against NCBI’s nr database. Priority for the
BLAST searches was as follows: (1) against Escherichia coli K-12 substrain MG1655, (2) against Yersinia pestis CO92 or
Serratia marcescens strain Db11 (for S. symbiotica), and (3) against the whole nr database. The resulting coding sequences
(CDSs) were considered to be putatively functional if all essential domains for the function were found or if a literature search
supported the truncated version of the protein as functional in a related organism (details of the literature captured in the
annotation file). For S. symbiotica, pseudogenes were also searched based on synteny against available S. symbiotica strains.
This prediction performed using a combination of sequence alignment (with m-coffee79) and BLASTX searches against the
NCBI’s nr database (restricted to Serratia taxon ID). This allowed the identification of missed pseudogenes by the previous
searches. The annotated genomes have been submitted to the European Nucleotide Archive with project number PRJEB15507
and are on queue to be accessioned. They are temporarily available in supplementary file S3 (Supplementary Material online).

Phylogenetic Reconstruction and Rearrangement Analysis
For performing both phylogenetic inferences and analysing the genetic differences in Serratia from the different aphids, we
first ran an orthologous protein clustering analysis using OrthoMCL v2.0.980, 81 using a set of S. symbiotica and closely
related free-living bacterial strains (supplementary table S4 in supplementary file S1, Supplementary Material online). We then
extracted the single copy-core proteins of currently available S. symbiotica genomes and free-living relatives for phylogenetic
reconstruction (297 protein groups) and rearrangement analysis (381 protein groups). We then ran MGR v2.0382 on the latter
set to infer the tree that absolutely minimizes (no heuristics) the number of rearrangements undergone among the strains.
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For phylogenetic reconstruction of S. symbiotica, we aligned the single-copy core protein set, gene by gene, using MAFFT
v7.22083 (L-INS-i algorithm). We then removed divergent and ambiguously aligned blocks using Gblocks v0.91b84 and
concatenated the resulting alignments into a single one (supplementary file S2, Supplementary Material online) for following
phylogenetic inference. We used the LG+I+G amino acid substitution model, which incorporates the variability of evolutionary
rates across sites in the matrix estimation85. Bayesian phylogenetic inference was performed in MrBayes v3.2.586 running
two independent analyses with four chains each for 300,000 generations and checked for convergence. In order to alleviate
long-branch attraction artefacts commonly seen in endosymbionts11, 87, the analysis was also run in Phylobayes v4.188 under
the CAT+GTR+G (four discrete categories) (under eight independent runs) using dayhoff6-recoded concatenated amino acid
alignments. Chains were run and compared using the tracecomp and bpcomp programs, and were considered converged at a
maximum discrepancy of <0.3 and minimum effective size of 50. None were found to converge even after 30,000 generations.
All resulting trees were visualized and exported with FigTree v1.4.1 (http://tree.bio.ed.ac.uk/software/figtree/, last accessed
December 8 2017) and edited in Inkscape.

Results

Fixed symbionts of Cinara strobi
As stated before, Cinara strobi is distributed throughout eastern North America89. We collected C. strobi individuals from 5
different populations from the southeast of Canada (3618, 3628, 3629, 3632, and 3682) to complete previous sampling from
northeast USA (fig. 1A and supplementary table S1 in supplementary file S1, Supplementary Material online). In order to
assess the presence of bacterial associates in geographically distant C. strobi populations, we re-analysed the four C. strobi
samples collected in the northeast USA (3229, 3249, 3258, and 3207), and previously included in Meseguer et. al.41, as well
as the newly collected individuals through 16S rRNA high-throughput sequencing (see Materials and Methods: 16S rRNA
amplicon taxonomic assignment). Taxonomic assignment of the reads revealed that individuals from all populations harboured
not only two symbionts, but three: Buchnera, Sodalis, and S. symbiotica (fig. 1B). It is important to note that sample 3229
showed a very low abundance of S. symbiotica-assigned reads, which prompted Meseguer et. al.41 to report this symbiont as
not being systematically associated to C. strobi. In addition to the three fixed symbionts, we also confirmed the presence of
other known aphid facultative symbiont taxa (i.e. Wolbachia, Regiella, and Spiroplasma) in three samples (voucher IDs 3249,
3628, and 3628).
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Figure 1. Distribution of sampled C. strobi populations and 16S rRNA high-throughput bacterial symbiont screening.
(A) Map showing the north-east USA and south-east Canada regions where the C. strobi samples were collected (coloured
points) featuring a cartoon of a C. strobi apterous female adult. (B) Heat map displaying the relative abundance of Illumina
reads per taxon per sample. On the top-left, colour key for the taxon abundance. On the left, voucher ID for the sampled C.
strobi populations with coloured dots matching the map on panel A.

The genome of S. symbiotica strain SeCistrobi
The binning process resulted in two assembled circular DNA molecules assigned to S. symbiotica: a chromosome Figure
2A and a plasmid, with a k-mer coverage of . The chromosome of S. symbiotica strain SeCistrobi (hereafter SsCs) is 2.41
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Mbp and the plasmid is 22.67 Kbp. Its chromosome has a G+C content of 40.28%, which is slightly lower than that of both
the facultative SsAp and the co-obligate SsCt (supplementary table S5 in supplementary file S1, Supplementary Material
online). Unlike these two endosymbionts (which possess genomes that are similar in size), SsCs has only 635 protein coding
sequences (hereafter CDSs), translating into a staggering low coding density of around 26.3%. This means that around 70% of
its genome is non-coding, the highest known for any S. symbiotica. Similarly, its putative plasmid contains only two CDSs (a
putative autotransporter beta-domain-containing protein and a plasmid replication protein), with the remainder of the molecule
containing several pseudogenes mainly belonging to inactivated insertion sequence (hereafter IS) elements. Additionally, the
chromosome of SsCs retains two prophage regions, however these do not encode for a single intact protein, but rather show
generally highly degraded pseudogenes. Also, unlike SsAp and SsCt, it displays a typical pattern of polarised nucleotide
composition in each replichore (G+C skew in fig. 2A and supplementary fig. S1, Supplementary Material online), hinting at a
lack of recent chromosome rearrangements. This is consistent with its low number of mobile elements, when compared with
SsAp and SsCt, and the complete inactivation of these by pseudogenisation and loss of other elements (e.g. inverted repeats
in an IS). In regards to ncRNAs, it possesses only one rRNA operon, 38 tRNAs, a tmRNA, and 5 other non-coding RNAs
(including the RNase P M1 RNA component and the 4.5S sRNA component of the Signal Recognition Particle).
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Figure 2. Genome of S. symbiotica strain SeCistrobi and pangenome of S. symbiotica strains from Lachninae aphids.
(A) Genome plot of S. symbiotica strain SeCistrobi. From outermost to innermost, the features on the direct strand, reverse
strand, ncRNA features, and G+C skew are represented. For the G+C skew, green= positive and purple= negative. (B) Venn-like
diagram displaying the shared (core) and unshared protein-coding genes among currently-available S. symbiotica strains.

Regarding its CDS content, it is almost in its entirety a subset of the pan-genome of S. marcescens, except for the two
plasmid CDSs (supplementary fig. S2, Supplementary Material online). While the putative autotransporter beta-domain-
containing protein from SsCs does not cluster with any other proteins, its best 5 matches in NCBI’s nr database are against other
autotransporter beta-domain-containing proteins from S. symbiotica strain CWBI-2.3. Therefore it shows as strain specific in
our analysis due to the strains chosen for the protein clustering. When compared with co-obligate S. symbiotica strains from
Lachninae aphids fig. 2B, it shares most of its genetic repertoire with the highly reduced SsCc and SsTs strains, with several of
the non-core genes evidencing differential genome reduction and retention of transmembrane proteins. In terms or DNA repair,
SsCs retains mostly the same set of proteins as the most genomically reduced S. symbiotica symbionts (SsCc and SsTs), with
the marked exception of SsCc retaining Dam, MutH, MutL, and MutS; thus coding for a mismatch repair system lacking the
exonucleases ExoX, XseA, XseB, recJ, and the non-essential HolE protein from the DNA polymerase III.

We reconstructed phylogenetic trees using 297 single-copy CDSs that were shared by all S. symbiotica strains, a selection
of free-living Serratia, and Yersinia pestis strain CO92 (as an outgroup). Using MrBayes, we found S. symbiotica as a
monophyletic group sister to the S. marcescens clade (supplementary fig. S3A, Supplementary Material online). Given the very
long branches leading to the highly reduced SsCs, SsCc, and SsTs; we also ran a phylogenetic reconstruction in Phylobayes with
dayhoff-6 recoded alignments and under the CAT+GTR+G (four discrete categories) model. This method is presumably less
sensitive to long branch attraction artifacts commonly seen in phylogenies including highly derived endosymbiont lineages11, 87.
From all 8 independent chains we ran, only two of them converged, even after 24,000 generations (wit some even reaching the
28,000 and 30,000 generations). However, the S. marcescens+S. symbiotica clade, as well as other bipartitions, were lowly
supported and/or unresolved (supplementary fig. S3B, Supplementary Material online). Finally, and like all other currently
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available S. symbiotica strains, its genome shows many rearrangements (supplementary fig. S3C, Supplementary Material
online) when compared to free-living S. marcescens and other S. symbiotica.

Biosynthesis of Essential Amino Acids and B Vitamins by the sybmiotic consortium in Cinara strobi
In previously analysed co-obligate endosymbiotic systems in Lachninae aphids (Buchnera+secondary symbiont), Buchnera
remains as the sole provider of EAAs and the newly acquired symbionts have taken over the role of synthesising riboflavin
(vitamin B2) and biotin (vitamin B7), functions once performed by Buchnera35–37, 41. Thus, to infer the role of each fixed
symbiont of C. strobi, we searched for the genes involved in the biosynthesis of EAAs (fig. 3), B vitamins, and other cofactors
(fig. 4 and supplementary fig. S4, Supplementary Material online) in Buchnera, S. symbiotica, and Sodalis from C. strobi and
compared them with co-obligate Buchnera+Serratia endosymbiotic systems in Lachninae (using Buchnera-only Aphididae
systems as reference).

In terms of EAAs, Buchnera from C. strobi (hereafter BCs), retains the same capabilities as other Buchnera strains.
Similarly, Sodalis also retains all genes needed for the biosynthesis of EAAs, except for those of lysine, methionine, and leucine.
In the case of SsCs, it has completely lost the potential of de novo synthesising all EAAs. Nonetheless, it preserves an almost
intact route for the synthesis of lysine, resembling the degradation pattern observed for this pathway in other co-obligate S.
symbiotica strains.
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Figure 3. Essential-amino-acid biosynthetic metabolic capabilities of obligate symbiotic consortia of different aphid
species. Diagram summarising the metabolic capabilities of the fixed endosymbiotic consortia of co-obligate symbiotic systems
of Lachninae aphids. For comparison, a collapsed representation of Aphididae Buchnera-only systems is used as an outgroup.
The names of genes coding for enzymes involved in the biosynthetic pathway are used as column names. Each row’s boxes
represent the genes coded by a symbiont’s genome. At the right of each row, the genus for the corresponding symbiont.
Abbreviations for the aphids harbouring the symbionts is shown at the left of each group rows and goes as follows. Aph=
Aphididae, Ctuj= C. tujafilina, Cstr= C. strobi, Cced= C. cedri, Tsal= T. salignus. On the bottom, lines underlining the genes
involved in the pathway leading to the compound specified by the name underneath the line. For amino acids, their three letter
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Regarding B vitamins and other cofactors, we found that BCs is unable to synthesise vitamin B2 and B7, similarly to the
other Buchnera from Lachninae aphids. Unlike the Lachninae co-obligate endosymbiotic systems, we determined that SsCs is
unable to takeover the role of synthesising these two vitamins. The vitamin B2 pathway would be interrupted due to the loss of
a 5-amino-6-(5-phospho-D-ribitylamino)uracil phosphatase enzyme, preserving only a yigB pseudogene (interrupted by various
stop codons and frameshifts). From the genes needed to complement Buchera’s truncated biotin pathway (bioA, bioD1, and
bioB), it preserves only bioB. However, it still retains identifiable pseudogenes for bioA and bioD1. All other pathways for
B vitamins and other cofactors are degraded, except for that of lipoic acid. On the other hand, and as previously reported by
Meseguer et. al.41, Sodalis is indeed able to takeover the role as the provider of both riboflavin and biotin, thus being essential
for the beneficial symbiosis.
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Figure 4. B-vitamin biosynthetic metabolic capabilities of obligate symbiotic consortia of different aphid species.
Diagram summarising the metabolic capabilities of the fixed endosymbiotic consortia of co-obligate symbiotic systems of
Lachninae aphids. For comparison, a collapsed representation of Aphididae Buchnera-only systems is used as an outgroup. The
names of genes coding for enzymes involved in the biosynthetic pathway are used as column names. Each row’s boxes represent
the genes coded by a symbiont’s genome. At the right of each row, the genus for the corresponding symbiont. Abbreviations
for the aphids harbouring the symbionts is shown at the left of each group rows and goes as follows. Aph= Aphididae, Ctuj=
C. tujafilina, Cstr= C. strobi, Cced= C. cedri, Tsal= T. salignus. On the bottom, lines underlining the genes involved in the
pathway leading to the compound specified by the name underneath the line.

Discussion

Genome degeneration is a common characteristic of vertically-inherited mutualistic symbionts of insects90, 91, and is particularly
marked in ancient nutritional mutualistic endosymbionts33, 48, 52, 92. These genome deterioration can eventually affect pathways
involved in the symbiont’s essential functions, such as those involved in essential-amino-acid or B-vitamin biosynthesis. When
this occurs, the symbiont is either replaced by a more capable symbiont, or is complemented by a new co-obligate symbiont15.
As members of the Lachninae subfamily, Cinara aphids depend on both Buchnera and an additional symbiont for the supply of
essential nutrients, namely EAAs and B-vitamins35, 37, 41. While S. symbiotica is the most prevalent and putatively ancestral
symbiont, it has been replaced by other bacterial taxa in several lineages41. Cinara strobi represents such a case, in which the
putatively ancient co-obligate S. symbiotica symbiont has been replaced by a Sodalis strain.

Here, we further explored the composition and the role of the fixed symbiotic cohort of the aphid C. strobi. Through
the re-analysis of previously reported 16S rRNA NGS amplicon data from geographically distant C. strobi populations plus
additional ones, we found that not only Buchnera and Sodalis were fixed, but also S. symbiotica. This third symbiont was
previously not deemed as fixed given the low abundance (¡1%) of NGS amplicon reads assigned to this taxon, consistent with
the low amount of whole-genome sequence data belonging to S. symbiotica41. Thus, the persistent association of this symbiont
across populations of C. strobi points towards this being a non-facultative, hence obligate, symbiotic relationship.

Through whole-genome sequencing of the genome of SsCs, we have provided evidence that SsCs could well be a missing
link between the loss of function of a symbiont and the acquisition of a new and more capable one. In spite of SsCc showing
a large genome (2.41 Mbps), it displays drastic genome pseudogenisation (around 26.3% coding density). This drastically
contrast both the ”early” co-obligate SsCt (∼2.49 Mbps and 53.4% coding density) and the ”modestly” shrunk co-obligate
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SsCc (1.76 Mbps and 39.0% coding density)42. This means that the majority of SsCs’ genome is made up of pseudogenes
and ”genomic wastelands”. This would place the genome in an intermediate state of reduction, before losing bigger chunks
of it and thus, evolving a smaller-sized genome. The evolutionary relation SsCs keeps with other S. symbiotica symbionts is
not clear. Consistent with a previous phylogenetic reconstruction36, we found that, through the use of inference methods that
alleviate long branch attraction artefacts, the relationships among S. symbiotica lineages is not well resolved. This could be due
to the extremely long branches, seen in SsCs, SsCc, and SsTs; when compared to SsAp, SsCt, and other free-living Serratia;
which confounds phylogenetic signal (see87). This makes it difficult to interpret the evolutionary origin and relationships of S.
symbiotica endosymbionts from phylogenetic data.

G+C skew in transitional genomes from some endosymbiotic lineages show an altered pattern, when compared to free-
living relatives9 or long-term highly-reduced endosymbionts36, 52. This perturbation may result from recent chromosome
rearrangements likely due to recombination events between repetitive elements, namely ISs9. The presence of a typical pattern
of polarised nucleotide composition in each replichore of SsCs (fig. 2A) points towards long-term genome stability, consistent
with the lack of functional mobile elements. This G+C skew pattern is not observed neither in the facultative SsAp nor the
co-obligate SsCt (supplementary fig. S1, Supplementary Material online). Therefore, the G+C skew pattern in SsCs, together
with its highly degenerated genome and the fixed presence of S. symbiotica in different aphid populations, hints at both a
long-term obligate association and a vertical transmission of the symbiont in C. strobi.

When a symbiont replacement occurs, it is expected that the new symbiont will replace the symbiotic functions of the
former one. This is seen in different mono- and di-symbiotic systems observed in weevils93, aphids41, 94, 95, mealybugs96, 97, and
several Auchenorrhyncha46, 98, 99. As observed in all other currently sequenced Buchnera from Lachninae aphids, BCs is unable
to provide two essential B vitamins: biotin (B7) and riboflavin (B2). In the case of C. strobi, Meseguer et. al.41 found that
Sodalis was capable of supplementing this deficiencies, thus making this fixed symbiont essential for both Buchnera and the
aphid. Here, we have found that these two fixed symbionts indeed are together capable of producing all EAAs and B vitamins
for their aphid host and each other. When looking at SsCs, the third fixed symbiont in C. strobi, we found that it is unable
to independently synthesize any of the aphid’s essential nutrients. This suggests that this symbiont is no longer contributing
to the co-obligate nutritional endosymbiotic consortium in C. strobi but it has persisted in the aphid regardless its metabolic
dispensability.

The genome of SsCs also reveals that a massive genome reduction does not necessarily preclude the symbiont’s replacement.
The low amount of intact CDSs that SsCs preserves could be explained by the fixation of Sodalis as a co-obligate symbiont.
The long-term association with this new symbiont would thus relax selective pressure on keeping a number of genes, namely
those that are redundant. This pattern of gene loss following the acquisition of a companion symbiont can be seen in at least two
co-obligate systems: Buchnera+secondary in aphids36, and Tremblaya+secondary in mealybugs96 (see15). It is worth noting the
retention of a mismatch repair system in SsCs, which is involved in the detection of non-Watson-Crick base pairs and strand
misalignments arising during DNA replication100. However, the retention of this system does not, to our knowledge, help
explain the retention of a large genome with such a low coding capacity. This retention could rather partly explain the lack of
an extreme A+T-biased genome (see14), such as the ones held by SsCc and SsTs.

Taken together, the evidence points towards a di-symbiotic co-obligate system in C. strobi, with the two co-obligate
partners being Buchnera and Sodalis. Based on an ancestral reconstruction of symbiotic associations in in Cinara41, this case
would constitute one of secondary co-obligate symbiont replacement. At some point in the lineage of C. strobi, the putative
ancient secondary co-obligate S. symbiotica symbiont would have been metabolically replaced by the new and capable Sodalis.
Weather the inactivation of the genes involved in the de novo synthesis of both riboflavin and biotin happened before the
acquisition of Sodalis (rescue) of after it (takeover) through relaxed selection on the retention of those genes, remains unclear.
Following this loss of symbiotic function, S. symbiotica would have continued to thrive within the aphid and be vertically
inherited from mother to offspring. The perpetuation of S. symbiotica in C. strobi could hypothetically be a collateral result of a
fine-tuned system of symbiont inheritance in the aphid. A similar case could be made for Westeberhardia, the putative ancient
endosymbiont of at least some Cardiocondyla ants101. In Cardiocondyla obscurior, the symbiont inhabits the cytoplasm of
bacteriocytes and possesses a very small genome (532.68 kbp). Its genome lacks intact pathways for the biosynthesis of any
EAA or B vitamin, but codes for 4-hydroxyphenylpyruvate. This last can be converted intro tyrosine by the ant host, thus
the symbiont would hypothetically contribute to cuticle formation during the pupal stage. Interestingly, the authors report on
a natural population that has lost this symbiont and seems to thrive in the laboratory (at least under conditions including ad
libitum protein provisioning). This reflects Westeberhardia has possibly been retained in other populations despite its apparent
dispensability. Thus, the loss of an otherwise long-term symbiont like SsCs would require mutational loss of it and subsequent
fixation through drift.
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Conclusion
Based on the genome-based metabolic analysis of the pathways involved in the synthesis of EAAs and B-vitamins, we have
found that only Buchnera and Sodalis are required for the provision of these nutrients to the aphid. S. symbiotica, the third fixed
symbiotic partner, does not seem to be contributing towards the mutualistic consortium, suggesting that it has effectively become
a ”freeloader” which likely evolved from an ancient co-obligate lineage. Our results reveal that after an obligate symbiont’s
metabolic-based replacement, the formerly essential associate can be perpetuated in a consortium despite its dispensability.
Also, the genome of SsCs evidences that a long-term symbiont can retain a rather large genome despite its extreme low coding
density. We expect the exploration of other Buchnera+S. symbiotica co-obligate systems from closely related lineages to
C. strobi will further illuminate the genome reduction process undergone by this symbiont as well as the reasons behind its
overstay as a ”freeloader” in this aphid species.
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B-Vitamin Independent Metabolic Convergence among Gammaproteobacterial Obligate Endosymbionts from Blood-
Feeding Arthropods and the Leech Haementeria officinalis. Genome Biol Evol 7, 2871–2884 (2015). URL http:
//gbe.oxfordjournals.org/lookup/doi/10.1093/gbe/evv188.
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