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Abstract 

Mate choice is an important biological phenomenon with a significant impact on the 5 

evolution of organisms. Here, we relied in previous results on the description of mate 6 

choice effects as a flow of information, for developing different classes of models 7 

distinguished by their evolutionary effects: sexual selection and/or isolation.  8 

We obtained formulas for the maximum likelihood estimates of each model and compared 9 

three different information criteria (AICc, KICc, and BIC) for performing multimodel 10 

inference. Simulation results showed a good performance of both model selection and 11 

parameter estimation. We applied the modelling framework to real data, and estimated the 12 

mating preference parameters in the Galician Littorina saxatilis ecotypes, confirming the 13 

pattern of positive assortative mating in this species.  14 

As far as we know, this is the first standardized methodology for model selection and 15 

multimodel inference of mate choice effects. The full methodology was implemented in a 16 

software called InfoMating (available at 17 

http://acraaj.webs.uvigo.es/InfoMating/Infomating.htm). 18 
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Introduction 21 

Mate choice is an active area of evolutionary research. It can be broadly described as the 22 

effect of the expression of some traits leading to non-random mating. The biological 23 

complexity lying behind mate choice has generated an extensive research producing 24 

different theoretical descriptions and empirical tests (Edward 2015a, b; Hoquet 2015; 25 

Hughes 2015; Roff 2015; Ah-King and Gowaty 2016).  26 

There are several types of models than could be linked to the causes of mate choice. Mate 27 

choice has been approached from the phenotypic, population genetics, and quantitative 28 

genetics sides, being developed under either a probabilistic or a deterministic framework. 29 

More realism can be still added by including ecological and behavioural aspects (Kokko et 30 

al. 2006; Roff 2015). 31 

However, from an evolutionary perspective, non-random mating has importance by its 32 

consequences, as long as it implies a systematic change in phenotype and genotype 33 

frequencies. Therefore, when studying mate choice, we can also focus on its evolutionary 34 

consequences.  35 

From an evolutionary point of view, mate choice is defined as the difference between the 36 

observed and expected (by random) mating frequencies. So defined, the consequences of 37 

mate choice can be partitioned into sexual selection (intrasexual selection) and sexual 38 

isolation (behavioural isolation or intersexual selection).  39 

The decomposition of mating behaviour into sexual selection and sexual isolation effects 40 

has been made from multiple-choice experiments in Drosophila (Merrell 1950; Spieth and 41 
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Ringo 1983; Knoppien 1985); see also (Rolán-Alvarez and Caballero 2000) and references 42 

therein. 43 

Sexual selection refers to the observed change in gene or phenotype frequencies in mated 44 

individuals with respect to population frequencies (Anderson et al. 1994; Hartl and Clark 45 

1997). Because population frequencies are involved, the comparison includes non-mated 46 

individuals.  47 

Sexual isolation (intersexual selection) considers the deviation from random mating within 48 

mated individuals. Because only frequencies within the sample of mating are considered, 49 

the comparison does not involve non-mated individuals. Note that for simplicity, by sexual 50 

isolation we are referring to intersexual selection that can be consequence of any of both, 51 

positive or negative assortative mating (Merrell 1950; Lewontin et al. 1968; Spieth and 52 

Ringo 1983).  53 

The immediate causes of sexual selection and/or isolation can be a different preference or 54 

discrimination between different mating types (e.g. A females prefer A males) and/or 55 

different mating energy or vigour of a type from one sex for mating whatever couple (e.g. B 56 

males systematically invest more energy on mating). 57 

In a previous work (Carvajal-Rodríguez 2018), we showed that both types of cause can be 58 

modelled jointly, by means of the parameters mij that represent the mutual mating 59 

propensity between a female of type i and a male j.  60 

Therefore, if A females prefer A males then this is modelled as a higher mutual mating 61 

propensity between these types as compared with the mating propensity of the A females 62 
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with B males (mAA > mAB). On the other hand, if B males are more vigorous or prone for 63 

mating whatever the female is, this is modelled by a higher average male propensity of such 64 

males (marginal propensity, see below). 65 

By modelling the mating as a differential mutual mating propensity among different types 66 

of couples, it is possible to express the mean change in mating phenotypes as the 67 

information gained due to mate choice (Carvajal-Rodríguez 2018). The expression of the 68 

effects of mate choice in terms of information also permitted to identify the necessary and 69 

sufficient conditions of random mating (see below).  70 

Thus, a mate choice information based framework provides a formal approach for 71 

developing a set of hypotheses. In addition, data-based evidence can be used for ranking 72 

each hypothesis and perform multi-model-based inference (Link and Barker 2006; 73 

Burnham et al. 2011; Aho et al. 2014). 74 

We proceed as follows: 75 

1.- First, we set the conditions for random mating obtained from the mutual mating 76 

propensity formalism. Afterwards, we develop different classes of effects models and their 77 

maximum likelihood estimates, namely: sexual selection,  sexual isolation or double 78 

(sexual selection and isolation) models with different number of independent mating 79 

propensity parameters. 80 

2.- We apply distinct information criteria for selecting the best candidate models and 81 

estimating the values of the mutual mating propensity parameters based on the most 82 

supported models. 83 
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3.- Finally, we demonstrate the methodology by analysing simulated and real data. 84 

 85 

Mutual Mating Propensity Models 86 

Consider a sample of n' matings. The total number of possible mating types is K = k1 × k2 87 

where k1 is the number of female types and k2 the number of male types. Let have n'ij 88 

matings of i-type females with j-type males from the sample. If the probability of the 89 

mating i × j is q'ij, then the logarithm of the likelihood function lnL of the sample is   90 

 91 

          
  

             92 

 93 

where C is the multinomial coefficient which is constant given the sample. As it is well-94 

known, the maximum likelihood estimator of the multinomial probability of the mating i × j 95 

is n'ij / n'. 96 

  97 

SATURATED NON-RANDOM MATING MODEL MSAT 98 

Consider a population with n1i females of type i from a total of n1 females and n2j males of 99 

type j from a total of n2 males in the population. Therefore, the population frequency of 100 

females of type i is p1i = n1i / n1
 
and the population frequency of males of type j is p2j = n2j / 101 

n2. 102 
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The mating probability between types i and j can be expressed as q'ij = mijqij (Carvajal-103 

Rodríguez 2018) where qij is the product of the population female and male frequencies of 104 

each type (qij = p1i × p2j) and mij is the normalized mutual mating propensity that refers to 105 

the number of matings after an encounter between females of type i and males of type j. 106 

The values mij are normalized so that Σq'ij = 1. 107 

Under this multinomial model, the log-likelihood of the sample is  108 

             
  

              (1) 109 

We note this model as saturated (Msat) because there are as many parameters as independent 110 

mating propensities, Psat = K -1. The last propensity is not independent and can be 111 

calculated from the others as 112 

 mk1k2 = (1 - ∑mijqij) / qk1k2 113 

where the summation is over the K -1 remaining categories. 114 

The female and male population frequencies, p1 and p2, are considered to be known or, 115 

alternatively, they need to be estimated in all the models. Therefore, in terms of model 116 

comparison we can ignore the population frequencies when counting the number of 117 

parameters involved in each model.  118 

The maximum likelihood estimate (MLE) of mij is (n'ij / n') / qij = PTIi,j where PTIi,j is the 119 

pair total index i.e. the frequency of the observed pair types divided by the expected 120 

frequency under random mating (Rolán-Alvarez and Caballero 2000).  121 
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The model Msat is the most complex model that can be fitted to the available data. The 122 

principle of parsimony suggests that we may consider reduced special cases of this 123 

saturated model.  124 

Following, we computed the ML estimates of different classes of reduced general models 125 

that require less fixed parameters. All of them can be expressed as particular cases of the 126 

saturated model. 127 

 128 

RANDOM MATING MODEL M0 129 

The random model M0 corresponds to the simplest, most reduced model, and it is nested 130 

with all the other (is a particular case of any other model) while we cannot derive any 131 

simplified version from it. This model assumes that the within-population mating 132 

probability is at random.  133 

When mating is at random, the mating probability between types i and j is q'ij = qij = p1i × 134 

p2j. This model is a particular case of the saturated one when the mating propensity is equal 135 

for every mating type. The number of mating parameters is P0 = 0.  136 

The log-likelihood of the sample of mating is 137 

           
  

           (2) 138 

Now, let's define the marginal propensitiy mFem_i for a female of type i as 139 

           
    

 

     
           

     
   (3) 140 

Similarly for a male of type j 141 
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Where we have noted the absolute (unnormalized) propensity as m'ij and the mean 142 

propensity M 143 

          
   

 

Interestingly, the M0 model corresponds to Msat subjected to the following restrictions: 144 

i) mij = mFem_i × mMale_j  i, j  (4) 145 

ii) mFem_i = mFem_j  i, j 146 

iii) mMale_i = mMale_j  i, j 147 

 148 

Thus, given the model Msat, we may define M0 as a particular case that has three additional 149 

restrictions. These restrictions provoke that all the propensities are the same, so mating just 150 

depends on the frequencies of each type. It is useful to express M0 in terms of the three 151 

restrictions because by relaxing some of them, we can generate different classes of models. 152 

Therefore, we produced three general classes of models defined by their consequences after 153 

relaxing some of the conditions in (4), namely, sexual selection, sexual isolation, and 154 

double effect models (Fig. 1).  155 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 22, 2018. ; https://doi.org/10.1101/305730doi: bioRxiv preprint 

https://doi.org/10.1101/305730
http://creativecommons.org/licenses/by-nc/4.0/


 156 

Fig 1. Mating models as defined by their effect after relaxing some of the conditions imposed to the 157 

random mating model M0. 158 

 159 

SEXUAL SELECTION EFFECTS MODELS 160 

This class of model corresponds to relaxing the second and/or third conditions in M0 while 161 

maintaining the condition of multiplicativity (4-i). The maintenance of the first condition 162 

implies that the propensity of a mating pair (i,j) is the product of the marginal female (mFem) 163 

and male (mMale) propensities. And because 4-i) is maintained, sexual isolation effects 164 

cannot occur (Carvajal-Rodríguez 2018). We distinguished models with sexual selection in 165 

just one sex or in both sexes. 166 

 167 

Female Sexual Selection 168 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 22, 2018. ; https://doi.org/10.1101/305730doi: bioRxiv preprint 

https://doi.org/10.1101/305730
http://creativecommons.org/licenses/by-nc/4.0/


For generating models having sexual selection only in females, we relaxed condition (4-ii). 169 

This implies that at least one female marginal propensity, say female of type A, is different 170 

from the rest of female types i.e. mFem_A ≠ mFem_j with j being any other type than A.  171 

Therefore, we set a different absolute (unnormalized) propensity ah for each female type h 172 

as follows 173 

m'11= m'12 = ... = m'1k2 = a1 174 

m'21= m'22 = ... = m'2k2 = a2  175 

. 176 

. 177 

. 178 

m'(k1-1)1= m'k12 = ... = m'k1k2 = ak1-1 179 

m'k11= m'k12 = ... = m'k1k2 = 1   (5) 180 

with ah > 0  h. 181 

Note that the relationships among the propensities will not be altered if we divide by ak1 so 182 

that we have fixed ak1 = 1. Thus, under female sexual selection models we can consider H1 183 

∊ [1, k1 – 1] different parameters. 184 

The normalization factor is the mean propensity M = ∑ m'ijqij. Now, if we compute the 185 

marginal female and male propensities (3) we see that 186 

 mFem_1 = a1/M; mFem_2 = a2/M ...; mFem_k1 = 1/M 187 

 mMale_1 = mMale_2 = mMale_3 =... = mMale_k2 = M/M = 1 188 

For any parameter ah, 1 ≤ h < k1, the MLE under the female sexual selection models was  189 

    
     

    
  (6) 190 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 22, 2018. ; https://doi.org/10.1101/305730doi: bioRxiv preprint 

https://doi.org/10.1101/305730
http://creativecommons.org/licenses/by-nc/4.0/


where λ(θ) was defined in general for any set A of mating pair types having the same value 191 

of propensity θ as 192 

     
   
 
 

         
 
    

  (7) 193 

So, λ(ah) expresses the sum of the observed matings with propensity ah divided by the sum 194 

of the product of the population frequencies from each partner type (see section S1 in  195 

Supporting Information for detailed explanation). Similarly, λ(1) corresponds to the sum of 196 

the observed matings having expected propensity 1 divided by the sum of the 197 

corresponding products of population frequencies. 198 

 199 

Male Sexual Selection 200 

Sexual selection in only males is generated in a similar way, by relaxing (4-iii), 201 

interchanging rows with columns in (5). If we note the parameters as bh instead of ah, the 202 

maximum likelihood estimate was  203 

    
     

    
  (8) 204 

with 1 ≤ h < k2. 205 

 206 

Sexual Selection In Both Sexes 207 

For generating models with sexual selection in both sexes, we only needed to maintain the 208 

condition (4-i). Therefore, for K = k1 × k2 mating types we may introduce as much as (k1-209 
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1)×(k2-1) parameters for the most parameterized model, and a minimum of two (female and 210 

male effects) for the less parameterized model, in order to get a multiplicative model (no 211 

sexual isolation) with sexual selection in both sexes. By notational convenience, we fix the 212 

category k1 in females and k2 in males as having unitary propensity. Therefore 213 

m’ij = aibj, i < k1, j < k2 214 

m’ik2 = ai, i < k1 215 

m’k1j = bj, j < k2, 216 

m’k1k2 = 1. 217 

with ai > 0, bj > 0  i, j. 218 

The maximum likelihood estimates were 219 

     
    

   
 

    
     

    
      

 
            

       
  (9) 220 

     
    

   
 

    
     

    
      

 
            

        
   221 

Where λ(a+b) stands for the sum of observed mating types having propensity a or b divided 222 

by the sum of their expected random mating frequencies (e.g. the sum of the expected 223 

frequencies of matings with propensity a1 or a1bj for every male type, is p1i), and λsex(1) 224 

refers to the sum of cases that contribute with 1 to the propensity by the side of such sex 225 

divided by the corresponding sum of expected frequencies (e.g. in a multiplicative model as 226 

the above, every mating k1 × j has contribution 1 by the female side and the sum of 227 

frequencies is p1k1).  228 
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The formulae in (9) is similar to (7) and (8). Note that (9) becomes (7) by considering every 229 

b as 1 while becomes (8) by considering every a as 1.  230 

The percentage of sexual selection information corresponding to each sex, JS1 and JS2 in 231 

(Carvajal-Rodríguez 2018), would depend on the within sex population frequencies and on 232 

the propensity estimates. 233 

 234 

SEXUAL ISOLATION EFFECT MODELS 235 

Isolation (intersexual selection) corresponds to the class of non-multiplicative models, i.e. 236 

they can be obtained by relaxing the condition (4-i). Recall that we refer as sexual isolation 237 

to the effect of either positive or negative assortative mating.  238 

If there is no sexual selection neither in females nor males, we may have only sexual 239 

isolation. However, this cannot be guaranteed in general as sexual selection is frequency 240 

dependent under non-multiplicative models (see below).  241 

Let consider a model where unnormalized propensities are  242 

 m’ii = ai > 0  i  min{k1, k2} and m’ij = 1 for i ≠ j.  243 

Thus, homotype mating (i × i) propensities are parameterized while heterotype are not. This 244 

model is non-multiplicative in general, because the contribution of the type i to the 245 

propensity is distinct in mii that in mij or in mji (although with an even number of types we 246 

could define a multiplicative model by setting mii = 1 / mjj).  247 
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By recalling the definition of marginal propensities in (3) we see that the condition for 248 

equal female marginal mFem_i = mFem_j is 249 

 p2i(ai – 1) = p2j(aj – 1)  (10) 250 

and in males 251 

p1i(ai – 1) = p1j(aj – 1) 252 

If there is only one parameter, the different homotypes have the same propensity, thus m'ii = 253 

a, whatever the type i. Then the condition (10) becomes p2i = p2j and p1i = p1j which for k1 254 

female and k2 male types imply p2i = p2j = 1 / k2 and p1i = p1j = 1 / k1. Which means that 255 

under this symmetric model the occurrence of sexual isolation without sexual selection 256 

requires uniform frequencies.  257 

In general, depending on the conditions in (10), the sexual isolation models are double 258 

effect models i.e. with sexual selection in at least one sex. 259 

The maximum likelihood estimate was 260 

    
     

    
  (11) 261 

with 1 ≤ h ≤ min{k1, k2}. 262 

Therefore, (11) provides the maximum likelihood estimate for the parameters of any sexual 263 

isolation effects model in which the mating considered as heterotype has an absolute 264 

propensity of 1 while the homotype mating has a different value. Note that this may involve 265 

models in which the homotype mating has higher propensity (positive assortative mating, 266 
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ah > 1) or vice versa, the homotype mating has lower propensity than the heterotype one 267 

(negative assortative, ah < 1). 268 

The number of parameters ranges from 1 to the maximum possible number of mating types 269 

considered as distinct homotypes, which is the minimum of {k1, k2}. 270 

We could further define other sexual isolation models in which the homotype mating has 271 

absolute propensity of 1 while the different heterotypes have absolute value of aij (see S1 272 

section in Supporting Information). 273 

 274 

DOUBLE EFFECT MODELS 275 

We have seen that the sexual isolation models may have double effect (sexual isolation + 276 

sexual selection) depending on the within sex frequencies. While it is not possible to assure 277 

that the isolation model have not sexual selection, we can however, develop models that are 278 

double in their effects still under frequencies satisfying (10).  279 

 280 

Double Models Under Uniform Frequencies  281 

The details of these models are given in the Supporting Information S1 section. Some of 282 

them include an additive parameter of the type m'jj = 1 + c restricted to |c| < 1 instead of m'jj 283 

= a restricted to a > 0. These additive parameters are required for the model to produce 284 

double effects under uniform frequencies. 285 
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The ML estimates for some of these double effect models were obtained using the Nelder-286 

Mead simplex numerical algorithm (see below). 287 

 288 

General Double Effect Models 289 

We also generated any particular model with propensities mij = ij with the restriction that 290 

at least one propensity had value of 1. The MLE of the parameters was 291 

     
      

    
  (12) 292 

where λ(ij) is defined as in (7). 293 

The most parameterized model has K-1 parameters and coincides with the saturated model 294 

so that, only in this case, the estimates in (12) are the corresponding pair total indices (PTI). 295 

All the above derived MLE formulae have also been checked by numerical approximation 296 

using the bounded Nelder-Mead simplex algorithm (Press 2002; Singer and Singer 2004; 297 

Gao and Han 2012). The set of described models jointly with their effects are summarized 298 

in Table 1. 299 

 300 

Table 1. Mutual mating propensity models as defined by different parameters and their 301 

effects in a case with two different types at each sex (k1 = k2 = 2). When the value of m'ij is 302 

not explicitly given is assumed to be 1. 303 

Name (abbreviation) Model  MLE Effect 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 22, 2018. ; https://doi.org/10.1101/305730doi: bioRxiv preprint 

https://doi.org/10.1101/305730
http://creativecommons.org/licenses/by-nc/4.0/


    

Random (M0) m'ij = 1 i,j  Random mating 

    

Multiplicative Sexual Selection Models    

Female sexual selection (SFem-1P) m'11 = m'12 = a   a =λ(a) /λ(1)   Fem sexual selection  

Male sexual selection (SMale-1P) m'11 = m'21 = b b =λ(b) /λ(1) Male sexual selection  

Two sex sexual selection (S2-2P) m'11 = ab else  2-sex  sexual selection  

 m'12 = a else   a =λfem(a) /λfem(1)  

 m'21 = b b =λmale(b)/λmale(1)  

    

Sexual Isolation Models  non-multiplicative  Isolation freq-dep 

Symmetric sexual isolation (I-1p) m'11 = m'22 = a  a =λ(a) /λ(1)   Isolation UF 

Full sexual isolation (I-2p) m'11 = a1, m'22 = a2  ai =λ(ai) /λ(1) Isolation freq-dep 

    

General Double Models (D-gp)   Isolation+Sex Sel 

Saturated (Msat) m'ij = aij;, m'k1k2 = 1 ai =λ(ai) /λ(1)  

k1: number of female categories; k2: number of male categories; UF: uniform frequencies; K= k1 × k2. 304 

 305 

Model Selection And Multimodel Inference 306 

Information-based model selection and multi-model inference can be applied for describing 307 

uncertainty in a set of models and performing inference on the parameters of interest 308 

(Burnham et al. 2011; Grueber et al. 2011; Barker and Link 2015; Claeskens 2016). 309 

There are several information criteria at hand, although trusting on a single form of 310 

information criterion is unlikely to be universally successful (Brewer et al. 2016; Aho et al. 311 

2017). In consequence, we considered two Kullback-Leiberg divergence-based measures 312 

plus the well-known Bayesian information criterion. 313 
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INFORMATION CRITERIA 314 

The Akaike information criterion (AIC) provides the link between the Kullback-Leiberg 315 

divergence and the maximized log-likelihood of a given model (Akaike 1973). The sample-316 

corrected version AICc is asymptotically equivalent and may work better for small sample 317 

size so from herein we use the AICc version computed as 318 

 AICc = -2ln(L) + 2Pm + (2Pm(Pm+1))/(n’ - Pm -1)   319 

where L is the maximum likelihood of the model, Pm the total number of mating parameters 320 

estimated in the model and n' is the number of matings. 321 

There is also a version for the symmetric K-L divergence (Jeffrey's) called the KICc 322 

criterion (Cavanaugh 2004; Keerativibool 2014). Because mate choice models can be 323 

described by the informational flow in the mating phenotypes, in the form of the Jeffrey's 324 

divergence (Carvajal-Rodríguez 2018), it seems adequate considering KICc criterion 325 

besides the AICc one. 326 

 KICc = -2ln(L) +n'ln(n' / (n' - Pm)) + P2   327 

with P2 = n'[(n' - Pm)(2Pm + 3)-2] / [(n’ - Pm -2)(n' - Pm)]   328 

Finally, the Bayesian information criterion (BIC Schwarz 1978) permits (via the difference 329 

between BIC values) an asymptotic approximation to the Bayes factor applied for model 330 

comparison (Wagenmakers 2007) 331 

 BIC = -2ln(L) + Pmln(n’)    332 

Overdispersion 333 
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In the context of model selection, data overdispersion, i.e. greater observed variance than 334 

expected, could generate the selection of overly complex models.  335 

The simplest approach to estimate overdispersion is by computing a single variance 336 

inflation factor (v). This inflation factor is the observed variation divided by the expected 337 

under the most complex model (Mc) among the proposed ones (Richards 2008; Symonds 338 

and Moussalli 2011). It can be asymptotically approximated by the deviance i.e. twice the 339 

difference between the log-likelihood of the saturated (Msat) and the Mc model, divided by 340 

the difference in the number of parameters (PMsat - PMc) between both models  341 

 v = 2[ln(LMsat) - ln(LMc)] / df   342 

where df = PMsat - PMc. 343 

If 1 ≤ v ≤  4 this indicate overdispersion while if higher than 4-6 this may indicate poor 344 

model structure and the construction of the set of models should be reconsidered (Burnham 345 

and Anderson 2002). For v values around 1 to 4, quasi-likelihood theory provides a way to 346 

analyse overdispersed data (Anderson et al. 1994; Richards 2008). The quasi-likelihood is 347 

the likelihood divided by an estimate of v, and so we can consider a quasi-likelihood 348 

version of the various information criteria, namely QAICc, QKICc (Kim et al. 2014) and 349 

QBIC simply by replacing the likelihood with the quasi-likelihood in the corresponding 350 

formula. In such cases the number of parameters is increased by one and the model 351 

variance is multiplied by v (see below). When the quasi-likelihood version is used, it must 352 

be done for all models and criteria.  353 

 354 
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Model Weights 355 

Hereafter, we denote by IC when referring generically to any information criteria. For a 356 

particular criterion and for any set of R models there is a minimum criterion value e.g. 357 

AICcmin, BICmin, etc. Thus, the models can be ranked regarding the difference with that 358 

minimum 359 

 Δi = ICi - ICmin , for i = 1, 2, …, R. 360 

where ICi refers to any specific information criterion for the model i. 361 

Models can also be ranked by their weights from higher to lower. The weight wi refers to 362 

the strength of evidence for that model (Burnham et al. 2011; Claeskens 2016) 363 

 wi = li / Σ lj for j = 1, 2, …, R   364 

where li = exp(-0.5Δi) is the relative likelihood of each model given the data.  365 

 366 

MULTI MODEL INFERENCE  367 

If we are interested in estimating a mating parameter, we can obtain the value from the 368 

best-fit model. Alternatively, we can make the inference based on a group of the most 369 

credible models. The latter strategy is called multi-model-based inference (Burnham and 370 

Anderson 2002; Burnham et al. 2011; Symonds and Moussalli 2011).  371 

Therefore, we can perform a model averaged prediction for the parameters that are 372 

variables in the best model.  373 
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Before performing the average, we should translate the different models to the same scale 374 

of propensity. For example, a model like m'11 = 2, m'12 = m'21 = m'22 = 1, is not in the same 375 

scale that m'11 = 2, m'12 = m'21 = m'22 = 0.5. Without loss of generality, the latter can be 376 

transformed into a equivalent model m'11 = 4, m'12 = m'21 = m'22 = 1, which is now in the 377 

same scale that the first model.   378 

The averaged parameter estimates were computed as a weighted mean where the weights 379 

are the strength of evidence for each model as obtained under a given information criterion. 380 

The parameters were averaged only over the models for which they appear as a variable. 381 

Because the weights need to sum up to 1, it was necessary renormalize them by dividing by 382 

the accumulated weight in the confidence subset.  383 

Therefore, for a parameter included in the confidence subset Rs we have 384 

   
      
  
 

   
  
 

   385 

This way of performing the model averaged prediction is called natural averaging  386 

(Symonds and Moussalli 2011). 387 

Finally, the reliability of each parameter estimate was measured as the unconditional 388 

standard error  389 

                               
    390 

where        = V(mi | model i) = V(q') = q'(1-q') / n' is the model standard error squared and 391 

v is the variance inflation factor.  392 
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The use of the sum of weights to estimate variable importance in regression models has 393 

been criticized because multicollinearity among the predictor variables and the imprecision 394 

of the weight measures (Galipaud et al. 2014; Cade 2015; Galipaud et al. 2017).  395 

However, the mutual propensity parameters do not belong to a regression model and their 396 

average is performed in the same scale and with comparable units. Therefore, under the 397 

mutual mating propensity setting, the multimodel inference would work well as we 398 

confirmed by simulation (next section).    399 

 400 

Simulations 401 

To test how well the exposed methodology is able to distinguish the different classes of 402 

effects models and estimate the mating parameters, we used the sampling with replacement 403 

algorithm in the program MateSim (Carvajal-Rodriguez 2018b) for generating mating 404 

tables by Monte Carlo simulation (see section S2 in Supporting Information for detailed 405 

explanation).   406 

We have simulated mating tables corresponding to sexual isolation and sexual selection 407 

mate choice effects. These effects correspond to an a priori mating pattern defined by the 408 

mating propensity distribution (Table S1 and Fig. S1). The resulting mating tables were 409 

consequence of the mating pattern and the sampling process. 410 

The mating tables consisted in two types of information (Fig. S2). First, the population 411 

frequencies (premating individuals) which were generated randomly for each simulation 412 
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run. Note that the minimum phenotype frequency (MPF) allowed was 0.05.  Second, we 413 

counted 500 mating pairs (n' = 500) for a hypothetical trait with two classes at each sex. 414 

Because we simulated a species with high population size (n = 10,000) the mating process 415 

was represented as a sampling with replacement, and the population frequencies were 416 

constant over the mating season.  417 

Concerning the mating pairs, the number of occurrences for each mating type i × j was 418 

obtained as  419 

  Q(i, j) = n' × p1i × p2j × mij  420 

where n' is the sample size and mij is the normalized propensity of the mating pair.  421 

The propensities assayed corresponded to random mating, m'11=m'22 = m'12 =m'21 =1 (M0 in 422 

Table 2); positive assortative mating, m'11=m'22 = 2, m'12=m'21=1 (Isol in Table 2); and 423 

female sexual selection, m'11=m'12 = 2, m'21=m'22=1 (SSFem in Table 2). The parameter 424 

estimates were averaged over 1000 runs for each case. 425 

In Table 2, we present the results of the multimodel inference from the simulated tables.  426 

We may appreciate that random mating was perfectly estimated by the three IC methods. 427 

The mate choice effects models were also similarly estimated by the three criteria. The 428 

sexual selection model estimates were slightly less accurate which is caused by the 429 

variation in the population frequencies that may generate scenarios with double effect 430 

models (sexual selection + sexual isolation) and/or sexual selection in both sexes. 431 

 432 
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Table 2. Average (standard error) parameter estimates for different models under 433 

sample size 500.  434 

Model  m'11 m'12 m21 m22 

M0 Expected 1 1 1 1 

 AICc 1.0±0.0000 1.0±0.0000 1.0±0.0000 1.0±0.0000 

 KICc 1.0±0.0000 1.0±0.0000 1.0±0.0000 1.0±0.0000 

 BIC 1.0±0.0000 1.0±0.0000 1.0±0.0000 1.0±0.0000 

Isol Expected 2 1 1 2 

 AICc 2.0±0.004 1.0±0.013 1.0±0.001 2.0±0.004 

 KICc 2.0±0.005 1.0±0.009 1.0±0.001 2.0±0.005 

 BIC 2.0±0.006 1.0±0.003 1.0±0.001 2.1±0.006 

SSFem Expected 2 2 1 1 

 AICc 2.1±0.183 1.9±0.013 1.0±0.007 1.0±0.006 

 KICc 2.1±0.163 1.9±0.010 1.0±0.007 1.0±0.006 

 BIC 1.8±0.010 1.8±0.013 1.0±0.009 1.0±0.006 

M0: Random mating model. Isol: isolation model; SSFem: Female sexual selection model. 435 

The results were similar with lower sample size (n'=100, Table S2) but female sexual 436 

selection were less accurately estimated specially under the BIC criteria. The loss of 437 

accuracy is caused by some few cases having frequency values close to the minimum in 438 
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which, after sampling, there were no power to distinguish from the random mating pattern. 439 

However, if the frequencies were uniformly distributed, i.e. p1i=1/2 and p2j = 1/2, then even 440 

under sample size of 100, the estimation of female sexual selection was accurate resulting 441 

in the correct parameter estimates (m'11=2, m'12=2, m'21=1, m'22=1) for the three information 442 

criteria (see SSFEMU case in Table S2). 443 

 444 

Example of application 445 

Littorina saxatilis is a marine gastropod mollusc adapted to different shore habitats in 446 

Galician rocky shores. There are two different ecotypes, an exposed-to-wave (smooth un-447 

banded, SU), and a non-exposed (rough banded, RB) ecotype. Several experimental studies 448 

have shown that these ecotypes have evolved local adaptation at small spatial scale. For 449 

example, stronger waves on the lower shore may provoke that the SU ecotype becomes 450 

sexually mature at smaller size than the upper-shore (RB) ecotype. In addition, in some 451 

areas of the mid-shore habitat, the two ecotypes occasionally mate, producing apparently 452 

fertile intermediate morphological forms that are called hybrids (HY) (Rolan-Alvarez et al. 453 

2015). 454 

Sexual isolation between RB and SU morphs was observed in wild mating pairs in the mid-455 

shore zone, likewise size-assortative mating in all shore levels (Rolán‐Alvarez et al. 1999; 456 

Cruz et al. 2001). It is assumed that the size is the key trait causing the increase of sexual 457 

isolation in this model system, being the male the choosy sex in this species (Rolan-Alvarez 458 

2007).  459 
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Here, we analysed two L. saxatilis data sets (Table 3) corresponding to two sampling years 460 

(Rolán‐Alvarez et al. 1999; Cruz et al. 2001) for estimating the mutual mating propensity 461 

parameters between the RB, SU and HY morphs. 462 

 463 

Table 3. The population frequencies by year and sex, from Rolán-Alvarez et al. (1999) and 464 

Cruz et al. (2001) autumn data. 465 

 Year  Sample size RB HY SU 

Female 1999 1222 0.36 0.12 0.52 

 2001 598 0.29 0.13 0.58 

Male 1999 1140 0.35 0.12 0.53 

 2001 476 0.36 0.15 0.49 

 466 

We first computed the information partition (Carvajal-Rodríguez 2018) and saw that there 467 

was significant sexual isolation in both data sets (JPSI p value < 0.0001) while no significant 468 

sexual selection was detected.  469 

Then, we considered 27 models from the different classes (Fig. 1 and Table S1), including  470 

M0 (random  mating, 0 mating parameters), various isolation, sexual selection and double 471 

effect models with up to 7 parameters and the Msat (8 independent mating parameters) 472 

model. Each data set was analysed separately, computing the maximum likelihood 473 

estimates and the corresponding information criteria.  474 

The data from 1999 were more dispersed and the uncertainty in the models higher than in 475 

the data from 2001. However, in both years and for the three information criteria, the 476 
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models with at least 5% of weight were always double effect models (sexual isolation + 477 

sexual selection) with only 1 or 2 parameters. These models implied a pattern of positive 478 

assortative mating. 479 

To better compare the mating pattern for the different data we evaluated the mating 480 

parameter values obtained by multimodel inference. The major difference among the 481 

different criteria and years corresponded to the mating involving hybrids. However, in 482 

every case, the most favourable matings were RB×RB and SU×SU and the less favourable 483 

mating was SU female by RB male (SU×RB). The three criteria produced similar relative 484 

estimates. Therefore, we present only the AICc multimodel estimates averaged over the two 485 

years (Table 4). For clarity, the estimates within each year were divided by the estimate of 486 

the HY×SU mating so that the value of mHYSU is always 1. 487 

The scenery depicted showed that the within-ecotype mating was preferred. RB males 488 

chose about twice as much the mating with RB females (mRBRB) than with HY females 489 

(mHYRB), while the mating with SU females (mSURB) was ten times less frequent.  490 

HY males had a quite variable mating pattern depending on the year, but it seems they 491 

preferred RB and HY females more than SU ones. The SU males showed the opposite 492 

pattern, they preferred SU over HY and RB females. Thus, as RB, the SU males also 493 

preferred the within ecotype mating although with not so strong effect. 494 

    495 

Table 4. Littorina saxatilis data. Mutual-propensity estimates from multimodel inference 496 

under the AICc. Values are the average over the two year data plus/minus the standard error  497 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 22, 2018. ; https://doi.org/10.1101/305730doi: bioRxiv preprint 

https://doi.org/10.1101/305730
http://creativecommons.org/licenses/by-nc/4.0/


   Males  

  RB HY SU 

 RB 1.9±0.09 1.5±0.38 1.0±0.0 

Females HY 1.0±0.0 1.5±0.34 1.0±0 

 SU 0.16±0.01 1.0±0.0 1.7±0.23 

 498 

Discussion 499 

 500 

SIMULATIONS 501 

We have simulated mating tables corresponding to random mating, sexual isolation and 502 

sexual selection mate choice effects. The random mating pattern was perfectly assessed 503 

independently of the sample size. Under the higher sample size (n' = 500), the multimodel 504 

inference accurately estimated the true effects both for sexual isolation and sexual 505 

selection. With low sample size (n' = 100) the accuracy was good for the isolation pattern 506 

but not so for the sexual selection pattern. This occurs because the sexual selection pattern 507 

underlying in the propensities matrix was not so well represented in the mating table in 508 

some runs, so the accuracy was lower in these cases because the pattern was not reflected in 509 

the sampling. 510 
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Not surprisingly, BIC was slightly more conservative, while AICc presented slightly more 511 

accurate estimates in some cases. The KICc criterion performed similar to the best AICc 512 

and BIC cases.  513 

In general, the estimation was accurate and even in the worst cases (lowest sample size and 514 

extreme phenotypic frequencies), the mean estimates were closer to the real value than to 515 

random mating.  516 

 517 

EXAMPLE 518 

Previous studies in the Galician L. saxatilis hybrid zone showed that mate choice favours 519 

within-morph pairs, whereas pairs including at least one hybrid morph seems to mate 520 

randomly. The latter is not so clear in our analysis, may be due to the low number of hybrid 521 

mating in the data (Fig. S3).  522 

The estimates obtained by multimodel inference support the positive assortative mating for 523 

the ecotype. In addition, another result emerged from the analysis: The pair RB male with 524 

SU female, has less mutual preference than SU male with RB female (mSURB < mRBSU).  525 

This pattern could be related with a physical difficulty for the mating involving bigger RB 526 

males with the smaller SU females, as mating pairs with female bigger than the male (a 527 

typical trend in gastropods) are somehow more frequent (E. Rolán-Alvarez personal 528 

communication). 529 
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In addition to the mating pattern depicted by the multi-model approach, we also got the 530 

relative estimates of the mating parameters. Testing the reliability of these estimates is, 531 

however, out of the scope of the present manuscript, and it was left for future work.    532 

   533 

GENERAL 534 

The advantages of model selection and multimodel inference in evolutionary ecology has 535 

already been widely discussed, jointly with the pros and cons of applying any information 536 

criteria (Link and Barker 2006; Burnham et al. 2011; Aho et al. 2014; Barker and Link 537 

2015; Aho et al. 2017) or the reliability of the obtained estimates (Galipaud et al. 2014; 538 

Cade 2015; Giam and Olden 2016; Galipaud et al. 2017).  539 

Multimodel inference has been however, rarely utilized in the context of sexual selection 540 

and isolation effects of mate choice. Here, by proposing general models causing different 541 

type of effects, jointly with their maximum likelihood estimates, we are providing the first 542 

standardized methodology for model selection and multimodel inference of the mating 543 

parameters involved in sexual selection and isolation effects.  544 

The set of a priori models (including user-defined ones) permits to perform an a posteriori 545 

quantification of the data-based evidence and provide confidence sets on plausible non-546 

trivial models while letting at the same time, multi-model inference on the parameters. 547 

The approach was implemented by allowing three different information criteria. Under the 548 

scenarios assayed, they performed similarly for simulated and real data. 549 
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The proposed methodology should ideally work under scenarios for which the availability 550 

of individuals is not affected by the matings that have already occurred, as expected for 551 

polygamous species, or even for monogamous species, when the number of available 552 

individuals is higher that the mating pairs. In the case of monogamous species with low 553 

population size, the population frequencies may be altered during the reproductive season 554 

and so, the distribution of propensities could not define the same sexual selection pattern 555 

over the season. This could happen because the sexual selection effects are frequency 556 

dependent. On the contrary, the sexual isolation effects are not frequency dependent, and 557 

should not be affected by the variation of the population frequencies(Carvajal-Rodriguez 558 

2018a). 559 

The developed methodology has been fully implemented in a program called InfoMating 560 

available at http://acraaj.webs.uvigo.es/InfoMating/Infomating.htm or upon request to the 561 

author.   562 
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The Supporting Information file includes: 625 

S-1) Mutual Mating Propensity Models 626 

S-2) Monte Carlo simulation of mating tables 627 

S-3) Example data input file. 628 
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FIGURE LEGENDS 630 

Fig 1. Mating models as defined by their effect after relaxing some of the conditions imposed to the 631 

random mating model M0. 632 
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