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Abstract.  

Alloreactivity compromising clinical outcomes in stem cell transplantation is observed despite HLA 

matching of donors and recipients. This has its origin in the variation between the exomes of the two, 

which provides the basis for minor histocompatibility antigens (mHA). The mHA presented on the HLA 

class I and II molecules and the ensuing T cell response to these antigens results in graft versus host 

disease. In this paper, results of a whole exome sequencing study are presented, with resulting 

alloreactive polymorphic peptides and their HLA class I and HLA class II (DRB1) binding affinity 

quantified. Large libraries of potentially alloreactive recipient peptides binding both sets of molecules 

were identified, with HLA-DRB1 presenting an order of magnitude greater number of peptides. These 

results are used to develop a quantitative framework to understand the immunobiology of 

transplantation. A tensor-based approach is used to derive the equations needed to determine the 

alloreactive donor T cell response from the mHA-HLA binding affinity and protein expression data. This 

approach may be used in future studies to simulate the magnitude of expected donor T cell response 

and risk for alloreactive complications in HLA matched or mismatched hematopoietic cell and solid 

organ transplantation.      
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Introduction.  

Graft-versus-host Disease (GVHD) represents a significant cause of morbidity and mortality in 

stem-cell transplant (SCT) recipients1. GVHD in an HLA-matched allogeneic stem cell transplant is the 

archetype of an adaptive immune response with donor derived T cells responding to recipient antigens 

presented on shared HLA class I and class II antigens2, 3, 4. Since the beginning, HLA matching has been 

the bedrock principle of donor selection in SCT, and this is particularly so when the donor is not a close 

relative5, 6. Improvements in the fidelity of HLA matching between unrelated transplant donors and 

recipients has yielded incremental benefits in patient outcomes, with improvements in survival resulting 

from both a reduction in GVHD risk as well as reduction in graft loss and optimization of relapse risk. 

Nevertheless, GVHD remains a therapeutic challenge, and there is little that can be done to predict the 

outcomes of specific donor-recipient pairs.     

This challenge may be surmounted by accounting for genomic variation between the donors and 

recipients which yields the peptides presented on HLA molecules, known as minor histocompatibility 

antigens (mHA)7, 8. While mHA have had a recognized pathophysiologic role in allogeneic SCT outcomes, 

especially in GVHD pathogenesis, it has not been possible to apply the notion to clinical practice because 

mHA characterization is a cumbersome process9, 10, 11, 12. Two developments in the past decade have 

changed this situation. One, the emergence of next generation DNA sequencing techniques, such as 

single nucleotide polymorphism mapping 13, 14 and whole exome sequencing (WES) to identify the 

potential antigenic differences15, 16. The second is the development of machine learning algorithms 

which allow determination of the binding affinity that different antigens may have for specific HLA 

molecules17,  18, 19. These two techniques have been combined to develop algorithms that may be used to 

determine the complex array of recipient antigens that a given donor T cells may encounter in a 

recipient20, 21. This knowledge of mHA in turn may allow simulation of alloreactive T cell responses in 

equivalently HLA matched SCT donor-recipient pairs (DRP) to identify donors with optimal alloreactivity. 

Studies reporting exome-wide or other genomic disparities in donors and recipients, have 

demonstrated a large body of DNA sequence differences between transplant donors and recipients, 

independent of relatedness and HLA matching14, 15, 16. These large genomic differences have been 

translated to peptides and HLA affinities for the resulting peptides determined20. This too yields large 

libraries of antigens which may be analyzed by either simulating alloreactive T cell responses or by 

statistical methodology to determine predictive power for alloreactive T cell responses22, 23. To date, 
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these models have examined recipient peptide presentation on HLA class I and studied the resulting 

associations.  

As noted above, HLA-matched SCT remains fraught with uncertainty as patients with HLA-

matched donors continue to have disparate outcomes24, 25. A quantitative model of transplant 

alloreactivity would allow a more complete understanding of the molecular immunology of SCT, help to 

identify the most suitable donors for specific recipients, and allow personalized determination of the 

optimal level of immunosuppression. A central assumption in one such quantitative model, the 

dynamical system model of T cell responses, is that alloreactivity (such as GVHD) risk is a function of the 

cumulative mHA variation in the context of the HLA type of each donor-recipient pair (DRP), and may 

thus be regarded as an alloreactivity potential for that pair15, 20, 26. Clinical outcomes partially depend on 

the cumulative donor T cell responses to the burden of polymorphic recipient peptides. Previous work 

applying this dynamical system model to HLA class I presented molecules demonstrates that there are 

large differences in the simulated T cell responses between different HLA matched DRP22, 23. Herein, 

previously reported findings of WES of SCT DRP are extended with an analysis of the HLA class II 

presentation of polymorphic peptides.  A comparison of the difference in magnitude of the derived 

peptide libraries presented on the HLA class I and HLA class II molecules in the DRP is presented. Next a 

mathematical model is developed which may allow the development of a new approach to the study of 

such large data sets and their eventual application to clinical medicine. The previously reported 

dynamical systems model of alloreactive T cell responses is generalized to include both HLA class I and 

HLA class II presented peptides. The model is expanded to account for different conditions T cells may 

be subject to, specifically their own state of antigen-responsiveness and the cytokine milieu. This 

quantitative perspective may, in the future, permit successful simulation of alloreactive T cell responses 

between different donors and recipients in SCT.  
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Methods. 

After obtaining approval from the institutional review board at the Virginia Commonwealth University, 

whole exome sequencing (WES) was performed on previously cryopreserved DNA samples from 77 HLA-

matched DRP (Supplementary Table 1) as previously described15, 22. Briefly, whole exome sequences 

from each DRP were compared with each other, as well as to a standard reference exome. All 

nonsynonymous single-nucleotide polymorphisms (nsSNPs) present in the recipient and donor were 

identified and recorded in the .vcf format. Subsequent processing of the .vcf files was done using 

custom python scripts to remove synonymous mutations, eliminate duplicates, and record the 

coordinates of the SNPs. Non-synonymous SNPs that exist in the recipient but not in the donor were 

recorded and identified as potential source of alloreactive antigens. Non-synonymous, single nucleotide 

polymorphisms (nsSNP) in each DRP would correspond to potential antigens due to the resulting amino 

acid substitution in oligopeptides which bind HLA in that DRP (Figure 1A).  

To derive the peptide sequences for this study, an average peptide length of 15 amino acids for HLA 

class II HLA was used27.  HLA class I bound 9-mer peptides were generated as previously described20. 

Each of the nsSNPs could potentially be incorporated into the alloreactive peptide of 15 amino acids. 

The position of the nsSNP encoded polymorphic amino acid in the peptide could vary from the N-

terminus to the C-terminus of the peptide. The possible library of peptides will thus be contained within 

a 29-mer oligopeptide (Figure 1B). Thus, there are 15 different HLA-II binding peptides that could 

potentially be generated from each nsSNP identified by WES. ANNOVAR was used to generate 29-mer 

peptides for each nsSNP respectively to study HLA class II presentation. In ANNOVAR, a sliding window 

method was used with the “seq_padding” option of the “annotate_variation” function to generate the 

15 different 15-mers resulting from each nsSNP. Tissue expression of the proteins from which the 

peptides were derived was determined as previously described23.  

Once the peptide library was created for each DRP, the HLA types for the recipient were tabulated from 

the medical records. For class II HLA, HLA-DRB1 alleles for each patient were recorded. Each patient’s 

HLA-DRB1 allele types (and HLA class I alleles, as previously described) along with peptide library were 

analyzed using NetMHCIIpan 2.0 to derive the binding affinity of each peptide-HLA complex. This was 

given as an IC50 (half-maximal inhibitory concentration) for each peptide, measured in nano-Molar. This 

measure of binding affinity provided the concentration of peptide required to displace 50% of a 

standard peptide from the HLA type to which it would have been bound. 
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Peptides present in the recipient but absent in the donor, generated from the ANNOVAR sliding window 

with IC50 values for all the different patient HLA types were tabulated and duplicates were deleted. Any 

peptide with the same amino acid sequence but different SNP position along the peptide must have 

generated from a different area of the exome and was therefore retained in the enumeration. When 

compiling the peptides binding to different HLA alleles, the patients with homozygous allele for DRB1 

had their peptide values doubled to simulate having double the normal number of allele-specific HLA 

bound peptides presented. Analysis of the number of strongly bound (SB; IC50 £50 nM) and bound 

peptides (BP; IC50 £500 nM) for each patient-HLA allele combination was done by listing the peptides in 

descending order of binding affinity, as measured by IC50 levels (Table 1A & 1B). HLA class I and HLA 

class II bound peptides were compared numerically for this perspective paper.  
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Results 

HLA class II bound alloreactive peptides 

Whole exome sequencing (WES) was performed on the cohort of 77 donor recipient pairs (DRP) 

of which 75 were evaluable for this analysis. SNPs were identified, following which alloreactive peptides 

and HLA-DRB1 binding affinities were derived. HLA matched unrelated donor (MUD) DRP exhibited a 

higher number of HLA-DRB1-BP; mean: 39,584 alloreactive peptides in HLA matched related donors 

(MRD) vs. 67,987 in MUD (t-test P <.001). When only the SB peptides are analyzed, this trend while 

present no longer remains statistically significant, mean SB 6,077 alloreactive peptides in MRD vs. 9,535 

in MUD (p=0.168) (Figure 2A & 2B).  This is consistent with the larger burden of exome variation in MUD 

transplant recipients. Significantly more MUD DRP had BP > the median 52,983 peptides for the whole 

cohort (34/49 vs. 4/26, Fishers Exact test p<0.0001), as well as SB >4,245 (30/49 vs. 8/26, p=0.012), 

when compared to MRD DRP. There was marked variability in the HLA DRB1 allele binding affinity in the 

various peptides as well as the tissue expression of the proteins from which peptides were derived 

(Table 1A). This is likely an effect of the randomness observed in exome sequence variation, and the 

variation in HLA binding affinity of the resulting alloreactive peptides, and illustrates the potential for 

variability in alloreactive antigen presentation between different donors and recipients who undergo 

SCT. 

Comparing HLA class I and II bound alloreactive peptides 

The HLA class II binding peptides libraries were compared to previously-determined numbers of 

BP and SB on all Class I HLA alleles for the same patients. On average, the number of alloreactive 

peptides bound to the two HLA-DRB1 alleles with an IC50<500nM, was far greater than the number 

bound to the HLA class I loci (all 6 HLA-A, B & C alleles). Significantly more peptides bound HLA DRB1 

molecules compared to all the HLA class I molecules put together; BP for HLA DRB1 median 52,983 

compared with BP for all HLA class I molecules 4,532, yielding a median ratio BP-HLA class I/BP-HLA 

DRB1 per DRP of 0.09 (0.03-0.29; t test p<0.0001). The same trend was observed with SB with a median 

ratio of 0.23 per DRP (0.02-4.48; p =0.0001) (Figure 3A). There was correlation between the number of 

BP and SB for both HLA class I and to a lesser extent in HLA class II molecules in the DRP studied; 

Pearson correlation coefficient, R 0.71, p<0.0000001 for HLA DRB1 & 0.94, p <0.0000001 for all HLA class 

I molecules together (Figure 3B). Nevertheless, HLA class II molecules presented an order of magnitude 
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greater number of peptides. There was little overlap in the binding affinities of various alloreactive 

peptides to different HLA class I molecules (Table 1B).  The difference observed in HLA class I and II 

antigen presentation is likely a consequence of the larger peptide length presented on the dimeric HLA 

class II molecules. This increases the size of the peptide pool on offer (9 alloreactive peptides/SNP for 

HLA I vs. 15 for HLA II), and consequently the likelihood that alloreactive peptides will be presented. 

Tissue expression of the proteins from which the peptides presented on HLA class I, were derived was 

also determined and marked variation was observed in the RPKM values of the proteins of origin (Tables 

1A & 1B). 

 One DRP (# 26), was analyzed to determine the likelihood of peptide presentation from the 

same proteins on both HLA class I and II molecules.  This would result in activation of both CD4+ and 

CD8+ T cells in the tissues expressing that protein, and greater potential for tissue injury.  A comparison 

of strongly bound peptides (IC50 £50nM) demonstrates that this DRP had 143 genes, that yielded 

peptides binding both HLA class I and HLA class II. Different degrees of sequence of homology between 

these 9-mer and 15-mer peptides was observed (Table 2 & Supplementary Figure 1). This overlap 

suggests that if the degree of exome sequence variation in a DRP is sufficiently large, it is plausible that 

most tissues will potentially present mHA to both helper and cytotoxic T cells.   

Demographic factors influencing HLA class II bound alloreactive peptides 

Finally, demographic factors, including race and gender, that impact genetic disparity were 

analyzed. African-American vs. Caucasian DRP demonstrated a non-significant trend for increased HLA-

DRB1 bound mHA in African American DRP, for both BP (74,179 vs. 53,735 in Caucasian patients; 

p=0.075) & SB peptides (11,972 vs. 7,503; p=0.36). There was no significant difference in the number of 

BP or SB in the gender-matched male or female DRP, not accounting for Y chromosome disparity in male 

patients receiving transplant from a female donor.   
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Discussion 

The data presented in this paper illustrate the large potential that HLA class I and especially HLA 

class II molecules have for recipient peptide antigen presentation in the context of allogeneic SCT. The 

magnitude of this antigen burden across the patient population makes it difficult to predict which 

patient will have a poor outcome. However, while in and of themselves these parameters may not yet 

be definitive for GVHD prediction, given the uniformly large magnitude of mHA identified in the patient 

cohort examined, these measures if appropriately analyzed may give insight into the quantitative 

principles of the T cell immune response. The following discussion gives a quantitative perspective of the 

impact the presentation of recipient antigens on HLA class I and II molecules may have on donor T cell 

responses following allogeneic SCT. The Dynamical System model of alloreactive T cell growth previously 

developed for HLA class I-presented-mHA is further developed for use in future studies to simulate 

universal alloreactive T cell responses.   

An important clinical question in transplant immunology is how data from next generation 

sequencing (NGS) and novel machine-learning algorithms can be used to help identify optimal donors 

for SCT. To do this it is imperative to understand the quantitative principles at work in donor immune 

response and use these principles to develop methodology to simulate transplants with different donors 

in silico. Such simulations may then be used to identify both the ideal donor and the level of 

immunosuppression needed for optimal clinical outcomes. The mHA prediction methodology presented 

previously and extended herein, augmented by analysis of peptide cleavage sites to more accurately 

determine the probability of the generation of specific HLA binding alloreactive peptides may allow this 

prediction in the future28. As a first step towards this goal, it was shown that donor CD8+ T cell growth 

simulations may identify patients at risk for moderate to severe GVHD, however these associations were 

relatively weak23. While, one possible explanation for this is the stochastic nature of alloreactive antigen 

presentation on HLA molecules (both alloreactive and non-alloreactive peptides may bind HLA), an 

important limitation in the special case of the model described (HLA class I antigen presentation) was its 

lack of information on HLA class II mHA presentation and consequent CD4+ helper T cell responses in 

the donor-recipient pairs involved. Normally, CD4+ T helper cells play an important role in the homing of 

cytotoxic T cells to infected tissues, and in the case of GVHD to the target tissues29, 30, 31. In the transplant 

setting, T helper cells will recognize their target alloreactive antigens bound to HLA class II molecules; 

notably, these differ from the antigens recognized by CD8+ cytotoxic T cells and presented by HLA class 

I. The T helper cells initiate signaling by secretion of appropriate cytokines (IFN-g, IL-2, IL-12, IL-17 etc.) 
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and set up the homing signal for the cytotoxic T cells to invade the target tissue (Figure 4), which cause 

tissue injury through direct cytolytic activity. In the present study we estimate the magnitude of 

alloreactive antigen burden encountered by donor cytotoxic T cells and helper T cells in HLA matched 

DRP. This estimate may allow a more accurate calculation of the likelihood that a patient may develop T 

cell mediated tissue injury following SCT, then was previously possible23.  

T cell clonal proliferation in response to mHA-HLA complexes: The logistic equation of growth    

Previous work has shown there to be far greater diversity in the T cell repertoire of CD4+ T cells 

than in the CD8+ T cells in the post-transplant period in both allogeneic and autologous SCT32.  In fact, 

CD4+ T cell diversity has been found to be about 50 times greater than CD8+ T cell diversity33.  The 

relative magnitude of antigen presentation by HLA class II compared with HLA class I molecules allows 

one to understand this difference in clonal diversity between the helper and cytotoxic T cells. The ability 

of HLA class II molecules to present larger peptide sequences is related to their structure compared to 

HLA class I molecules. The antigen-binding region of HLA Class II molecules consists of both an invariant 

α and a variable β domain, whereas that of HLA Class I molecules contains only α domains resulting in 

the binding of a wider range of peptide sequences6  34. This differential antigen presentation results in 

the quantitative difference observed between the two classes of T cells and may be understood using 

the dynamical systems approach. In this model, growth equations have been used to simulate the 

cytotoxic T cell growth in response to HLA class I presented antigen,   

𝑁"	(%&)=
(().+(,&)

-).&)∗01(,&)	
2(().+(,&)

-).&)30456(,&)7(8
594-)):;

   ... [1] 

This iterating equation describes the logistic growth of a CD8+ T cell clone Tx in a polyclonal T 

cell graft infused into a recipient (Figure 4 & Supplementary Table 2). N0 (Tx) is the T cell count at the time 

of transplantation (assumed to be 1 for this equation), Nt (Tx) is the T cell count after t iterations (time) 

following SCT. Nt-1 (Tx) represents the T cell count for the previous iteration and K is the constant that will 

determine the T cell count at the asymptote (steady state conditions after infinite iterations), K (Tx), 

representing the maximum T cell count the system would support (carrying capacity); r is the growth 

rate. In the logistic equation, the steady state count for each T cell clone (KBZ) will be proportional to the 

product of the binding affinity of the target peptide mHA (peptide y) for the HLA molecule (afmHA = 

1/IC50 in Koparde et al, in this paper, By for peptide y) and the affinity of T cell clone, Tx’s T cell receptor 

for the mHA-HLA complex (afTCR = 1/IC50 in Koparde et al, now Zx for T cell clone Tx)23. In this model, 
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the parameter r, determines the growth rate of the specific clone and reflects the effect of the co-

stimulatory molecules and cytokines driving T cell proliferation. This iterating equation gives 

instantaneous T cell count (magnitude of the proliferative response) in response to antigens presented. 

The tissue expression of proteins from which peptide y is derived (Py) is a coefficient/multiplier for the 

steady state T cell population KBZ, and may be estimated by RNA sequencing techniques, and reported 

as Reads or Fragments Per Kilobase of transcript per Million mapped reads (RPKM or FPKM)35.  In real-

world situations the term Py will have a time modifier, et, associated with it, as protein expression and 

antigen amount declines over time because of tissue injury. This time relationship will be ignored for 

simplicity at this time. It is important to recognize that in HLA class I-presented antigen-driven T cell 

expansion, this term is utilized in its entirety given that HLA class I molecules are loaded using peptides 

derived from proteins present in the cytosol. This however is not the case for HLA class II molecules, 

which present antigens endocytosed from the extracellular environment36. This means that when 

calculating helper T cell growth, the term P will be modified to P.c, with a constant, c, reflecting the 

attenuation of antigen concentration given its ‘scavenged’ nature as opposed to direct cytosolic 

presence, in other words, 0 < c < 1 (for CD8+ T cells, c=1). Thus, the equation for determining helper T 

cell growth will take the general form,  

𝑁"	(%&)=
(()<.+(,&)

-).&)∗01(,&)	
2(()<.+(,&)

-).&)30456(,&)7(8
594-)):;

      … [2] 

Adjusting the variable P means that the absolute magnitude of the steady state T cell population 

for each of the dominant (high-ranked) helper T cell clones will be smaller than that for each of the 

dominant cytotoxic T cell clones, nevertheless because of the greater number of antigens presented by 

HLA class II molecules there will be a greater number of CD4+ T cell clones, and thus greater clonal 

diversity of helper T cells when compared to cytotoxic T cells. This also means that in a Power law clonal 

frequency distribution analysis37, 38, the contribution of the highest-ranking (most numerous) T cell clones 

to the entire repertoire will be higher with cytotoxic T cells. Conversely, in the T helper cell population 

there will be a larger number of high-ranking clones which contribute a larger component of the overall 

repertoire.  Given the greater number of antigens there may be greater competition between the clones, 

which in a model accounting for competition between clones will lead to slower growth of helper T cell 

clones, a relatively frequent clinical observation39. Also, given the restriction of HLA class II molecules to 

antigen presenting cells the absolute magnitude of steady-state helper T cell clonal populations will be 

smaller; however, since HLA class I molecules are expressed on all nucleated cells, cytotoxic T cells get a 
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proliferative signal from many different cell types, therefore steady state T cell clonal counts can be 

further augmented. From an evolutionary and T cell response sensitivity and specificity standpoint, it is 

logical that the cytotoxic T cell-recruiting signal provided by CD4+ T helper cells should be more sensitive, 

triggered by a greater variety of antigens, but when it comes to actual tissue destruction by CD8+ 

cytotoxic T cells, a more fine-tuned HLA class I bound, shorter peptide with greater specificity required 

for presentation, provides the necessary stimulus. This would come from the prevention of non-specific 

binding of peptide antigens to the more ‘discriminating’ HLA class I molecules.   

Quantifying mHA-HLA-TCR interactions: On matrices, vectors & tensors  

Following the above general discussion about T cell behavior, it is necessary to develop a model 

that will account for the potentially large arrays of antigens being presented in allogeneic SCT. As noted 

earlier, immunotherapy and SCT are fraught with the risk of treatment failure either in the form of 

relapsed malignancy or immune mediated normal tissue injury (GVHD or graft rejection). Various 

outcome prediction algorithms and models have been developed using increasingly sophisticated 

characteristics studied statistically40, 41. These may allow improvement in clinical outcomes prediction, 

but often do not provide mechanistic insight into the reason for the observed clinical outcomes. Further, 

while principles of immune therapy and the mechanisms of T cell action are well known from work on 

mouse models and in vitro42, 43, when the antigenic complexity encountered in vivo in human SCT 

recipients is considered, the existing models do not reliably predict individual clinical outcomes. This is 

also true of the T cell repertoire that emerges following SCT.  

Nevertheless, mathematical methods are available that have long been used in physics to 

understand natural phenomenon and may be extrapolated to biological systems such as immune 

response modeling. For example, the concept of vectors and operators has been used to simulate 

aggregate T cell clonal responses to antigen arrays22, 23. However, this method is limited in that it 

requires identification of unique mHA-HLA and cognate TCR for application. To overcome this limitation, 

a related mathematical method, tensor analysis, may be used to simulate the immune responses to the 

vast library of tissue specific antigens presented by the entire spectrum of HLA molecules in an 

individual. In physics, tensors describe interaction between vector quantities and their components, so 

they enable determination of variation in vector magnitude and direction and subsequent mapping to a 

different ‘state’. In other words, tensors help describe vector transformation when multiple forces are 

acting upon an object, which itself may be a vector44, 45, 46. It is important to recognize that these 
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methods have been developed for use in ‘linear’ physical systems, however biological systems are 

seldom linear. They follow nonlinear dynamics such as Power laws and exponential growth patterns, 

which require development of methodology which can account for the complexity in biologic systems 

because of the multiplicity of variables encountered. It is for this reason that tensor methodology may 

lend itself to the study of the alloreactive immune response problem. In the example at hand, the donor 

T cell array infused into the recipient may be considered as a vector, which is modified by the interaction 

between the T cell receptors (TCR) on the donor T cell clones and the recipient mHA-HLA complexes and 

is transformed to a new state following SCT. The interacting TCR & mHA-HLA complex in this example 

may be considered as a tensor, modifying the T cell clonal vector. Tensors remain invariant in different 

frames of reference and in this application of the concept, the mHA-HLA-TCR interactions, determined 

by the protein sequences remain constant, regardless of tissues and individuals where the interactions 

may be occurring. In other words, the unique peptide sequences’ affinity to specific HLA molecules and 

TCR will remain the same across individuals and tissues. In essence, such an alloreactivity tensor 

comprised of recipient mHA and HLA, in the presence of donor T cell repertoire influences the relative 

growth of alloreactive T cell clones versus the non-alloreactive clones. Accordingly, clinical GVHD may or 

may not manifest.  

To understand this notion, consider a basic adaptive immune response to a recipient 

alloreactive peptide following SCT (or any other antigenic peptide); the first interaction is between the 

alloreactive recipient peptide and the HLA molecule resulting in the binding and presentation of the 

peptide on the HLA molecules (Figure 5). Consider two HLA molecules H1 and H2, and two peptides p1 

and p2, each recognized by only one of these two HLA molecules; a matrix may be constructed showing 

the peptides bound to the relevant HLA molecules47. The possible interactions between the peptides p1 

and p2 in a system of two HLA molecules H1 and H2, may be depicted in matrix form as follows.  

		=𝐻;𝑝; 𝐻;𝑝@
𝐻@𝑝; 𝐻@𝑝@

A = 	C1 0
0 1F	 … [3] 

The 0 and 1 represent conditionality of interaction between the peptides and HLA. The matrix 

on the left-hand side of equation 3 represents vector quantities, H1p1, H1p2, H2p1 or H2p2, which have a 

magnitude (binding affinity, expressed in 1/IC50, nM-1) and a ‘direction’ given by the specificity, i.e. 

unique affinity of the peptide for the HLA molecule. Given affinity of H1 for p1 and H2 for p2, this 

interaction yields an identity matrix. The interaction between the peptides and HLA molecules 
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constitute a matrix where peptide recognition and binding by an HLA molecule is represented by 1, and 

the converse situation by 0.  Thus, the numbers 1 & 0 represent the selectivity of peptides with a certain 

sequence (and commensurate length) for specific HLA and vice versa. These two alloreactive HLA-

peptide complexes may then be presented to donor T cell clones by the antigen presenting cells, (Figure 

4) and specific donor T cell receptors may recognize these unique HLA-peptide combinations and bind. 

In this example, TCR1 only recognizes H1p1 and, TCR2 only recognizes H2p2. The resulting matrices are 

given below 

=𝐻;𝑝; 𝐻;𝑝@
𝐻@𝑝; 𝐻@𝑝@

A . =𝑇𝐶𝑅; 0
0 𝑇𝐶𝑅@

A = =𝐻;𝑝;. 𝑇𝐶𝑅; + 𝐻;𝑝@. 0 𝐻;𝑝;. 0 + 𝐻;𝑝@. 𝑇𝐶𝑅@
𝐻@𝑝;. 𝑇𝐶𝑅; + 𝐻@𝑝@. 0 𝐻@𝑝;. 0 + 𝐻@𝑝@. 𝑇𝐶𝑅@

A  

= C1 + 0 0 + 0
0 + 0 0 + 1F = C1 0

0 1F = =
𝐻𝑝𝑇;,; 0
0 𝐻𝑝𝑇@,@

A… [4] 

The right-hand side of equation 4 is a tensor with two vector quantities, the affinity of HLA molecule for 

the peptide and the affinity of the TCR for the peptide-HLA complex, which may be summarized as 

follows 

=
𝐻𝑝𝑇;,; 0
0 𝐻𝑝𝑇@,@

A = 	=𝐵;	𝑍; 0
0 𝐵@	𝑍@

A = 	C1 0
0 1F			… [5] 

The matrix depicted in equation 5, is a tensor of the second rank with two vector quantities, i.e. 

the affinities B and Z (specific binding between HLA & peptide (B) and between HLA-peptide & TCR (Z)), 

which are depicted by HpT1,1 and HpT2,2. HpT in this case symbolizes the HLA molecules, peptides and 

TCR interacting with each other, and the subscripts 1 and 2 are called indices in tensor terminology, 

identifying interactions between specific molecules (e.g., p1 and p2). The identity matrix reflects the 

affinity of specific TCR for specific mHA-HLA combinations. It is to be noted that, the same peptides 

given above may bind other HLA molecules with a different affinity and there may be TCR which bind 

these alternative antigen complexes with different affinities, constituting different vectors (Figure 5A & 

5B). Along the same lines, a given peptide or TCR may interact with different partners yielding different 

vector components.  For example, in the above matrices, TCR1 may interact with both H1p1 and H1p2, 

the magnitude of the former will be 1 and the latter, 0. However, given the continuous nature of the 

IC50s observed for different peptides with different HLA molecules in the analysis presented in this 

paper it is unlikely that the vector magnitudes are going to be binary in nature. The well-known 

phenomenon of immune cross reactivity is an example of the vector components which are not binary48.  
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It is also important to note that the forces (vectors) represented by B (H1p1) and Z (TCR1) may be 

considered orthogonal (perpendicular) because their direction is imparted by the unique recognition of 

peptide sequence by HLA, and that of peptide-HLA complex by TCR respectively. Thus, the growth of the 

T cell clone resulting from this interaction may be considered a ‘cross’ product of these two forces (Sin 

90°=1, for orthogonal vectors) (Figure 5C). 

T cell vector transformation: Enter Operators  

In the SCT context the alloreactivity tensor, HpT, determines the magnitude (and direction) of T 

cell clonal growth vector in response to antigens. T cell clones with receptors TCR1 and TCR2 

respectively will grow in response to the HpT Tensor. It is to be noted that the HLA-peptide driven T cell 

clonal growth vector is distinct from the TCR affinity vector for HLA-peptide complex, even if one 

considers that mHA-HLA affinity vector drives T cell clonal growth of the relevant TCR bearing clone. This 

relationship is analogous to applied force, resulting in motion at a certain velocity and consequent mass 

displacement which are distinct vector quantities pointing in the same direction (with time being the 

scalar distinguishing between them; T cell clonal growth is also a time-dependent function). In the above 

example, the T cell clonal growth vectors, comprising the two T cell clones bearing the T cell receptors 

TCR1 and TCR2, are termed T1 and T2 respectively. These constitute a vector matrix, which is 

transformed over time t by the HpT tensor to the vectors T1’ and T2’.  

=𝑇;′𝑇@′
A 	= O

O"
𝐿 =𝐵;	𝑍; 0

0 𝐵@	𝑍@
A ∗ =𝑇;𝑇@

A … [6] 

In equation 6, the vector =𝑇;𝑇@
A 	𝑖𝑠	transformed by the HpT tensor and the logistic operator, O

O"
𝐿 

previously defined as the logistic equation for T cell growth, which incorporates the term ByZx included 

in the HpT tensor,   

𝑁"	(%&)=
(().<.+(,&)

-).&)∗01(,&)	
2(().<.+(,&)

-).&)30456(,&)7(8
594-)):;

  … [2] 

T cell growth: the effect of co-stimulation, checkpoints and cytokines  

In equation 2 the term r quantifying growth rate is an aggregate measure of different influences 

on T cells and may be considered a scalar multiple of a tensor quantity. This term represents the 
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cumulative growth effect of the costimulatory and inhibitory molecules present on the T cells and the 

cytokines present in the environment. In the dynamical system model of T cell growth, the T cell steady 

state numbers are determined by TCR-mHA-HLA affinity (BZ), also called ‘Signal 1’.  A second critical 

influence on T cell growth is provided by ‘Signal 2’ mediated by the costimulatory molecule CD28 and 

inhibitory molecule CTLA4 (S2) may be mathematically represented by, CD28 = 1, CTLA4 = 0. 

Additionally, the checkpoint mechanism (CP) comprising the PD1 receptors, if engaged may be 

represented by a variable valued at 0 because no T cell growth will occur, and when absent, valued at 1. 

Finally, ‘Signal 3’, (S3) represents the effect of cytokines on T cell growth (Supplementary Figure 2)49, 50, 

51. Considering that all these variables contribute to T cell growth, the term r is therefore a composite of 

the following factors,  

𝑟 = 𝐶𝑃(𝑆2 ∗ 𝑆3) … [7] 

Solving this equation for lack of PD1 engagement (1) and the presence of CD28 expression (1) yields,  

𝑟 = 1(1 ∗ 𝑆3) 

𝑟 = 𝑆3 

Solving the equation for CTLA4 expression or PD1 engagement gives r a value of 0, which yields 

e0 = 1 in equations 1 & 2, consistent with suppression of T cell growth. In other words, the presence of 

PD1 engagement by PDL-1 or the engagement of CTLA-4 instead of CD28, by CD80 on APC, changes r to 

zero, eliminating the effect of time t, which changes the value of e to 1 (in equation 2), leading to growth 

arrest of the T cell clone.  

As for S3, the cytokine mediated signal may also be considered a second order tensor quantity, 

consisting of a matrix with cytokines and cytokine receptor vectors, because the cytokines and their 

receptors, have different magnitudes and varying receptor specific effects (directionality) on T cell 

growth and differentiation. Ignoring the di- or trimerization of cytokine-receptor protein subunits, a 

simplified version of the cytokine tensor may be constructed as follows, 

C𝐼𝐿12 0
0 𝐼𝐿10F . C

𝐼𝐿12𝑅	 0
0 −𝐼𝐿10𝑅		F 	= 	 C

𝐼𝐿12. 𝐼𝐿12𝑅 0
0 −𝐼𝐿10. 𝐼𝐿10𝑅F ….. [8] 
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This is the cytokine tensor, Ck, with the example showing the interaction between IL-12 and IL-

10 and their respective receptors. It should be noted that cytokines may bind related receptors with 

different affinities, providing different vector components. The negative sign means a growth 

suppressive effect, the net effect of cytokines can either be negative or positive and as a multiple of the 

CD28-PD1 expression term, the Ck can alter the magnitude and direction of effect of the exponent in 

equation 2 (by changing the symbol of r from - to +). Equation 7 therefore is modified to  

𝑟 = 	𝐶𝑃(𝑆2 ∗ 𝐶𝑘) …. [9] 

Further complicating these estimations from a physical standpoint at a cellular level in equation 

8, cytokine exposure will be variable since these effects are ‘local’ to the tissue or lymph nodes. 

Cytokines likely depend on diffusion via capillary action in the extracellular matrix to create a ‘field’ in 

which the T cells experience the cytokine effects. These effects on growth are of an exponential nature 

because of r being an exponent in equations 1 & 252. The receptor expression levels also vary on 

different cells and confer a direction by means of influencing differentiation and functional specificity to 

the T cell clones with unique TCR.   

Evolution of the T cell repertoire: Putting it all together 

The above discussion illustrates the complexity inherent in the multiple factors influencing the T 

cell responses to antigens presented by HLA molecules. Nevertheless, it makes it clear that despite the 

complexity, it is possible to describe the immune interactions in mathematical terms, and therefore it is 

also possible to simulate them, especially when antigen presentation data are available. To do so one 

may take the example of a random collection of tissue associated peptides. First, consider an 

alloreactive peptide of any size varying between 7-18 amino acids. This peptide will have a choice of 

binding to HLA class I and II molecules (there are six of each). Therefore, depending on its size and mode 

of acquisition (extracellular or cytosolic) it will bind to the relevant HLA molecules with a unique binding 

affinity. It is to be noted that depending on the number of binding HLA molecules and the concentration 

of competing peptides, there will be a probability function associated with each of these interactions. As 

demonstrated above in equations 4 and 5, the mHA (polymorphic peptide) binding affinity to available 

HLA molecules, may be considered to represent the components of the immune response vector to this 

antigen (or degrees of freedom for the peptide). For most peptides, only one component (one HLA-mHA 

complex) with the strong interaction will be relevant, and others with weak interactions may be ignored. 
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With the peptide bound to one of the HLA molecules (or more depending on binding affinity with other 

HLA molecules), it is presented on the APC. If a T cell clone with a TCR which has affinity for the HLA-

peptide complex is present (a second probability term), then depending on the CD28/CTLA-4 and PD1 

expression levels in the T cell clone, it will grow in the cytokine ‘field’ present in the tissue.    

Thus, consider peptides (p1, p2 ... pn) with high affinities B1, B2… Bn for HLA molecules H1, H2… Hn 

respectively, but with a very low-level affinity for the non-corresponding HLA molecules present in the 

individual (e.g., the components p1H2, p2Hn, pnH1, not considered here for the sake of simplicity in 

illustration, but fundamental to the tensor concept). These mHA-HLA complexes have corresponding T 

cell receptors TCR1, TCR2… TCRm with affinities, Z1, Z2… Zm, the tensor HpT may be written as follows,  

𝐵;𝑍; 𝐵;𝑍@ 𝐵;𝑍[
𝐵@𝑍; 𝐵@𝑍@ 𝐵@𝑍[
𝐵\𝑍; 𝐵\𝑍@ 𝐵\𝑍[

				= 			
1 0 0
0 1 0
0 0 1

 

Here n and m are indices which indicate the HLA-peptide affinity (Bi) and TCR binding affinity to 

the HLA-peptide complex (Zj). This is the alloreactivity tensor, and it reflects the interaction of the 

alloreactive peptides with the HLA molecules in that individual and transforms the T cell clonal vector 

comprised of the array of the T cell clones bearing the above TCR <Tm> according to the logistic function.  

𝑇;′
𝑇@′
𝑇[′

= 	
𝑑
𝑑𝑡
𝐿 _

𝐵;𝑍; 𝐵;𝑍@ 𝐵;𝑍[
𝐵@𝑍; 𝐵@𝑍@ 𝐵@𝑍[
𝐵\𝑍; 𝐵\𝑍@ 𝐵\𝑍[

`	∗ 	
𝑇;
𝑇@
𝑇[
	 

This results in the transformation of the infused donor T cell repertoire, with T1, T2… Tm being 

transformed to T1’, T2’… Tm’ following transplant.  The logistic growth equation provides the rule for 

transformation, so equation 1 may also be rewritten as follows for the ith HLA-bound-peptide, pi, and the 

responding jth T cell clone <Tj> in a repertoire comprised of T cell clones T1 thru Tm. 

< 𝑁"	(%b)> =	
< 𝑃c𝑐. 𝐾(%b)

fghb >∗< 𝑁j	(%b) >

C< 𝑃c𝑐. 𝐾(%b)
fghb > −	< 𝑁"3;	(%b) >F (𝑒3l"mfgn) + 1

 

Substituting the value of r from equation 9 in this equation, we get, 

< 𝑁"	(%b)> =	
m(g<.+(,b)

-g.bn∗m01	(,b)n

Cm(g<.+(,b)
-g.bn	3	m0456	(,b)nF(8

5(op(qr∗os)4t-gu):;
 … [10] 
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The aggregate alloreactive T cell response at time, t is then  

𝑁"	(%v) = 	w < 𝑁"	(%b)	>
[

;

 

This general equation describes the transforming effect of the alloreactivity tensor and the 

cytokine tensor on the T cell repertoire following SCT. The risk of alloreactivity developing clinically will 

in this instance be proportional to Nt(TM).  

Dynamical system model of alloreactive T cell response and clinical observations  

Does this model explain observations in clinical transplantation? To determine this one may 

consider the matter of HLA-DPB1 mismatching and alloreactivity in 10/10 HLA matched DRP53, 54, and for 

that matter the general problem of HLA mismatched SCT and associated negative clinical outcomes55. In 

the dynamical system model this phenomenon may be easily understood; the mismatched HLA DPB1 

epitopes are highly expressed so instead of having a fraction of the protein expressed (the term P.c in 

Eq. 2) governing CD4+T cell clonal growth, T cell clones bearing TCR that recognize epitopes on HLA 

DPB1 encounter an order of magnitude higher target concentration with a marked amplification of the 

steady state alloreactive T cell clonal populations compared to a standard HLA class II bound mHA. 

Indeed, polymorphisms impacting the level of HLA DPB1 expression correlate with the likelihood of 

GVHD developing56. Further any peptides bound to the mismatched HLA will be novel antigen complexes 

for the donor T cell clones to recognize. This would result in a strong aggregate immune response to the 

mismatched HLA (and its presented peptides) which is widely expressed, and this response is 

significantly larger than a mHA-HLA directed immune response.  

Despite the ability of the model to explain some common clinical observations (logistic growth 

of T cells, power law distributions, and CD4/CD clonal distribution), it will not be validated unless it 

explains the random occurrence of GVHD following allografting.  A discussion of this has previously been 

presented, (Koparde et al 2017) where the competition between non-alloreactive and alloreactive 

peptides for HLA binding and presentation was invoked as a possible reason for this, resulting in a 

probability distribution (𝜌Hpn) for the alloreactive peptide pn to be presented on HLA molecule H. A 

further consideration in the development of GVHD from these alloreactive T cell clonal growth 

simulations is the probability function introduced by peptide cleavage potential, which affects the 
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likelihood of antigen presentation, as well as whether the relevant T cell clones are present following 

transplantation (𝜌Tm). The probability of peptide cleavage (𝜌𝑝cl) is determined by the amino-acid 

sequence at the C terminal of the peptide antigens57, as such, several peptides in our study may have 

low likelihood of presentation and may be ignored to simplify the model. The likelihood of alloreactive 

antigen response (𝜌yz{|) may then be calculated as 

𝜌yz{| = 2𝜌}~� ∗ 𝜌{}�7 ∗ 𝜌%v …. [11] 

                Computed for each alloreactive peptide, the probability of clonal expansion of the mHA-

targeting-T cells will be significantly diminished as the number of probability terms are introduced into 

the computations, which explains why despite many potential alloreactive antigens being present in 

each donor and recipient not every patient develops GVHD.   

             Another clinical phenomenon, the T cell growth amplification effect of cytokines is well 

recognized clinically. This is recognized in both the need for lymphodepletion prior to adaptive 

immunotherapy and in the cytokine release syndrome seen following it58, 59. Thus far in the dynamical 

system model discussed above the cytokine tensor effect has been described as modulating rate of T cell 

clonal growth. However, cytokines effect not only the rate, but they also effect the magnitude of clonal 

expansion, amplifying the T cell clonal growth. This may be modelled using the iterating equation   

𝑁"	(%&)=2𝐶𝑘
"(;3(04(,&)/+(,&))7	. =

(().<.+(,&)
-).&)∗01(,&)	

2(().<.+(,&)
-).&)30456(,&)7(8

5(op(qr∗os)4-)):;
A …[12] 

            This equation demonstrates the effect of the cytokine tensor, Ck, as a time-dependent function, 

which in the beginning increases the magnitude of T cell clonal growth for clones expressing the relevant 

cytokine receptors by an order of magnitude. As the number of T cells increases, this time-dependent 

effect declines to a steady state level since the cytokines are taken up and utilized by the growing T cell 

population. This relationship plotted over time demonstrates the familiar T cell antigen response curve 

and mirrors the effect of antigen presenting cell growth previously described (Supplementary Figure 3) 

(See Koparde et al23, for discussion of APC-T cell interactions). 

         A final consideration in building this model is that the antigen matrices presented above are 

‘identity matrices’ with binary values of, 1 along the diagonal of a square matrix and 0 elsewhere. In 

physiologic conditions, however there will be a continuum of values because of differential binding of 
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peptides to various HLA molecules and cross reactivity of T cell receptors with such antigen complexes, 

generating random number matrices, rather than identity matrices60. This will add another element of 

complexity to the antigen-effector interactions, and possibly provides a rationale for complex GVHD 

phenotypes observed.   

In conclusion, there is considerable genetic variation present between HLA matched transplant 

donors and recipients. In silico, this yields a putative large array of recipient mHA bound to both HLA 

class I and class II molecules, which when viewed from the frame of reference of responding donor T 

cells may be used to develop a mathematical model to allow simulation of the generalized T cell 

responses in allograft recipients. The quantitative understanding of alloreactivity thus gained may allow 

greater precision in donor selection and management of immunosuppression.    
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Table 1. Example of the strong binding peptides for HLA class II (A) and HLA class I (B) in a DRP. Most 

peptides have relevant interaction with one HLA molecule but some bind multiple HLA molecules, more 

so with HLA class II molecules.  

A 

 

B 

 

  

Peptide seqid geneid HLA-DRB1	03:01 HLA-DRB1	04:01 Colon	 Esophagus	 Liver	 Lung	 Salivary	Gland	 Skin	 Small	Intestine	 Stomach	
VLALTYDSARLRWYF s01086 GPR37 12.1 177.1 0.4 2.2 4.6 0.2 0.6 1.2 0.3 0.6
QHRLRLRAQMRLRRL s04022 AEBP1 12.7 515.4 62.0 51.0 8.0 113.5 35.0 53.0 51.1 31.7
AWLLLRSLPRRYIIA s04661 SLC22A4 12.7 46.2 0.9 0.3 0.3 1.6 1.3 1.0 3.3 0.4
HRLRLRAQMRLRRLN s04022 AEBP1 12.9 590.0 62.0 51.0 8.0 113.5 35.0 53.0 51.1 31.7
RLRLRAQMRLRRLNA s04022 AEBP1 13.1 690.0 62.0 51.0 8.0 113.5 35.0 53.0 51.1 31.7
TAWLLLRSLPRRYII s04661 SLC22A4 13.1 37.4 0.9 0.3 0.3 1.6 1.3 1.0 3.3 0.4
GNSSIIADRIALKLV s07642 MTHFD1 13.1 129.7 8.7 10.6 44.2 8.8 7.2 9.7 9.2 8.6

Peptide seqid geneid HLA-DRB1	03:01 HLA-DRB1	04:01 Colon	 Esophagus	 Liver	 Lung	 Salivary	Gland	 Skin	 Small	Intestine	 Stomach	
HNRFRTLPPALAALR s02269 RABGGTA 297.0 9.6 8.8 9.4 6.4 13.4 12.9 12.8 13.0 11.8
SHNRFRTLPPALAAL s02269 RABGGTA 376.3 9.9 8.8 9.4 6.4 13.4 12.9 12.8 13.0 11.8
NRFRTLPPALAALRC s02269 RABGGTA 367.9 10.7 8.8 9.4 6.4 13.4 12.9 12.8 13.0 11.8
LSHNRFRTLPPALAA s02269 RABGGTA 653.9 12.5 8.8 9.4 6.4 13.4 12.9 12.8 13.0 11.8
PLALQFLMTSPMRGA s06833 TCN2 129.7 14.1 12.9 7.3 3.7 27.2 8.3 5.5 38.2 10.7
LALQFLMTSPMRGAE s06833 TCN2 121.2 14.1 12.9 7.3 3.7 27.2 8.3 5.5 38.2 10.7
ISWFSSLLNNKHFLI s03948 PLXND1 240.9 14.2 10.3 9.8 4.4 40.8 8.7 11.8 13.3 9.1
RFRTLPPALAALRCL s02269 RABGGTA 542.7 14.6 8.8 9.4 6.4 13.4 12.9 12.8 13.0 11.8
LKEFYLTRNSPAEML s00635 PARVG 429.4 14.7 1.9 1.2 1.6 12.0 1.9 0.6 7.9 1.7
ALQFLMTSPMRGAEL s06833 TCN2 104.3 14.9 12.9 7.3 3.7 27.2 8.3 5.5 38.2 10.7

#peptide seqids geneids HLA-A02:01 HLA-A30:02 HLA-B18:01 HLA-B55:01 HLA-C03:03 HLA-C05:01 Colon	 Esophagus	 Liver	 Lung	 Salivary	Gland	 Skin	 Small	Intestine	 Stomach	
HLA-A02:01 YLFDVLPLL s02238 OR8B4 1.7 3141.1 11193.9 19754.1 84.4 1250.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ILMEHIHEL s03554 RPL19 1.9 6234.5 13565.2 15481.0 30.2 1274.2 663.3 626.5 299.9 566.2 664.8 958.0 601.2 638.2
FMLFFIYAV s01826 CACNA1S 2.2 6756.0 16867.4 11115.8 2958.2 12227.5 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0
FMGDMLPSV s02492,s06921 USP10 2.4 7164.3 27024.0 13985.6 989.7 3999.9 12.8 12.3 7.6 11.4 10.3 12.9 13.5 10.9
ALAPLAFFV s04219 SLC16A13 2.5 2733.3 33198.9 22724.5 12376.0 4133.6 0.6 0.6 14.2 2.2 2.5 1.8 3.5 0.6

#peptide seqids geneids HLA-A02:01 HLA-A30:02 HLA-B18:01 HLA-B55:01 HLA-C03:03 HLA-C05:01 Colon	 Esophagus	 Liver	 Lung	 Salivary	Gland	 Skin	 Small	Intestine	 Stomach	
HLA-A30:02 RQRSQFAFY s05708 B4GALT5 19674.3 5.6 4627.8 10598.8 20895.8 27298.7 15.2 18.0 7.5 19.3 15.5 7.0 10.4 10.5

RSRRLFSHY s02920 GNA15 30650.3 7.5 14677.8 10710.2 8741.3 14754.2 1.5 2.3 0.4 9.5 7.5 23.8 1.6 1.5
ASWTMSALY s00607 OR7A5 21179.7 10.0 10536.7 14526.3 5981.8 6157.7 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0
LSAFHYGLY s01379,s02439 ABCA5 26537.2 10.4 7927.2 12597.3 4182.4 4691.6 4.5 4.9 8.6 3.9 7.1 10.8 12.7 6.5
RMTANHGSY s03023,s03860 ARHGAP24 24064.5 12.6 10852.2 10622.3 5369.1 15075.7 2.2 2.3 0.9 4.3 2.2 2.9 3.1 4.4

#peptide seqids geneids HLA-A02:01 HLA-A30:02 HLA-B18:01 HLA-B55:01 HLA-C03:03 HLA-C05:01 Colon	 Esophagus	 Liver	 Lung	 Salivary	Gland	 Skin	 Small	Intestine	 Stomach	
HLA-B18:01 YEYTGANVY s00447 IBSP 33878.5 779.8 6.3 17946.0 5976.1 18402.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

IEYERFVPF s03216,s05468 GRIA3 8426.0 7458.9 6.4 13617.5 2439.6 24416.2 0.3 0.1 0.4 0.1 0.1 0.3 0.2 0.3
TETEAIHVF s00111 MUC16 31916.8 18682.9 7.6 34699.1 19947.8 23268.2 0.0 0.0 0.0 0.0 1.4 0.0 0.0 0.0
WEFCQAALF s03238 STRC 20987.4 10333.5 8.1 28518.2 15505.0 24508.0 0.1 0.0 0.0 0.0 0.2 0.2 0.2 0.1
QEFPGSPAF s01421,s04968 NUBP2 24752.6 10806.4 8.2 23170.9 4753.2 26150.7 11.1 11.3 12.2 10.3 9.7 12.7 9.9 11.7

#peptide seqids geneids HLA-A02:01 HLA-A30:02 HLA-B18:01 HLA-B55:01 HLA-C03:03 HLA-C05:01 Colon	 Esophagus	 Liver	 Lung	 Salivary	Gland	 Skin	 Small	Intestine	 Stomach	
HLA-B55:01 HPYLPLVTA s02088,s02121,s08500RUNDC3A 17762.9 26351.5 12599.4 75.0 3424.7 28344.1 1.8 0.6 0.1 0.3 0.3 4.0 0.7 1.3

LPFFRSLPI s00833,s01116,s01430,s01487,s02653,s03155,s03412,s03647,s04885,s05490,s06213,s06649,s07231,s08460,s08619NR1I3 12522.5 16021.9 7734.8 89.1 244.5 19481.6 0.1 0.1 54.0 0.1 0.0 0.3 0.3 0.1
FPHYTPSVA s05857 RNF43 30916.8 34577.0 19174.2 97.2 1693.0 24716.0 0.2 0.1 1.5 1.0 2.8 3.1 5.2 1.9
LPWLSHPSV s00117 MUC16 9314.3 24690.0 10678.5 110.9 2683.1 22522.3 0.0 0.0 0.0 0.0 1.4 0.0 0.0 0.0
FPRSVNVTV s01220 AZU1 19931.4 27730.1 14737.5 115.0 1100.3 19755.0 0.1 0.1 0.3 3.2 0.1 0.1 0.1 0.1

#peptide seqids geneids HLA-A02:01 HLA-A30:02 HLA-B18:01 HLA-B55:01 HLA-C03:03 HLA-C05:01 Colon	 Esophagus	 Liver	 Lung	 Salivary	Gland	 Skin	 Small	Intestine	 Stomach	
HLA-C03:03 FSYPSSHPF s06011 TAS2R31 1746.9 810.7 1838.5 3508.5 2.6 234.5 0.2 0.1 0.0 0.2 0.1 0.2 0.2 0.2

MAAPGSCAL s04246 COQ5 2996.9 10729.4 12768.5 2263.3 2.9 850.6 12.2 9.9 18.1 10.3 10.1 11.6 12.5 10.8
FAHLSTYSL s00176,s03760 CD200 723.1 11054.9 10504.8 1823.7 3.3 689.4 3.3 2.8 0.2 4.7 5.5 1.9 4.6 2.6
FSATAASSL s05554 TNFSF12 4157.5 9673.6 23725.5 6769.4 3.5 233.5 51.6 54.7 9.1 42.1 18.1 16.2 24.5 21.9
YSSSGLSPM s02382 OR13F1 2634.9 2264.7 10680.6 9430.4 3.6 299.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

#peptide seqids geneids HLA-A02:01 HLA-A30:02 HLA-B18:01 HLA-B55:01 HLA-C03:03 HLA-C05:01 Colon	 Esophagus	 Liver	 Lung	 Salivary	Gland	 Skin	 Small	Intestine	 Stomach	
HLA-C05:01 YTDPYAQPL s03106 KMT2D 92.3 5427.4 17458.2 18313.6 10.3 6.5 5.5 6.0 2.3 7.6 6.4 7.4 7.7 6.2

FSDEWVACL s01960 GEMIN4 109.9 18368.6 25059.0 26436.0 77.7 8.8 4.6 5.5 2.4 5.2 5.6 11.4 5.4 6.9
LADEGTYEI s00606 HEPACAM 339.0 22122.9 25359.9 11793.1 84.7 10.8 0.2 0.1 1.2 0.0 0.1 0.0 0.1 0.1
RTDPIQMPF s05781 MPPED1 7092.1 400.9 21743.7 16422.4 251.3 11.3 0.0 0.0 4.6 0.0 0.4 0.1 0.0 0.2
ISDDTTQPI s00689,s01247,s07200GGT1 6127.1 14757.8 35688.4 20323.9 352.7 15.5 2.5 1.2 15.4 8.2 3.0 1.2 16.3 6.9
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Table 2. DRP 26, polymorphic HLA-bound (both class I & II) peptides derived from the same gene, with 
binding affinity values in the IC50, 0-50 nM range (highlighted in green). Varying degrees of sequence 
identity is seen between the HLA bound peptides; 5 peptides per degree of sequence homology are 
presented and homologous sequence is given in red. Rows 1-5, 9-mer HLA class I-bound peptide nested 
within 15-mer HLA class II-bound peptide; rows 6-10, sequence overlap between 9- and 15-mer 
peptides; rows 11-15, variable sequence homology (at least 1 nested, shown, and at least 1 matched 
only by gene nearby with no sequence identity, not shown); rows 16-20, different HLA bound peptides 
from the same gene with no sequence identity (Supplementary Figure 1). 

 

 

  

GENEIDS CLASS I          
9-MER 

HLA-
A02:01 

HLA-
A30:02 

HLA-
B18:01 

HLA-
B55:01 

HLA-
C03:03 

HLA-
C05:01 

CLASS II 
15-MER 

HLA 
DRB1 0301 

HLA 
DRB1 0401 

AGXT2 FAVEVFRSA 1516.1 19896.3 12500.5 1455.5 40.2 10055.5 FAVEVFRSALTQHME 460.1 28.9 

AK9 FLMNPRPYL 4.3 4760.2 20565.6 7448.6 25.3 1336.9 ALKPFLMNPRPYLLP 29.3 193.0 

ASPM ASIVIQSTY 31629.4 44.2 13973.2 18924.6 4613.3 10787.6 HKASIVIQSTYRMYR 25.7 60.0 

AVPR1A FGMFPSAYM 3674.0 3498.8 12767.8 7866.3 11.4 2197.5 HLQVFGMFPSAYMLV 2331.0 43.9 

CATSPERD YSLTAQSAM 10576.8 4156.0 12288.7 8996.0 8.7 1407.0 SYSYSLTAQSAMCTS 2896.8 41.7 

MC1R ISIFYALRY 25706.3 31.9 8957.9 19531.2 5801.1 9626.4 YALRYHSIVTLPRAR 135.3 18.1 

NOP56 KTRGNTPKY 35107.0 15.5 27598.1 14424.7 9963.6 22714.2 KALFRALKTRGNTPK 994.0 41.2 

OR1I1 QLLDVYHVL 11.6 8139.2 14953.2 30075.2 755.1 11126.0 LDVYHVLGSLLAARD 846.9 47.0 

OR4C3 TAPAFSVTL 5503.3 20654.6 22712.2 25030.0 43.7 1962.4 LLVFIGNTAPAFSVT 462.0 40.8 

OR2T8 LLIHWDHRL 20.0 10956.6 27156.7 27657.6 1524.5 8839.8 LIHWDHRLHTPMYFL 36.4 842.3 

DENND3 FVMAPTSFL 10.3 3652.5 17042.6 2484.8 4.5 389.9 MLDFVMAPTSFLMGC 238.6 17.4 

FAM186A HMDTVQLGY 11356.2 49.5 6536.0 21226.9 9349.7 1234.1 EILHMDTVQLGYLFR 46.0 109.9 

KRT19 VSSSSSGAY 35731.6 24.1 14800.9 14059.5 2267.3 3801.6 ARFVSSSSSGAYGGG 3454.2 27.7 

OTOF MSNNKRVAY 30323.2 41.0 4779.4 6417.7 1125.4 7254.6 FIWMMSNNKRVAYAR 71.8 37.8 

TUBA3E LMYAKSAFV 5.0 2233.4 26897.4 10045.0 1579.9 6248.2 KFDLMYAKSAFVHWY 287.6 40.3 

EXOC4 FLNMVCEKL 33.8 17747.3 28320.8 34391.9 2684.4 4867.5 ELEYIHALTLLHRSQ 42.4 19.3 

MAGEL2 MVKVIHREY 30350.7 45.0 4482.6 8535.1 6459.2 30155.9 APAVIRQAPPVIRQA 28.1 116.4 

MUC16 TETEAIHVF 31916.8 18682.9 7.6 34699.1 19947.8 23268.2 TSQGTFTLDSSSTAS 408.1 45.4 

TMPRSS9 FLSTQVFHV 2.7 12190.6 29318.2 19445.1 3194.4 2402.1 ELRGIRWTSSFRRET 15.0 244.6 

ZNF568 FSYDTQLSL 353.6 7765.1 17478.8 5206.5 3.8 150.4 GKAFSQSSSLTVHLR 450.8 33.1 
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Figure 1.  Non-synonymous single nucleotide polymorphisms present in the recipient and absent in the 

donor yield alloreactive peptides which may be presented to the donor T cells on HLA class I and II 

molecules. HLA class II presentation and CD4+ T cell recognition and response depicted (A). Schematic 

depicting the analytic sequence from exome sequencing to HLA class II mHA prediction (B).    

A. 

 

B. 
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Figure 2. HLA class II bound peptides in HLA MRD and MUD DRP. Depicting SB and BP on standard (A) 
and logarithmic scales (B).  

A 

 

B. 
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Figure 3. Comparison of HLA class I & class II bound peptides in HLA MRD and MUD DRP. Depicting SB on 

standard scale (A). Correlation of SB and BP for both HLA class I and class II molecules in MRD and MUD 

DRP. 

A. 

  

B. 

 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 21, 2018. ; https://doi.org/10.1101/305474doi: bioRxiv preprint 

https://doi.org/10.1101/305474
http://creativecommons.org/licenses/by-nc-nd/4.0/


Quantifying Immune Response to Antigen Diversity. Salman et al. 28 

Figure 4.   Interaction between donor T cells and recipient antigens presented on APC. Colored circles show 
different T cell clones with variable antigen affinity. The spiked spheres show antigen presenting cells with HLA 
molecules, colors indicate unique peptide antigens and correspond to T cell recognition. T cell growth is indicated 
over time in response to various influences, i.e. peptide affinity for HLA molecules (Vector B), and TCR affinity for 
HLA-peptide complex (vector Z), both leading to T cell growth. The infused allograft contains T cells with TCR of 
varying peptide antigen specificity (different colors), these may encounter peptides for which they have affinity (no 
color difference between APC and T cells), leading to growth. This variability makes antigen response a probability 
function of the likelihood of T cell presence and peptide antigen presentation (rP & rT). The expression level is 
depicted by more cells presenting the same antigen, making up for weak affinity driving proliferation. The 
cytokines made by APCs get taken up by the cytokine receptors on the T cells, leading to a diminishing effect as the 
T cell repertoire expands.  
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Figure 5. Tissue injury releases polymorphic recipient mHA from epithelial cells (EC); these and 
endogenous antigens are presented by APC; the APC proliferate and migrate to the lymph node 
triggering a CD4+ and CD8+ T cell clonal expansion according to the logistic equation of growth.  These T 
cell clones then enter the circulation and migrate to the tissues to initiate tissue injury. Short black 
arrows in the oval (lymph node) below H1P1 and TCR1 indicate affinity vectors B and Z respectively.  

 

 

Figure 6. Tensor diagram for the HpT tensor. Peptide p1 binds different HLA molecules, A, B and C with 

affinities, B1, B2 and B3 (A), while each TCR (TCR1-3) binds these HLA-peptide complexes (with peptide, 

p1), with affinities Z1, Z2, and Z3 (B). Blue arrows indicate average effect of multiple binding affinity 

vectors. These affinities will remain unaffected in different tissues and individuals and T cell clonal 

growth in response to the polymorphic peptide is proportional to their product (C).  

A. 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 21, 2018. ; https://doi.org/10.1101/305474doi: bioRxiv preprint 

https://doi.org/10.1101/305474
http://creativecommons.org/licenses/by-nc-nd/4.0/


Quantifying Immune Response to Antigen Diversity. Salman et al. 30 

B. 

 

 

C. 
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Supplementary Table 1. Demographics 

 

 

  

77

Donor 						MRD 26	(34)
						MUD 41	(53)
						MMRD 	1	(1)
						MMUD 9	(12)

Stem	Cell	Source 						Bone	Marrow 7	(9)
						Peripheral	Blood 70	(91)

Diagnosis 					Acute	lymphoid	leukemia 5	(6)
					Acute	myeloid	leukemia 29	(38)

					Chronic	lymphocytic	leukemia							
										and	lymphomas																																									 15	(19)
					Multiple	myeloma 4	(5)
					Myelodysplastic	syndromes																						 24	(31)

Conditioning	
Regimen

						Reduced	Intensity 46	(60)
												ATG/TBI 19	(25)
												Busulfan/Fludarabine 27	(35)
												Fludarabine/Melphalan 2	(77)
							Myeloablative 31	(40)

												Busulfan/Cyclophosphamide 17	(22)
												Cyclophosphamide/TBI 11	(14)
												Etoposide/TBI 1	(1)
						Anti-thymocyte	globulin	(ATG) 62	(81)
						Cyclosporin	A/Methotrexate 16	(21)
						Cyclosporin	A/MMF 4	(5)
						Tacrolimus/Methotrexate 34	(44)
						Tacrolimus/MMF 23	(30)

Race 						Caucasian 60	(78)
						African	American 17	(22)

	Table	1.																												Patient	Characteristics,	n	(%)
Total	Transplants
Gender
										Male/Female 43	(55.8)/34	(44.2)

Patient	Age
										Median	(range) 55.6	(21-73)					

GVHD	
prophylaxis
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Supplementary Table 2. Explanation of variables used in the equations.  

Variable Description Previously 
T T cell clone  
N T cell count at various times (time indicated by subscripts)  
K Constant determining steady state T cell count  
t time/iterations  
r Growth rate  
e 2.7182, base of natural logarithms  
p Alloreactive peptide  

H HLA molecules  
TCR T cell receptor of T cell clone, T   

B Binding affinity of peptide, p for HLA molecule, H afmHA 23 

Z Binding affinity TCR for mHA-HLA complex (Hp) afTCR 23 
P Tissue expression of protein with alloreactive peptide p Pexp

23 
c Constant which reduces P for HLA class II presentation  

HpT Alloreactivity tensor  
Ck Cytokine tensor  
CP Checkpoint molecule  
S2 Signal 2  
L Logistic operator  
r Probability   
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Supplemental Figure 1. Patient 26 gene-matched, HLA-bound (class I & II) peptides with binding affinity 
values in the IC50, 0-50 nM range with varying degrees of sequence identity and mixtures of match 
types within the same gene. 1) Nested Identical peptide – completely identical amino acid sequences in 
the 9-mer which binds HLA Class I and the 15-mer which binds HLA Class II (peptide n=202); 2) 
Overlapping Sequence –overlapping amino acid sequences (3 or greater consecutively) in both 9-mer 
and 15-mer peptides which bind their respective HLA classes (n=268); 3) Multiple mixture: At least 1 
sequence identical or nested match and at least 1 gene-matched set of discrete peptides nearby 
(exhibiting no sequence identity, only matched at the gene-expression level, Gene X above) (n=102); 4) 
gene-matched set of discrete peptides nearby to one another in proximity (exhibiting no sequence 
identity, only matched at the gene-expression level, Gene Y above) (n=143). 
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Supplementary Figure 2.  Control of T cell growth rate by the immunological synapse and Signals S1 

(TCR-ab), S2 (CD28/CTLA-4) and S3 (IL-12R), along with checkpoint molecules (CP) PD1.  

 

Supplementary Figure 3. Effect of the cytokine tensor on the growth of T cells over time. Black line 

indicates the growth of a T cell clone with cytokine effect accounted for. Orange line depicts growth 

with no cytokine mediated amplification. In calculating these T cell growth trajectories, N0 is 1, K is 

1000000, B is 0.62 nM-1, Z is set at 1 nM-1, P.c is set at 1 RPKM, Ck is 1.5, CP & SD are both set at 1 

(Equation 12).   
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