Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Rethomics: an R framework to analyse high-throughput behavioural data

View ORCID ProfileQuentin Geissmann, View ORCID ProfileLuis Garcia Rodriguez, View ORCID ProfileEsteban J. Beckwith, View ORCID ProfileGiorgio F. Gilestro
doi: https://doi.org/10.1101/305664
Quentin Geissmann
1Department of Life Sciences, Imperial College London, London, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Quentin Geissmann
  • For correspondence: qgeissmann@gmail.com giorgio@gilest.ro
Luis Garcia Rodriguez
2Institute for Neuro- and Behavioral Biology, Westfälische Wilhelms University, 48149 Münster, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Luis Garcia Rodriguez
Esteban J. Beckwith
1Department of Life Sciences, Imperial College London, London, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Esteban J. Beckwith
Giorgio F. Gilestro
1Department of Life Sciences, Imperial College London, London, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Giorgio F. Gilestro
  • For correspondence: qgeissmann@gmail.com giorgio@gilest.ro
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Article Information

doi 
https://doi.org/10.1101/305664
History 
  • April 23, 2018.

Article Versions

  • Version 1 (April 21, 2018 - 06:47).
  • You are viewing Version 2, the most recent version of this article.
Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.

Author Information

  1. Quentin Geissmann1,*,
  2. Luis Garcia Rodriguez2,
  3. Esteban J. Beckwith1 and
  4. Giorgio F. Gilestro1,*
  1. 1Department of Life Sciences, Imperial College London, London, United Kingdom
  2. 2Institute for Neuro- and Behavioral Biology, Westfälische Wilhelms University, 48149 Münster, Germany
  1. ↵*qgeissmann{at}gmail.com, giorgio{at}gilest.ro
Back to top
PreviousNext
Posted April 23, 2018.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Rethomics: an R framework to analyse high-throughput behavioural data
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Rethomics: an R framework to analyse high-throughput behavioural data
Quentin Geissmann, Luis Garcia Rodriguez, Esteban J. Beckwith, Giorgio F. Gilestro
bioRxiv 305664; doi: https://doi.org/10.1101/305664
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Rethomics: an R framework to analyse high-throughput behavioural data
Quentin Geissmann, Luis Garcia Rodriguez, Esteban J. Beckwith, Giorgio F. Gilestro
bioRxiv 305664; doi: https://doi.org/10.1101/305664

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Bioinformatics
Subject Areas
All Articles
  • Animal Behavior and Cognition (3575)
  • Biochemistry (7520)
  • Bioengineering (5479)
  • Bioinformatics (20677)
  • Biophysics (10258)
  • Cancer Biology (7931)
  • Cell Biology (11583)
  • Clinical Trials (138)
  • Developmental Biology (6563)
  • Ecology (10136)
  • Epidemiology (2065)
  • Evolutionary Biology (13540)
  • Genetics (9498)
  • Genomics (12788)
  • Immunology (7872)
  • Microbiology (19451)
  • Molecular Biology (7614)
  • Neuroscience (41875)
  • Paleontology (306)
  • Pathology (1252)
  • Pharmacology and Toxicology (2179)
  • Physiology (3249)
  • Plant Biology (7007)
  • Scientific Communication and Education (1291)
  • Synthetic Biology (1942)
  • Systems Biology (5406)
  • Zoology (1107)