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Abstract 

Non-random mating has a significant impact on the evolution of organisms. Here, I 6 

developed a modelling framework for discrete traits (with any number of phenotypes) to 7 

explore different models connecting the non-random mating causes (mate competition 8 

and/or mate choice) and their consequences (sexual selection and/or assortative mating). 9 

I derived the formulas for the maximum likelihood estimates of each model and used 10 

information criteria to perform multimodel inference. Simulation results showed a good 11 

performance of both model selection and parameter estimation. The methodology was 12 

applied to ecotypes data of the marine gastropod Littorina saxatilis from Galicia (Spain), to 13 

show that the mating pattern is better described by models with two parameters that involve 14 

both mate choice and competition, generating positive assortative mating plus female 15 

sexual selection. 16 

As far as I know, this is the first standardized methodology for model selection and 17 

multimodel inference of mating parameters for discrete traits. The advantages of this 18 

framework include the ability of setting up models from which the parameters connect 19 

causes, as mate competition and mate choice, with their outcome in the form of data 20 

patterns of sexual selection and assortative mating.  For some models, the parameters may 21 

have a double effect i.e. they produce sexual selection and assortative mating, while for 22 

others there are separated parameters for one kind of pattern or another.  23 

From an empirical point of view, it is much easier to study patterns than processes and, for 24 

this reason, the causal mechanisms of sexual selection are not so well known as the patterns 25 
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they produce. The goal of the present work is to propose a new tool that helps to distinguish 26 

among different alternative processes behind the observed mating pattern. 27 

The full methodology was implemented in a software called InfoMating (available at 28 

http://acraaj.webs6.uvigo.es/InfoMating/Infomating.htm). 29 

 

1. Introduction 30 

The concept of sexual selection is a key piece of modern evolutionary theory as it explains 31 

a great range of evolutionary patterns and diversity. Darwin (1871, 1974) originally defined 32 

sexual selection as competition between individuals of one sex to achieve matings with the 33 

other sex. Yet Darwin distinguished two general biological mechanisms of sexual selection: 34 

mate competition and mate choice (see Ng et al. 2019 and references therein). However, the 35 

concept of sexual selection has been controversial since its very beginning (reviewed in 36 

Andersson 1994; Prum 2012; Parker 2014; Parker and Pizzari 2015) and there is still 37 

disagreement on its actual definition (Fitze and Galliard 2011), and even, its role as a key 38 

component of modern evolutionary biology has being challenged (Roughgarden et al. 2006; 39 

but see Shuker 2010; Parker and Pizzari 2015).  40 

It seems that some of the disagreements and misunderstandings about sexual selection and 41 

related concepts, come from the distinct emphases that scientific fields (e.g. population 42 

genetics, speciation theory, behavioral ecology and sociology) put on the various aspects of 43 

the sexual selection theory (evolutionary, behavioral or social role). Moreover, sexual 44 

selection is described sometimes as a process and sometimes as a pattern.  45 
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The distinction between pattern and process may be obscured because of the same 46 

biological concept can be meaningfully defined as both a process and a pattern (Armstrong 47 

1977; Mahler et al. 2017). Consider for example, the classical definition of sexual selection, 48 

as arising from variation in reproductive success due to competition for access to mates 49 

(Andersson 1994; Shuker 2010). From such definition, sexual selection can be considered 50 

as the evolutionary agent (a process) that drives the evolution of some mating-related traits. 51 

However, from the same definition, if we put the emphasis on the pattern of evolutionary 52 

change that arises from the differences in the reproductive success, then we are viewing 53 

sexual selection as a pattern caused by some other biological process (competition).  54 

In this work, I adhere to the definition used in population genetics, where sexual selection 55 

is caused by processes of mate competition that may produce intrasexual selection, and/or 56 

processes of mate choice that may produce intersexual selection (Lewontin et al. 1968; 57 

Endler 1986; Casares et al. 1998; Rolán-Alvarez and Caballero 2000; Ng et al. 2019).  58 

More specifically, the process of mate competition refers in the broad sense to access to 59 

matings by courtship, intrasexual aggression and/or competition for limited breeding 60 

resources (Andersson 1994; Kokko et al. 2012; Wacker and Amundsen 2014).  These 61 

processes may generate a pattern of sexual selection (a change in the frequency of the trait 62 

under study) in the sex that competes (intrasexual selection Ng et al. 2019).  63 

The process of mate choice occurs whenever the effects of traits expressed in one sex leads 64 

to non-random allocation of reproductive investment with members of the opposite sex 65 

(Edward 2015). Choice may be mediated by phenotypic (sensorial or behavioural) 66 

properties that affect the propensity of individuals to mate with certain phenotypes 67 
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(Jennions and Petrie 1997). The observed pattern driven by mate choice can be a change in 68 

trait frequency in the other sex (intersexual selection) and/or a pattern of trait correlation 69 

between mates (assortative mating).  70 

Still, the relationships among these concepts are complex and can be approached from 71 

different perspectives (the reader may consult Arnold and Wade 1984; Rolán-Alvarez and 72 

Caballero 2000; Edward 2015; Rolan-Alvarez et al. 2015b; Futuyma and Kirkpatrick 2017; 73 

Rosenthal 2017; Estévez et al. 2018; Ng et al. 2019 for extended details and alternative 74 

definitions). 75 

Summarizing, the evolutionary consequences of mate competition and mate choice are 76 

sexual selection and assortative mating. When the traits under study are discrete, the 77 

patterns of sexual selection and assortative mating are defined in terms of change in the 78 

phenotype frequencies, so that sexual selection corresponds to the observed change in gene 79 

or phenotype frequencies in mated individuals with respect to population frequencies (Hartl 80 

and Clark 1997; Rolán-Alvarez and Caballero 2000). Similarly, assortative mating 81 

corresponds to the observed deviation from random mating within matings (Rolán-Alvarez 82 

and Caballero 2000 and references therein).  83 

In a previous work (Carvajal-Rodríguez 2018b), the processes of mate competition and 84 

mate choice were modelled for discrete traits by means of the parameters mij, that represent 85 

the mutual mating propensity between a female of type i and a male j. Therefore, if A-type 86 

females prefer A-type males, this mate choice is modelled as a higher mutual mating 87 

propensity between these types as compared with the mutual mating propensity of the A 88 

females with other male types (mAA  > mAB). On the other hand, if B-type males mate more 89 
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often than other males whatever the female, this mate competition is modelled by a higher 90 

marginal mating propensity of such males (see below). 91 

By modelling the mating process as a differential mutual mating propensity among 92 

different types of mating pairs, it is possible to express the mean change in mating 93 

phenotypes as the information gained due to non-random mating (Carvajal-Rodríguez 94 

2018b). Describing random mating as the zero information model allows expressing the 95 

patterns obtained from mate choice and competition in terms of the information captured in 96 

the mutual mating propensity models. 97 

Thus, the mating information-based framework provides a formal approach for developing 98 

a set of hypotheses about the causes (mate competition and mate choice) and the patterns 99 

they may provoke (sexual selection and assortative mating). In addition, data-based 100 

evidence can be used for ranking each hypothesis and perform multi-model-based inference 101 

(Link and Barker 2006; Burnham et al. 2011; Aho et al. 2014). 102 

In the following sections I proceed as follows: 103 

1.- Given the population frequencies for some discrete trait I define the multinomial 104 

saturated mating model in terms of the mutual mating propensity parameters. The 105 

maximum-likelihood estimates of these parameters are the pair total indices (PTI) as 106 

defined in (Rolán-Alvarez and Caballero 2000). Once the saturated model is defined I 107 

obtain the three necessary and sufficient conditions for random mating. Afterwards, by 108 

relaxing these conditions it is possible to generate models for which differential marginal 109 

mating propensity may produce female or male sexual selection without assortative mating, 110 

or on the contrary, models for which some mutual mating propensities represent mate 111 
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choice that may produce assortative mating and frequency dependent sexual selection. I 112 

obtain the maximum likelihood estimates for the parameters of these models. 113 

2.- Relying on the previous section, it is possible to generate several mutual mating 114 

propensity models and apply information criteria for selecting the best candidate ones and 115 

estimating the mating parameter values based on the most supported models. I developed a 116 

software called InfoMating to do so. 117 

3.- Finally, I demonstrate the methodology by analysing simulated and real data. 118 

 119 

2. Mutual mating propensity models 120 

Consider a female trait with k1 different phenotypes and a male trait with k2 phenotypes, the 121 

total number of possible mating phenotypes is K = k1 × k2. Let a sample have n' matings 122 

from which n'ij correspond to i-type females that mated with j-type males. If the probability 123 

of the mating i×j is q'ij, then the logarithm of the multinomial likelihood function of the 124 

sample is   125 

𝑙𝑛𝐿 = 𝐶 + ∑ 𝑛𝑖𝑗
′𝐾

𝑖𝑗 ln⁡(𝑞′𝑖𝑗)  126 

where C is the multinomial coefficient which is constant given the sample. As it is well-127 

known, the maximum likelihood estimator of the multinomial probability of the mating i×j 128 

is n'ij / n'. 129 

 130 

2.1 Saturated non-random mating model Msat 131 
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Let the population under study have n1i females of type i from a total of n1 females and n2j 132 

males of type j from a total of n2 males. Therefore, the population frequency of females of 133 

type i is p1i = n1i / n1 and the population frequency of males of type j is p2j = n2j / n2. 134 

The mating probability between types i and j can be expressed as q'ij = mijqij (Carvajal-135 

Rodríguez 2018b) where qij is the product of the female and male population frequencies of 136 

each type (qij = p1i×p2j) and mij = m’ij /M, where m’ij is the mutual mating propensity, i.e. 137 

the expected number of matings given an encounter between females of type i and males of 138 

type j, and M is the mean mutual mating propensity 𝑀 = ∑ 𝑞𝑖𝑗𝑚′𝑖𝑗𝑖,𝑗 , so that Σq'ij = 1. 139 

Under this multinomial model, the log-likelihood of the sample is  140 

𝑙𝑛𝐿𝑠𝑎𝑡 = 𝐶 + ∑ 𝑛𝑖𝑗
′𝐾

𝑖𝑗 ln(𝑚𝑖𝑗𝑞𝑖𝑗)  (1) 141 

This model is saturated (Msat) because it has as many parameters as independent mating-142 

class frequencies, Psat = K -1. The female and male population frequencies, p1 and p2, are 143 

either known or they need to be estimated in all models. Therefore, for model comparison, 144 

the population frequencies can be ignored when counting the number of parameters 145 

involved in each model.  146 

The maximum likelihood estimate (MLE) of mij is (n'ij / n')/qij = PTIi,j where PTIi,j is the 147 

pair total index i.e. the frequency of the observed mating classes divided by their expected 148 

frequency under random mating (Rolán-Alvarez and Caballero 2000).  149 

In this work I am interested in the estimation of the mutual mating propensity parameters 150 

(from hereafter mutual-propensity parameters) for various competition and mate choice 151 
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models. From that point of view, it is convenient to express the maximum likelihood 152 

estimator in a different way which I call λ-notation.  153 

 154 

2.2 λ-notation 155 

Consider the non-normalized parameters m'ij and recall that mij = m’ij /M. The MLE of m'ij 156 

under Msat is simply M × PTIi,j i.e. M ×(n'ij / n') /qij that can be conveniently rearranged as 157 

(n'ij /qij) / (n' / M). Because the mating parameters are normalized, it is possible, without 158 

loss of generality, to set just one of the m'ij to an arbitrary value of 1. Thus, let set m'k1k2 = 1 159 

and note (details in Appendix A) that in such case n' / M = n'k1k2 / qk1k2. Therefore, the MLE 160 

of the parameters of the saturated model can be expressed as 161 

𝑚̂𝑖𝑗
′ =

𝜆(𝑚𝑖𝑗
′ )

𝜆(1)
   162 

where 163 

λ(𝜃) =
∑ 𝑛𝑖𝑗

′𝐴
𝑖𝑗

∑ 𝑞𝑖𝑗
𝐴
𝑖𝑗

  (2) 164 

i.e., the function λ of a mating parameter θ is the sum of the counts of all the mating classes 165 

in the set A = {(i1, j1), ...} having mutual-propensity θ divided by the sum of their expected 166 

frequencies under random mating. 167 

Thus, λ(m'ij) expresses the sum of the observed matings with mutual-propensity m'ij divided 168 

by the product of the population frequencies from each partner type. Similarly, λ(1) 169 

corresponds to the sum of the observed matings having unity mating parameter divided by 170 

the corresponding products of population frequencies. 171 
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As already mentioned, the most parameterized model is the saturated model that has K-1 172 

parameters so, when divided by the mean mutual-propensity M, the estimates λ(m'ij) / 173 

(Mλ(1)) are the corresponding pair total indices (PTIij).  174 

The model Msat is the most complex model that can be fitted to the available data. The 175 

principle of parsimony suggests to consider reduced special cases of this saturated model. 176 

Next, I computed the ML estimates of different classes of reduced models that require less 177 

parameters, beginning by the most reduced one which is the random mating model. 178 

 179 

2.3 Random mating model M0 180 

The random model M0 corresponds to the simplest, most reduced model, which is nested 181 

within all others (it is a particular case of any other model) while it is not possible to derive 182 

any simplified version from it. When random mating occurs, the mating probability 183 

between types i and j is q'ij = qij = p1i×p2j. Under this model, the information would be zero 184 

(Carvajal-Rodríguez 2018b). This zero-information model is a particular case of the 185 

saturated one when the mutual-propensities are equal for every mating phenotype. The 186 

number of independent mating parameters is P0 = 0.  187 

The log-likelihood of the sample of mating is 188 

𝑙𝑛𝐿0 = 𝐶 + ∑ 𝑛𝑖𝑗
′𝐾

𝑖𝑗 ln(𝑞𝑖𝑗)  (3) 189 

Now, let's define the marginal propensity mFem_i for a female of type i as 190 

𝑚𝐹𝑒𝑚_𝑖 = ∑ 𝑝2𝑗
𝑚′𝑖𝑗

𝑀

𝑚𝑎𝑙𝑒𝑠
𝑗  = ∑ 𝑝2𝑗𝑚𝑖𝑗

𝑚𝑎𝑙𝑒𝑠
𝑗   (4) 191 
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Similarly for a male of type j 192 

𝑚𝑀𝑎𝑙𝑒_𝑗 = ∑ 𝑝1i
𝑚′𝑖𝑗

𝑀
= ∑ 𝑝1i𝑚𝑖𝑗

𝑓𝑒𝑚𝑎𝑙𝑒𝑠

𝑖

𝑓𝑒𝑚𝑎𝑙𝑒𝑠

𝑖

 193 

Then, the M0 model corresponds to Msat subjected to the following restrictions: 194 

i) Equal female marginals: mFem_i =mFem_ji, j  (5) 195 

ii) Equal male marginals: mMale_i = mMale_ji, j 196 

iii) Multiplicativity: mij= mFem_i ×mMale_ji, j 197 

It is useful to express M0 in terms of these three restrictions because by relaxing some of 198 

them it is possible to define different classes of models. For example, a model with equal 199 

female marginal propensities and multiplicative mutual-propensities (conditions i and iii 200 

hold) but different male marginal propensities (relaxing ii), corresponds to a case with 201 

competition among males that may provoke a (intra)sexual selection pattern (see below).  202 

Therefore, by relaxing some of the conditions in (5), it is possible to control the kind of 203 

causes that produce the different non-random mating patterns. In fact, there are three 204 

general classes of models that can be combined. The two first classes correspond to 205 

relaxing the first or second condition and involve mate competition in females or males, 206 

provoking female or male (intra)sexual selection respectively. Provided that the third 207 

condition is maintained, these models cannot produce an assortative mating pattern (see 208 

below). The third class corresponds to relaxing the third condition and involves mate 209 

choice, which may provoke just assortative mating, or both assortative mating and sexual 210 

selection, the latter depending on the population phenotype frequencies (Fig. 1).  211 
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 212 

Fig 1. Mating models defined by mate competition or mate choice, and their effect after relaxing 213 

some of the conditions imposed to the random mating model M0. 214 

 215 

2.4 Mate competition models  216 

These class of models correspond to relaxing the first and/or second conditions in M0 while 217 

maintaining the condition of multiplicativity (5-iii). The maintenance of the third condition 218 

implies that the mutual-propensity of a mating pair (i,j) is the product of the marginal 219 

female (mFem) and male (mMale) propensities. Under this condition there should be no 220 

deviation from random mating when comparing the observed and expected frequencies 221 

within matings and the assortative mating pattern should not be observed (Carvajal-222 

Rodríguez 2018b). I distinguished models that generate a sexual selection pattern in just 223 

one sex or in both. 224 
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 225 

2.4.1 Intra-female competition 226 

Relaxing condition (5-i) implies that at least one female marginal propensity, say female of 227 

type A, is different from the rest of female types i.e. mFem_A ≠ mFem_B with A ≠ B. On the 228 

other side, the marginal propensity of males should be the same which means that there is 229 

no intra-male competition, all male types mate at an equal rate. 230 

Therefore, a model with intra-female competition is obtained by defining every mutual-231 

propensity involving a female of type i, by an absolute (unnormalized) mating parameter ai 232 

as follows 233 

m'11= m'12 = ... = m'1k2 = a1 234 

m'21= m'22 = ... = m'2k2 = a2 235 

. 236 

. 237 

. 238 

m'(k1-1)1= m'k12 = ... = m'k1k2 = ak1-1 239 

m'k11= m'k12 = ... = m'k1k2 = 1   (6) 240 

with ai > 0 i. 241 

Note that the relationships among the parameters will not be altered when dividing them by 242 

ak1 so that ak1 = 1. Under this model, there can be as much as k1-1 free mating parameters.  243 

When computing the female and male marginal propensities (4) it is seen that 244 

 mFem_1 = a1/M; mFem_2 = a2/M ...; mFem_k1 = 1/M 245 

 mMale_1 = mMale_2 = mMale_3 =... = mMale_k2 = M/M = 1 246 
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where M is the mean mutual-propensity as defined above. 247 

The model (6) has equal male marginal propensity and it is multiplicative. The MLE of the 248 

parameters is 249 

𝑎̂𝑖 =
λ(𝑎𝑖)

λ(1)
  (7) 250 

where λ(θ) is defined as in (2). Thus, λ(ai) expresses the sum of the observed matings 251 

having mutual-propensity ai, divided by the sum of the product of the population 252 

frequencies from each partner type. Similarly, λ(1) corresponds to the sum of the observed 253 

matings having unity mating parameter divided by the sum of the corresponding products 254 

of population frequencies  (details in Appendix A). 255 

 256 

2.4.2 Intra-male competition 257 

Relaxing condition (5-ii) implies that at least one male marginal propensity, say male of 258 

type A, is different from the rest of male types i.e. mMale_A ≠ mMale_B with A ≠ B. On the 259 

other side, the marginal propensity of females should be the same which means that there is 260 

no intra-female competition, all female types mate at an equal rate. The corresponding 261 

model can be obtained just by interchanging rows with columns in (6). Noting the 262 

parameters as bj instead of ai, the maximum likelihood estimate is  263 

𝑏̂𝑗 =
λ(𝑏𝑗)

λ(1)
  (8). 264 

 265 

2.4.3 Intra-female and male competition 266 
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By relaxing conditions (5-i) and (5-ii) the marginal propensities will be different within 267 

females and males. The corresponding model combines models (6) and (8) and has as much 268 

as (k1-1)×(k2-1) parameters in the most parameterized case, and a minimum of two (female 269 

and male) for the less parameterized one, in order to maintain the multiplicativity condition 270 

(5-iii). This type of model may produce a pattern of sexual selection in both sexes without 271 

assortative mating. By notational convenience, I fix the category k1 in females and k2 in 272 

males as having unitary parameters. Therefore 273 

m’ij = aibj, i<k1, j<k2; m’ik2 = ai, i<k1; m’k1j = bj; j <k2, m’k1k2 = 1; with ai > 0, bj > 0 274 

i, j. 275 

This model is multiplicative (see Appendix A) and the parameters MLE are 276 

𝑎̂𝑖 = (
𝑝1𝑘1

𝑝1𝑖
)

∑ 𝑛𝑖𝑗
′𝑘2

𝑗=1

∑ 𝑛𝑘1𝑗
′𝑘2

𝑗=1

=
𝜆(𝑎𝑖+∑ 𝑎𝑖𝑏𝑗)𝑗

𝜆𝑓𝑒𝑚(1)
  (9) 277 

𝑏̂𝑗 = (
𝑝2𝑘2

𝑝2𝑗
)
∑ 𝑛𝑖𝑗

′𝑘1
𝑖=1

∑ 𝑛𝑖𝑘2
′𝑘1

𝑖=1

=
𝜆(𝑏𝑗+∑ 𝑎𝑖𝑏𝑗)𝑖

𝜆𝑚𝑎𝑙𝑒(1)
   278 

where the lambda function λ(ai + aib1 + ... aibj + ... ) is applied to the mutual-propensities 279 

that depend on the parameter ai. Thus, λ(ai +∑j aibj) is the quotient between the sum of the 280 

number of observed mating phenotypes that depend on the parameter ai (i.e. ∑j n’ij) and the 281 

sum of their expected random mating frequencies (which is simply p1i). Correspondingly, 282 

λsex(1) is the quotient between the sum of cases that contribute with 1 to the mutual-283 

propensity by the given sex (i.e. ∑j n’k1j for females) and the sum of the expected 284 

frequencies (which is p1k1 for females). Formulae (9) is similar to (7) and (8). Note that the 285 

model in (9) becomes (7) by fixing every bj as 1 while it becomes (8) by fixing every ai as 286 

1. The percentage of sexual selection information corresponding to each sex (JS1 and JS2 287 
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in  Carvajal-Rodríguez 2018b), would depend on the population frequencies and on the 288 

mating parameter values. 289 

 290 

2.5 Mate choice models 291 

Mate choice models correspond to the class of non-multiplicative models, i.e. they can be 292 

obtained by relaxing the condition (5-iii) and may produce assortative mating patterns 293 

(positive or negative). If the female marginal propensities are equal and the same is true for 294 

the males (conditions 5-i and 5-ii hold) there would not be sexual selection neither in 295 

females nor males, and the model may produce only assortative mating patterns. However, 296 

this cannot be guaranteed in general because the occurrence of the sexual selection pattern 297 

is frequency dependent under non-multiplicative models (see below).  298 

Consider a model where the unnormalized mutual-propensities are  299 

 m’ii = ci > 0 i  min{k1, k2} and m’ij = 1 for i ≠ j.  300 

Thus, the homotype (i× i) mutual-propensities are parameterized while the heterotype are 301 

not. This model is non-multiplicative in general, because the contribution of the type i to 302 

the mutual-propensity is distinct in mii that in mij or in mji (although with an even number of 303 

types a multiplicative model can be obtained by setting m’ii = 1 / m’jj).  304 

By recalling the definition of marginal propensities in (4), the condition for equal female 305 

marginal mFem_i = mFem_j is 306 

p2i(ci – 1) = p2j(cj – 1)  (10) 307 
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and in males 308 

p1i(ci – 1) = p1j(cj – 1) 309 

In general, depending on the conditions in (10), the mate choice models have double effect 310 

i.e. they produce assortative pattern jointly with sexual selection in at least one sex. 311 

The maximum likelihood estimate for the model parameters is 312 

𝑐̂𝑖 =
𝜆(𝑐𝑖)

𝜆(1)
  (11) 313 

Note that the homotype mating parameter may imply higher mutual-propensity than the 314 

heterotype (ci > 1, positive assortative mating) or viceversa, the homotype has lower 315 

mutual-propensity (ci < 1, negative assortative). The number of different parameters ranges 316 

from 1 (c1 = c2 = ... = ci) to H; where H = min{k1, k2} corresponds to the maximum possible 317 

number of different homotype matings. 318 

It is also possible to define mate choice models with the heterotype mutual-propensities 319 

parameterized instead of the homotype ones (see Appendix A for details). 320 

 321 

2.6 Models with mate competition and mate choice parameters 322 

I have shown that mate choice models may generate both kinds of patterns, assortative 323 

mating and sexual selection, depending on the within sex population frequencies. While it 324 

is not possible to assure that the mate choice model produces no sexual selection, it is 325 

possible to combine the previous models to ensure that there are parameters directly linked 326 

to mate competition and parameters directly linked to mate choice. These combined models 327 
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have the property that when the mate choice parameter is set to 1, there is only a known 328 

sexual selection effect caused by the competition parameter (female, male, or both). When 329 

the mate choice parameter is added, the assortative mating pattern appears and also, an 330 

extra effect of frequency-dependent sexual selection may be added to that of the original 331 

competition parameter.  332 

 333 

2.6.1 Models with male competition and mate choice: independent parameters 334 

Consider the model m'i1 = α; m'ii = c for i ≠ 1 and m'ij = 1 otherwise; with i≤ k1, j ≤ k2. An 335 

example of this kind of model can be seen in Fig. 2. 336 

 337 

Fig 2. An example of male competition and mate choice independent parameters model with 5 × 5 338 

mating phenotypes. α is the male competition parameter and c is the choice parameter. Rows are 339 

females, columns are males. 340 

 341 

For the particular case of α ≠ 1, c = 1; the model has within male competition that 342 

corresponds to the marginal propensity α of the type-1 male compared with the other males, 343 
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so, a male sexual selection pattern may be generated. On the contrary, the female marginal 344 

propensities are equal so there is no female competition. Considering mate choice and the 345 

assortative mating pattern, when c =1 the model is multiplicative so assortative mating 346 

should not occur. In fact, in this case the pair sexual isolation statistics (PSI) are equal (see 347 

Appendix A for details) and the assortative mating is 0, i.e., the overall index of sexual 348 

isolation IPSI = 0 (IPSI = (4ΣPSIii - Σ PSIij )/(4ΣPSIii + Σ PSIij ) ) (see also  Carvajal-349 

Rodríguez 2018b). 350 

However, by taking c ≠ 1 a new component is added to the sexual selection pattern. The 351 

parameter c corresponds to mate choice and produces positive (c > 1) or negative (c < 1) 352 

assortative mating. The value of IPSI is a function of the parameter c and the population 353 

frequencies. Female sexual selection may also emerge depending on the value of c and the 354 

population frequencies. 355 

The MLEs of both parameters are 356 

𝛼̂ =
𝜆(𝛼)

𝜆(1)
 357 

𝑐̂ =
𝜆(𝑐)

𝜆(1)
 358 

A variant of the above model can be generated by changing the c parameter from the main 359 

diagonal to the anti-diagonal. Similarly female sexual competition linked to the α-360 

parameter is obtained by transposing the matrix of the model.   361 

 362 

2.6.2 Models with male competition and mate choice: compound parameters  363 
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Consider the model m'11 = cα; m'i1 = α and m'ii = c for i > 1 and m'ij = 1 otherwise; with i≤ 364 

k1, j ≤ k2. An example of this model can be seen in Fig. 3. 365 

 366 

 367 

Fig 3. An example of male competition and mate choice compound parameters model with 5 × 5 368 

mating phenotypes. α is the male competition parameter and c is the choice parameter. Rows are 369 

females, columns are males. 370 

When c = 1 the model is the same as the previous one. When c ≠ 1, the mate choice parameter 371 

provokes an extra effect of sexual selection in males and females, plus assortative mating. The MLE 372 

of α and c are 373 

𝛼̂ =
∑ 𝑛𝑖1

′𝑘1
𝑖=1 /(𝑐𝑞11 + ∑ 𝑞𝑖1)𝑖>1

𝜆(1)
=
𝜆𝑐.11−(𝛼)

𝜆(1)
 374 

where λc.11-(α) indicates that for matings with parameter α, the expected frequency indexed 375 

as 11 (i.e. q11) is weighted by c. Similarly, 376 
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𝑐̂ =
∑ 𝑛𝑖𝑖

′𝑘
𝑖=1 /(𝛼𝑞11 + ∑ 𝑞𝑖𝑖)𝑖>1

𝜆(1)
=
𝜆𝛼.11−(𝑐)

𝜆(1)
 377 

where k = min{k1, k2}and λα.11-(c) indicates that for matings with mating parameter c, the 378 

expected frequency indexed as 11 is weighted by α. 379 

The above estimates are dependent one on each other, so, for obtaining the estimates of this 380 

compound parameter model I have used a numerical bounded Nelder-Mead simplex 381 

algorithm, with restriction α > 0, c > 0 (Press 2002; Singer and Singer 2004; Gao and Han 382 

2012). 383 

2.6.3 General model with male competition and mate choice parameters 384 

The general model with male competition and mate choice parameters is m'11 = c1α; m'i1 = 385 

α and m'ii = ck for i > 1 and m'ij = 1 otherwise; with i≤ k1, j ≤ k2. A particular case of this 386 

model can be seen in Fig. 4. 387 

 388 

 389 
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Fig 4. Male sexual selection and mate choice compound model with 5 × 5 mating phenotypes. α is 390 

the male sexual selection parameter and ck’s are the choice parameters with c2 = c1. Rows are 391 

females, columns are males. 392 

Note that to distinguish the competition and mate choice parameters, it is necessary that at 393 

least one ck parameter is equal to c1 (as in Figs. 3 and 4) or that c1 = 1 as in Fig. 2, 394 

otherwise the parameter for m11 does not distinguish competition and choice. Therefore, the 395 

model in Fig. 4 has H parameters with H = min{k1,k2} from which, H - 1 are choice  396 

parameters (c) plus one male competition parameter α. The MLE are 397 

𝛼̂ =
∑ 𝑛𝑖1

′𝑘1
𝑖=1 /(𝑐1𝑞11 +∑ 𝑞𝑖1)𝑖>1

𝜆(1)
=
𝜆𝑐1.11−(𝛼)

𝜆(1)
 398 

𝑐̂1 =
𝑛11
′ /(𝛼𝑞11)

𝜆(1)
=
𝜆𝛼.11−(𝑐1)

𝜆(1)
 399 

𝑐̂𝑘>1 =
𝑛𝑘𝑘
′ /(𝑞𝑘𝑘)

𝜆(1)
=
𝜆(𝑐𝑘)

𝜆(1)
 400 

The model parameters ck>1 can be estimated directly from the sample; on the contrary, the α 401 

and c1 estimates are dependent on each other, so, for obtaining these estimates, I used a 402 

numerical bounded Nelder-Mead simplex algorithm with restriction α > 0, c1> 0 (Press 403 

2002; Singer and Singer 2004; Gao and Han 2012). 404 

Previous models were simplified versions of the general model. For example, the model in 405 

Fig. 2 is the general model with restrictions c1= 1; c2 = c3 =... = ck = c. Also, the model in 406 

Fig. 3 corresponds to c1= c2 = c3 =... = ck = c. Another particular case that could be defined 407 

is c1= c; c2 = c3 =... = ck = 1. In the latter, the MLE of the parameters can again be expressed 408 

as a quotient of lambdas similar to the compound parameter case 409 
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∝̂=
𝜆𝑐1.11−(𝛼)

𝜆(1)
 410 

𝑐̂ =
𝜆𝛼.11−(𝑐)

𝜆(1)
 411 

It is also possible to define another general model with the mate choice parameters in the 412 

anti-diagonal. Using the λ notation, the estimates follow the same formulae as defined for 413 

the general model with the choice parameters in the main diagonal. Concerning models 414 

with female competition and mate choice, they are obtained just by transposing the matrices 415 

of the mating parameters. 416 

 417 

2.7 General double effect models 418 

The mating parameters mij = ij with the restriction that at least some are equal to one, 419 

permit to generate any particular model. In general, these models produce patterns of sexual 420 

selection and assortative mating with each parameter possibly linked to the occurrence of 421 

both (see Appendix A). The MLE is 422 

𝜃𝑖𝑗 =
𝜆(𝜃𝑖𝑗)

𝜆(1)
  (12) 423 

The most parameterized model of this kind is the saturated, with K-1 parameters. In such 424 

case, as already mentioned, the estimates in (12) are the corresponding pair total indices 425 

(PTI). 426 

All the above derived MLE formulae have been verified by numerical approximation using 427 

the bounded Nelder-Mead simplex algorithm (Press 2002; Singer and Singer 2004; Gao and 428 
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Han 2012).The set of described models jointly with their expected effects are summarized 429 

in Table 1. 430 

 431 

Table 1. Mutual mating propensity models as defined by different parameters in a case 432 

with two different phenotypic classes in each sex (k1 = k2 = 2). The unnormalized m'ij values 433 

not explicitly given are assumed to be 1. 434 

Name (abbreviation) Model  MLE Effect 

    

Random (M0) m'ij = 1i,j  Random mating 

    

Competition Multiplicative Models    

Female competition (SFem-1P) m'11 = m'12 =a 𝑎̂ = λ(a) /λ(1) Fem sexual selection  

Male competition (SMale-1P) m'11 = m'21 = b 𝑏̂ = λ(b) /λ(1) Male sexual selection  

Female and male competition (S2-2P) m'11 = ab  2-sex  sexual selection  

 m'12 = a 𝑎̂ = λfem(a) /λfem(1)  

 m'21 = b 𝑏̂ = λmale(b)/λmale(1)  

    

Mate Choice Models     

One-parameter (C-1P) m'11 = m'22= c 𝑐̂ = λ(c) /λ(1)   Assortative mating 

+ sex sel (freqdep) 

General mate choice (C-HP) m'11 = c1, m'22 = c2 𝑐̂𝑖 = λ(ci) /λ(1) Assortative mating 

+ sex sel (freqdep) 

Competition and Mate Choice    

2 independent parameters (SFemC-2P) m'1j = α;  

m'jj = c; j > 1 

𝛼̂ = λ(α) /λ(1) 

𝑐̂ = λ(c) /λ(1)   

α-sexual selection in one 

sex + mate choice effect 

c-assortative mating 

2 parameters (1 compound: SFemC-2Pc) m'11 = cα; j > 1: 

m'1j = α; m'jj = c; 

𝛼̂ = λc.11-(α) /λ(1) 

𝑐̂ = λα.11-(c) /λ(1) 

α-sexual selection in one 

sex + mate choice effect 

c-assortative mating 
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H parameters (1 compound: SFemC-HPc) m'11 = c1α; j > 1: 

m'1j = α; m'jj = ck; 

𝛼̂ = λc1.11-(α) /λ(1) 

𝑐̂1 = λ α.11-(c1) /λ(1) 

𝑐̂𝑘≠1 = λ(ck) /λ(1) 

α-sexual selection in one 

sex + mate choice effect 

ck-assortative mating 

General Double Models (D-xP)  
 

Assortative mating 

+ sex sel (freq dep) 

Saturated (Msat) m'ij = cij; m'k1k2 = 1 𝑐̂𝑖 =λ(ci) /λ(1)  

k1: number of female categories; k2: number of male categories; H = min{k1,k2}; sexsel (freqdep): frequency 435 
dependent sexual selection. 436 

 437 

3. Model Selection and multimodel inference 438 

Relying on the previous section, it would be possible to generate mate competition and 439 

mate choice models and, given a mating table, to apply some information criteria to select 440 

the best-fit candidates and estimating the mating parameter values based on the most 441 

supported models. Next, I briefly review the information criteria and model selection 442 

concepts and show how to apply them to perform model selection and multimodel 443 

inference among mate competition and mate choice models. 444 

Information-based model selection and multi-model inference can be applied to describe 445 

uncertainty in a set of models to perform inference on the parameters of interest (Burnham 446 

et al. 2011; Grueber et al. 2011; Barker and Link 2015; Claeskens 2016). There are several 447 

information criteria at hand, although trusting on a single form of information criterion is 448 

unlikely to be universally successful (Liu and Yang 2011; Vrieze 2012; Brewer et al. 2016; 449 

Aho et al. 2017; Dziak et al. 2019). In the present work, two Kullback- Leibler divergence-450 

based measures plus the so-called Bayesian information criterion are considered. 451 

3.1. Information criteria 452 
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The Akaike information criterion (AIC) provides the link between the Kullback-Leibler 453 

divergence and the maximized log-likelihood of a given model (Akaike 1973). Here I use 454 

the sample-corrected version AICc, because it is asymptotically equivalent and may work 455 

better for small sample size 456 

 AICc = -2ln(L) + 2Pm + (2Pm(Pm+1)) / (n’ - Pm -1)   457 

where L is the maximum likelihood of the model, Pm the total number of estimated mating 458 

parameters and n' is the number of matings. 459 

There is also a version for the symmetric K-L (Jeffrey's) divergence, called the KICc 460 

criterion (Cavanaugh 2004; Keerativibool 2014). It seems adequate to consider the KICc 461 

criterion because the mating pattern obtained from the mutual-propensity models can be 462 

described by the informational flow from the mating frequencies, in the form of the 463 

Jeffrey's divergence (Carvajal-Rodríguez 2018b) so,  464 

 KICc = -2ln(L) +n'ln(n' / (n' - Pm)) + P2   465 

with P2 = n'[(n' - Pm)(2Pm + 3)-2] / [(n’ - Pm -2)(n' - Pm)]   466 

Finally, the Bayesian information criterion (BIC Schwarz 1978) permits an approximation 467 

to the Bayes factor applied for model comparison (Wagenmakers 2007) 468 

 BIC = -2ln(L) + Pmln(n’)    469 

3.2 Overdispersion 470 

In the context of model selection, data overdispersion, i.e. greater observed variance than 471 

expected, could generate the selection of overly complex models. The simplest approach to 472 
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estimate overdispersion is by computing a single variance inflation factor (v). This inflation 473 

factor is the observed variation divided by the expected under the model with the highest 474 

likelihood (Mc), other than the saturated, among the proposed ones (Richards 2008; 475 

Symonds and Moussalli 2011). It can be asymptotically approximated by the deviance i.e. 476 

twice the difference between the log-likelihood of the saturated (Msat) and the Mc model, 477 

divided by the difference in the number of parameters (PMsat - PMc) between both models  478 

 v = 2[ln(LMsat) - ln(LMc)] / df   479 

where df = PMsat - PMc. 480 

If 1 ≤ v ≤  4 this indicates overdispersion, while if higher than 4-6 this may indicate poor 481 

model structure and the construction of the set of models should be reconsidered  (Burnham 482 

and Anderson 2002). For v values around 1 to 4, quasi-likelihood theory provides a way to 483 

analyse over dispersed data (Anderson et al. 1994; Richards 2008). The quasi-likelihood is 484 

the likelihood divided by an estimate of v. The quasi-likelihood version of the various 485 

information criteria, namely QAICc, QKICc (Kim et al. 2014) and QBIC, is obtained 486 

simply by replacing the likelihood with the quasi-likelihood in the corresponding formula. 487 

In such cases, the number of parameters is increased by one and the model variance is 488 

multiplied by v (see below). When the quasi-likelihood version is used, it must be done for 489 

all models and criteria.  490 

 491 

3.3. Model weights 492 
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Let IC be any information criterion. For a particular criterion and for any set of R models 493 

there is a minimum criterion value e.g. AICcmin, BICmin, etc. Thus, the models can be ranked 494 

regarding the difference with that minimum 495 

 Δi = ICi - ICmin , for i= 1, 2, …, R 496 

where ICi refers to any specific information criterion for the model i. 497 

Models can also be ranked by their weights from higher to lower. The weight wi refers to 498 

the strength of evidence for that model (Burnham et al. 2011; Claeskens 2016) 499 

 wi = li / Σlj for j = 1, 2, …, R   500 

where li = exp(-0.5Δi) is the relative likelihood of each model given the data.  501 

 502 

3.4 Multi-model inference  503 

Multi-model-based inference estimate the parameters of interest based on a group of the 504 

most credible models instead of on a best-fit single model (Burnham and Anderson 2002; 505 

Burnham et al. 2011; Symonds and Moussalli 2011). The multi-model inference is 506 

performed as a model averaged prediction for the parameters that are variables in the best 507 

model.  508 

In our modelling framework and before performing the average of the estimated parameter 509 

values, the different models should be translated to the same scale of mutual-propensity. 510 

For example, a model like m'11 = 2, m'12 = m'21 = m'22 = 1, is not in the same scale that m'11 = 511 

2, m'12 = m'21 = m'22 = 0.5. Without loss of generality, the latter can be transformed into an 512 
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equivalent model m'11 = 4, m'12 = m'21 = m'22 = 1, which is now in the same scale as the first 513 

model.  514 

The averaged parameter estimates were computed as a weighted mean where the weights 515 

are the strength of evidence for each model as obtained under a given information criterion. 516 

The parameters were averaged only over the models for which they appear as a variable. 517 

Because the weights need to sum up to 1, it was necessary renormalize them by dividing by 518 

the accumulated weight in the confidence subset. 519 

Therefore, for each parameter m included in the confidence subset Rs, the average was 520 

computed as 521 

𝑚̂ =
∑ 𝑤𝑖𝑚̂𝑖
𝑅𝑠
𝑖

∑ 𝑤𝑖
𝑅𝑠
𝑖

   522 

This way of performing the model averaged prediction is called natural averaging 523 

(Symonds and Moussalli 2011). 524 

Finally, the reliability of each parameter estimate was measured as the unconditional 525 

standard error  526 

 𝑆𝑒(𝑚)̂ = ∑ 𝑤𝑖√𝑣𝑉(𝑚̂𝑖) + (𝑚̂𝑖 − 𝑚̂)2𝑅𝑠
𝑖    527 

where 𝑉(𝑚̂𝑖) = V(mi |model i) = V(q') = q'(1-q') / n' is the model standard error squared and 528 

v is the variance inflation factor. 529 

The use of the sum of weights to estimate variable importance in regression models has 530 

been criticized because of multicollinearity among the predictor variables and the 531 

imprecision of the weight measures (Galipaud et al. 2014; Cade 2015; Galipaud et al. 532 
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2017). However, the mutual-propensity parameters do not belong to a regression model and 533 

their average is performed in the same scale and with comparable units. Therefore, under 534 

the mutual mating propensity setting, the multimodel inference would work well as it was 535 

confirmed by Monte Carlo simulation (next section).    536 

 537 

4. Simulations 538 

4.1. Polygamous species (sampling with replacement) 539 

To test how well the above methodology is able to distinguish among the different classes 540 

of models and estimate the mating parameters, I used the sampling with replacement 541 

algorithm in the program MateSim (Carvajal-Rodríguez 2018a) to generate mating tables 542 

by Monte Carlo simulation (see Appendix B for detailed explanation).  543 

The simulated cases correspond to one-sex competition and mate choice models.  The 544 

resulting mating tables were consequence of the mating system and the sampling process, 545 

and consisted in two types of information (Fig. B1 in Appendix B). First, the population 546 

frequencies (premating individuals) which were generated randomly for each simulation 547 

run. Second, the sample of 500 mating pairs (n' = 500) for a hypothetical trait with two 548 

classes at each sex. Because the simulated species had large population size (n = 10 000) 549 

the mating process was represented as a sampling with replacement, and the population 550 

frequencies were constant over the mating season. The minimum phenotype frequency 551 

(MPF) allowed was 0.1.  552 
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Five different model cases were simulated, namely random mating with mutual-553 

propensities m'11=m'22 =m'12=m'21= 1 (M0 in Table 2), female competition (α = 2) and mate 554 

choice (c = 3) with independent parameters m'11= m'12 = 2, m'22 = 3, m'21 = 1 (SfC Table 2), 555 

and with compound parameters m'11= 6,  m'12 = 2, m'22 = 3, m'21 = 1 (SfCc Table 2), and 556 

male competition (α = 2) and mate choice (c = 3) with independent parameters m'11= m'21 = 557 

2, m'22 = 3, m'12 = 1 (SmC Table 2), and with compound parameters m'11= 6,  m'21 = 2, m'22 558 

= 3, m'12 = 1 (SmCc Table 2). Each case was simulated 1 000 times. 559 

For each simulation run, and given the normalized mutual-propensities mij, the number of 560 

occurrences for each mating class i × j was obtained as 561 

 Q(i,j) = n'×p1i×p2j×mij 562 

where n' is the sample size, p1i is the female population frequency for the phenotype i, p2j is 563 

the male population frequency for the phenotype j.  564 

Once the mating tables were obtained I proceeded with the multimodel inference analysis 565 

using InfoMating. Note that there were 1 000 different tables for each simulated case so, in 566 

the simulation study, it is better to consider the mean multimodel estimates instead of the 567 

full list of analysed models (which would imply 1 000 lists for each simulated case). Also, 568 

it is worth noting that with real data, the exactly true model is not necessarily included in 569 

the set of assayed models and so, it is important to evaluate the accuracy of the multimodel 570 

parameter estimates because, if the parameter estimates are correct, the model that would 571 

arise from that estimates and the set of most supported candidate models must be a good 572 

guess of the true one.  573 
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The sequence of analyses was as follows. For each mating table, InfoMating generates a set 574 

of 17 models, from the simplest random model M0 to the saturated Msat, including mate 575 

competition and choice models with one or two parameters (see all the types in Table 1). 576 

Then, the program computes the information criteria for each model and performs the 577 

multimodel inference as explained in the previous section. Thus, for each of the 5 simulated 578 

cases, 1 000 parameter estimates were obtained, and their average and standard error 579 

computed (Table 2). 580 

 581 

Table 2. Average (standard error) parameter estimates under sample size 500 for a 582 

polygamous species with large population size (N = 10 000).  583 

Model  m'11 m'12 m21 m22 

M0 Expected 1 1 1 1 

 AICc 1.0 ± 0.0000 1.0 ± 0.0000 1.0 ± 0.0000 1.0 ± 0.0000 

 KICc 1.0 ± 0.0000 1.0 ± 0.0000 1.0 ± 0.0000 1.0 ± 0.0000 

 BIC 1.0 ± 0.0000 1.0 ± 0.0000 1.0 ± 0.0000 1.0 ± 0.0000 

SfC Expected 2 2 1 3 

 AICc 1.94 ± 0.0017 1.99 ± 0.0009 1.0 ± 0.0000 2.95 ± 0.0025 

 KICc 1.94 ± 0.0024 1.99±0.0020 1.0 ± 0.0000 2.95 ± 0.0029 

 BIC 1.90 ± 0.0060 1.94 ± 0.006 1.0 ± 0.0000 2.90 ± 0.0074 
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SfCc Expected 6 2 1 3 

 AICc 5.93 ± 0.0044 2.0 ± 0.0001 1.0 ± 0.0000 2.97 ± 0.0027 

 KICc 5.92 ± 0.0051 2.0 ± 0.0001 1.0 ± 0.0000 2.97 ± 0.0028 

 BIC 5.87 ± 0.0086 2.0 ± 0.0017 1.0 ± 0.0000 2.96 ± 0.0044 

SmC Expected 2 1 2 3 

 AICc 1.94 ± 0.0020 1.0 ± 0.0000 1.99 ± 0.0013 2.94 ± 0.0030 

 KICc 1.93 ± 0.0032 1.0 ± 0.0000 1.98 ± 0.0029 2.93 ± 0.0037 

 BIC 1.90 ± 0.0062 1.00 ± 0.0000 1.93 ± 0.0065 2.88 ± 0.0080 

SmCc Expected 6 1 2 3 

 AICc 5.93 ± 0.0046 1.0 ± 0.0000 2.0 ± 0.0001 2.97 ± 0.0029 

 KICc 5.92 ± 0.0052 1.0 ± 0.0000 2.0 ± 0.0001 2.97 ± 0.0029 

 BIC 5.87 ± 0.0085 1.0 ± 0.0000 2.0 ± 0.0010 2.97 ± 0.0037 

M0: Random mating model. SfC: female competition and mate choice with independent parameters. SfCc: 584 

female competition and mate choice with compound parameters. SmC: male competition and mate choice 585 

with independent parameters.  SmCc: male competition and mate choice with compound parameters. 586 

It can be appreciated that the random mating was perfectly estimated by the three IC 587 

methods. The competition plus mate choice parameter estimates were fairly good under the 588 

three criteria. The estimates were slightly better under AICc and slightly less accurate under 589 

BIC.  590 
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The whole simulation process was repeated using a small sample size (n’ = 50 matings) and 591 

the results were qualitatively similar. However, the parameter estimates tended to be low-592 

biased possibly because the power to detect deviations from random mating was low (see 593 

supplementary Table C1 in Appendix C).   594 

 595 

4.2. Monogamous species (sampling without replacement) 596 

For monogamous species, the mating process is without replacement (from the point of 597 

view of the available phenotypes) and can be represented via mass-encounters (Gimelfarb 598 

1988; Carvajal-Rodríguez 2018a). The pattern obtained under the mass-encounter 599 

monogamous scenario (when the population size is large) was qualitatively similar to the 600 

polygamous species. However, there was less power to detect deviation from random 601 

mating and so the estimates were low-biased, especially in the case of the compound 602 

parameter. Regarding sample size, it seems that the estimation was not very much affected 603 

(see supplementary Tables C2 and C3 in Appendix C). 604 

Not surprisingly, the case of monogamous species with small population size (N = 200) was 605 

the worst scenario for multimodel estimation under the assumption of constant population 606 

phenotype frequencies (see Table C4 in Appendix C). Under this case and when most of the 607 

adults were involved in the mating process (mating sample size = 100), the change in the 608 

population phenotype frequencies during the breeding season significantly affected the 609 

observed non-random mating patterns. Only when the deviation from random mating is as 610 

large as with the compound effect of choice and competition, the estimated mutual-611 

propensities provided some information (SfCc in Table C4). 612 
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 613 

5. Example of application 614 

Littorina saxatilis is a marine gastropod mollusc adapted to different shore habitats in 615 

Galician rocky shores. There are two different ecotypes, an exposed-to-wave (smooth un-616 

banded, SU), and a non-exposed (rough banded, RB) ecotype. Several experimental studies 617 

have shown that these ecotypes have evolved local adaptation at small spatial scale. For 618 

example, stronger waves on the lower shore may provoke that the SU ecotype becomes 619 

sexually mature at smaller size than the upper-shore (RB) ecotype. In addition, in some 620 

areas of the mid-shore habitat, the two ecotypes occasionally mate, producing apparently 621 

fertile intermediate morphological forms that are called hybrids (HY) (Rolan-Alvarez et al. 622 

2015a). 623 

Sexual isolation (positive assortative mating) between RB and SU morphs was observed in 624 

wild mating pairs in the mid-shore zone, likewise within-morph size-assortative mating in 625 

all shore levels (Cruz et al. 2001). It is assumed that the size is the key trait causing the 626 

increase of sexual isolation in this model system, being the males the choosy sex in this 627 

species (Rolan-Alvarez 2007).  628 

Here, I reanalysed a L. saxatilis data set (Cruz et al. 2001) to estimate the mutual-629 

propensity parameters between the RB, SU and HY morphs in the mid-shore habitat. In the 630 

original study, the authors analysed a hybrid zone encompassing 30 km of coast in Galicia 631 

(NW Spain) with two sampling locations (Centinela and Senin) and seasons (autumn and 632 

summer). Mating pairs were collected jointly with the 15 nearest non-mating individuals. 633 

The classification of morphs was made by considering as pure morphs those snails that had 634 
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their shell ridged and banded (RB morph) or smooth and unbanded (SU morph). The 635 

hybrids (HY) were those snails that had a complete set of bands but lacked ridges, or 636 

viceversa, or those that, having both ridges and bands, had at least two incomplete bands 637 

(see details in Cruz et al. 2001). In the present reanalysis, I considered the pooled data of 638 

the two sampling locations and seasons (Table 3). 639 

 640 

Table 3. The population frequencies by sex and the sample of matings from Cruz et al. 641 

(2001) data. 642 

 Total RB HY SU 

Female freqs 1254 0.22 0.11 0.67 

Male freqs 1080 0.26 0.12 0.62 

Matings  Males  

Females 
 RB HY SU 

RB 19 9 13 

 HY 6 4 10 

 SU 6 7 80 

 643 

First, I computed the information partition (Carvajal-Rodríguez 2018b) that indicated 644 

significant assortative mating from the Chi-square test (JPSI p-value < 0.0000001) while no 645 

significant sexual selection was detected. However, the randomization test was not 646 

significant in any case, possibly due to the low sample size within the mating classes.  647 

Second, I proceeded with the model estimation and initially assayed only the subset of 648 

models with male and/or female mate competition plus the saturated (Msat) and random 649 
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mating (M0) models. The estimate of overdispersion was high (7.20) indicating poor 650 

structure of the set of models regarding the data. The three information criteria gave similar 651 

output with the M0 as the best fit model. The multimodel estimates of the mutual-652 

propensities were just one in every case as expected from random mating. Because in the 653 

simulation study, the AICc criterion gave the best estimates I will rely on this criterion from 654 

now on.  655 

The next step was to study only models with choice parameter plus the saturated (Msat) and 656 

random mating (M0) models. The overdispersion was 4.65 that still indicates somewhat 657 

poor model structure. The best fit model was a choice model with one parameter. The 658 

multimodel inference gave a clear pattern of positive assortative mating, that was higher for 659 

the RB × RB mating (m’RBRB = 3), intermediate for HY × HY (m’HYHY = 2.3) and slightly 660 

lower for SU × SU (m’SUSU = 2). 661 

Then, I considered jointly the previous competition and choice models and added new ones 662 

having separated competition and choice parameters. The overdispersion was 3.4 that is an 663 

acceptable value for multinomial models and can be corrected by using quasi-likelihoods 664 

(see the overdispersion section above). Now, the best fit was a compound parameter model 665 

with female competition and choice. The estimates from this model were a RB female 666 

competition of α = 1.7 and choice c = 2.4. The multi-model estimates gave positive 667 

asssortative mating, m’RBRB = 3, m’HYHY = 3, m’SUSU = 2 and sexual selection favouring RB 668 

females. 669 

Finally, I considered all the previous models plus models having parameters with double 670 

effect (i.e. one parameter may generate both sexual selection and assortative mating 671 
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patterns). This implies a total of 35 models including M0 and Msat. The overdispersion was 672 

2.5. The best model was the same for the three criteria and it was a double effect model 673 

with 2 parameters, c1 = 0.2 and c2 = 2, distributed as indicated in Fig. 5. Approximately, the 674 

same model was obtained using the multi-model estimates.   675 

 676 

Fig 5. Model D-2P-Rep3: Double two parameter model with three repetitions of the c2 parameter 677 

(c1 = 0.2, c2 = 2) producing female and male sexual selection plus positive assortative mating.  678 

It is also possible to focus only on the models with separated parameters for competition 679 

and choice. The best fit model from this subgroup involves female competition. Recall that 680 

in Littorina saxatilis the choosy sex are the males, so I considered that the competitive 681 

advantage from the side of the females is explained by the males preferring a given kind of 682 

females. The best fit model is SFemC-2Pc (see Table 1) with RB female competitive 683 

advantage of 1.7 more times matings than the other females and a choice parameter of 2.4. 684 

The qualitative pattern obtained from these models is similar to that in Fig.5; the RB 685 

females (first row) are preferred and there is a choice for within ecotype mating. The 686 

combination of competition and choice provokes that the mating RB×RB is the preferred 687 

by RB males; the matings RB×HY and HY×HY are preferred by HY males, and finally, it 688 

seems that the SU males do not discriminate between female ecotypes. 689 
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 690 

6. Discussion 691 

6.1 Simulations 692 

I have simulated mating tables corresponding to random mating, mate competition and 693 

mate choice models. The random mating pattern was perfectly assessed. For the other 694 

models, the competition and choice parameters were estimated quite accurately when the 695 

mating system resembles a sampling with replacement. Not surprisingly, BIC was slightly 696 

more conservative, while AICc presented slightly more accurate estimates in most cases. 697 

The KICc criterion performed similar to the best AICc and BIC cases. In general, the 698 

estimation was accurate and even in the cases with extreme phenotypic frequencies, the 699 

mean estimates were closer to the real value than to random mating.  700 

The proposed approach does only require mating tables. However, to correctly identify the 701 

processes that produce the patterns of sexual selection and assortative mating, it is assumed 702 

that the encounters occur at random, i.e. the encounter between two phenotypes depends on 703 

the population phenotypic distribution, and that the mating pattern is the product of the 704 

phenotypic distribution of the population and the individual preferences (Carvajal-705 

Rodríguez 2018a). As a consequence, the availability of phenotypes should not be affected 706 

by the matings that have already occurred, as expected for polygamous species, or even for 707 

monogamous species, when the number of available individuals is higher than the mating 708 

pairs.  709 

However, the above assumption is likely to be violated in the case of monogamous species 710 

with low population size, or even in large population sizes with local competition for mates 711 
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(if the number of individuals in the patches is low) and/or space-temporal constraints. In 712 

such cases, the mating process resembles a sampling without replacement and the 713 

population phenotype frequencies may be altered during the reproductive season so that the 714 

sexual selection and assortative mating patterns would be more difficult to detect (Carvajal-715 

Rodríguez 2019). In fact, the simulations (see Appendix C) showed that the performance of 716 

the multimodel inference is affected by the sampling and the mating system (polygamous 717 

or monogamous) but it is still quite robust for detecting non-random mating deviation in the 718 

parameter values except in the worst scenario of monogamous species with small 719 

population sizes. 720 

 721 

6.2 General 722 

The advantages of model selection and multimodel inference in evolutionary ecology has 723 

been widely discussed, jointly with the pros and cons of applying any information criteria 724 

(Link and Barker 2006; Burnham et al. 2011; Aho et al. 2014; Barker and Link 2015; Aho 725 

et al. 2017; Dziak et al. 2019) or the reliability of the obtained estimates (Galipaud et al. 726 

2014; Cade 2015; Giam and Olden 2016; Galipaud et al. 2017).  727 

Multimodel inference has been however, rarely utilized to study the mating patterns that 728 

may emerge from mate choice and mate competition. Here, by developing general models 729 

that incorporate competition and mate choice, and providing their maximum likelihood 730 

estimates, I am proposing a standardized methodology for model selection and multimodel 731 

inference of the mating parameters producing the sexual selection and assortative mating 732 

patterns.  733 
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The set of a priori models permits to perform an a posteriori quantification of the data-734 

based evidence and provide confidence sets on plausible non-trivial models while letting 735 

multi-model inference of the parameter values. The approach was implemented by allowing 736 

three different information criteria. Under the scenarios assayed, they performed similarly 737 

for simulated and real data. 738 

Regarding the methodology, it is worth noting that although the mating tables require at 739 

least two phenotypes by sex (2×2 dimensions or higher) for fitting mate competition and 740 

mate choice models, the proposed approach can still be applied if some sex, say females, 741 

have only one phenotypic class. In this case, we just need to duplicate the row (see Fig. D1 742 

in the Appendix D). Obviously, there cannot be any assortative pattern and sexual selection 743 

can only be measured in the sex with more than one phenotypic class. 744 

The statistical tools developed in this work have been also applied to empirical data. 745 

Previous studies in the Galician L. saxatilis hybrid zone showed that mate choice favours 746 

within-morph pairs (reviewed in Rolan-Alvarez 2007). The estimates obtained by 747 

multimodel inference support the positive assortative mating for the ecotype. In addition, 748 

another result emerged from the analysis: The RB females are preferred in general i.e. RB 749 

male with SU female has less mutual-propensity than SU male with RB female (mSURB < 750 

mRBSU). This pattern may be favoured by the physical difficulty for the mating involving 751 

bigger RB males with the smaller SU females, and could be related with the somehow more 752 

frequent occurrence of mating pairs having females bigger than males (a typical trend in 753 

gastropods, E. Rolán-Alvarez personal communication). Besides the mating pattern 754 

depicted by the multi-model approach, the estimates of the mutual-propensities were also 755 
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obtained.  Testing the reliability of these estimates is, however, out of the scope of the 756 

present manuscript, and it was left for future work. 757 

To conclude, I present a methodology to distinguish among several models of mate 758 

competition and choice behind the observed pattern of mating and the phenotypic 759 

frequencies in the population. From an empirical point of view it is much easier to study 760 

patterns than processes and this is why the causal mechanisms of natural and sexual 761 

selection are not so well known as the patterns they provoke. The goal of the present work 762 

is to propose a new tool that will help to distinguish among different alternative processes 763 

behind the observed mating pattern.  764 

 765 

Software, source code and data availability 766 

The developed methodology has been fully implemented in a program called InfoMating 767 

available at http://acraaj.webs6.uvigo.es/InfoMating/Infomating.htm or upon request to the 768 

author.  The simulations data set is available at: https://doi.org/10.5281/zenodo.2749692 769 
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 777 

Appendix A) Mutual Mating Propensity Models 778 

 779 

Saturated non-random mating model: λ notation. 780 

Consider the total number of possible mating phenotypes K = k1 × k2 and the saturated 781 

multinomial model for the K-1 free mating parameters m'ij. 782 

The log-likelihood function is 783 

𝑙𝑛𝐿𝑠𝑎𝑡 = 𝐶 +∑𝑛𝑖𝑗
′

𝐾−1

𝑖𝑗

ln(𝑚𝑖𝑗
′ 𝑞𝑖𝑗) + 𝑛𝑘1𝑘2

′ ln (𝑎(1 −∑ 𝑞𝑖𝑗

𝐾−1

𝑖𝑗

)) −⁡𝑛′ln⁡(𝑀) 784 

where n' is the number of matings in the sample and n'ij is the number of matings between i- 785 

type females and j-type males. I have fixed the parameter m'k1k2 to a. 786 

Compute the first derivative of the likelihood with respect to a 787 

𝑑𝑙𝑛𝐿𝑠𝑎𝑡
𝑑𝑎

=
𝑛𝑘1𝑘2
′

𝑎
−
𝑛

𝑀
𝑞𝑘1𝑘2⁡ 788 

then by taking a = 1 and equating to 0 we get  789 

 n/M = n'k1k2 / qk1k2 ≡ λ(1)  790 
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that corresponds to the number of observed matings having unity mating parameter divided 791 

by the corresponding product of population frequencies. Under the saturated model there is 792 

only one (for convenience m'k1k2) mating parameter having unitary value and so the number 793 

of observed matings is n'k1k2 and the product of the corresponding population frequencies is 794 

p1k1 × p2k2 = qk1k2. 795 

Now, let find the m'ij parameter value that maximizes the likelihood  796 

𝑑𝑙𝑛𝐿𝑠𝑎𝑡
𝑑𝑚𝑖𝑗

′ =
𝑛𝑖𝑗
′

𝑚𝑖𝑗
′ −

𝑛

𝑀
𝑞𝑖𝑗⁡ = 0 797 

𝑚𝑖𝑗
′̂ =

𝑛𝑖𝑗
′ /𝑞𝑖𝑗⁡

𝑛/𝑀
≡
λ(𝑚𝑖𝑗

′ )

λ(1)
 798 

The λ notation can be generalized for any set A of mating phenotypes having the same 799 

value of propensity θ as follows 800 

λ(𝜃) =
∑ 𝑛𝑖𝑗

′𝐴
𝑖𝑗

∑ 𝑞𝑖𝑗
𝐴
𝑖𝑗

 802 

   801 

where xij represents the number of mating pairs having absolute (non-normalized) mating 803 

parameter θ and qij is the product of the population frequencies p1i and p2j i.e. the expected 804 

frequency of the θ mating phenotypes under random mating. 805 

 806 

Intrafemale competition models 807 

The model is  808 
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m'ij = ai with ai > 0  i < k1 and m'k1j = a = 1  j.  809 

There are k1-1 independent parameters. Note that the parameters m'k1j have been fixed to a 810 

= 1. The log-likelihood function is 811 

𝑙𝑛𝐿 = 𝐶 + ∑ ∑𝑛𝑖𝑗
′

𝑘2

𝑗=1

ln(𝑎𝑖𝑞𝑖𝑗) +∑⁡𝑛𝑘1𝑗
′ ln(𝑎𝑞𝑘1𝑗)

𝑘2

𝑗=1

𝑘1−1

𝑖<𝑘1

− 𝑛𝑙𝑛(𝑀) 812 

Now, assume that the parameter a is not fixed and compute the first derivative of the 813 

likelihood with respect to a 814 

𝑑𝑙𝑛𝐿

𝑑𝑎
=
∑ 𝑛𝑘1𝑗

′𝑘2
𝑗

𝑎
−
𝑛

𝑀
∑𝑞𝑘1𝑗⁡

𝑘2

𝑗

= 0 815 

then by taking a = 1 and equating to 0 we get  816 

 n/M = ∑jn'k1j / ∑jqk1j ≡ λ(1)  817 

Now find the ai parameter value that maximizes the likelihood  818 

𝑑𝑙𝑛𝐿

𝑑𝑎𝑖
=
∑ 𝑛𝑖𝑗

′𝑘2
𝑗

𝑎𝑖
−
𝑛

𝑀
∑𝑞𝑖𝑗⁡

𝑘2

𝑗

= 0 819 

Solving for ai  820 

𝑎𝑖̂ =
∑ 𝑛𝑖𝑗

′𝑘2
𝑗 /∑ 𝑞𝑖𝑗⁡

𝑘2
𝑗

𝑛

𝑀

≡
λ(ai)

λ(1)
 821 

The formula expressed as the quotient of lambdas is valid for any number h of different 822 

parameters, 1 ≤ h < k1. In the particular case of having only one parameter the sum of 823 

observed matings having propensity a1, implies ΣΣn'ij where the first summation is for all 824 
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the female types except females of type k1, and the second is over all male types. The sum 825 

of the product of frequencies is 1 - p1k1.  826 

As before, λ(1) also corresponds to the sum of the observed matings having expected 827 

propensity 1 divided by the sum of the corresponding products of population frequencies. 828 

The model for male sexual selection is solved in a similar way. 829 

 830 

Intrasexual competition in both sexes 831 

The model is 832 

m’ij = aibj, i < k1, j < k2; m’ik2 = ai, i < k1; m’k1j = bj, j < k2; m’k1k2 = 1 833 

with ai > 0, bj > 0  i, j. 834 

It is easy to see that is multiplicative. Let 𝐴⁡ = ⁡∑ 𝑎𝑖𝑝1𝑖 + 𝑎𝑝1𝑘1
𝑘1−1
𝑖  and 𝐵⁡ =835 

⁡∑ 𝑏𝑗𝑝2𝑗 + 𝑏𝑝2𝑘2
𝑘2−1
𝑗 .  836 

The mean mutual mating propensity is 837 

𝑀 = ∑ 𝑞𝑖𝑗𝑚′𝑖𝑗𝑖,𝑗 = ∑ ∑ 𝑎𝑖𝑏𝑗𝑝1i𝑝2j = 𝐴𝐵k2
j

k1
i   838 

with ak1 = a and bk2 = b.  839 

The marginal propensity for i-type females is 840 

𝑚𝐹𝑒𝑚_𝑖 = 𝑎i∑ 𝑝2𝑗
bj

𝑀

𝑚𝑎𝑙𝑒𝑠
𝑗 = 𝑎i

𝐵

𝑀
   841 

Similarly, the marginal for j-type males 842 
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𝑚𝑀𝑎𝑙𝑒_𝑗 = 𝑏j
A

𝑀
 843 

with ak1 = a and bk2 = b. 844 

The condition 5-iii) for a multiplicative model implies that mij = MFem_i × MMale_j. In 845 

addition, mij = aibj/M that jointly with the multiplicative condition requires aibj/M = MFem_i 846 

× MMale_j = aiBbjA /M2 solving for M we get M = AB which we have already seen it is true. 847 

The log-likelihood function  848 

𝑙𝑛𝐿 = 𝐶 +∑∑𝑛𝑖𝑗
′

𝑘2

𝑗=1

ln(𝑎𝑖𝑏𝑗𝑞𝑖𝑗)

𝑘1

𝑖=1

− 𝑛𝑙𝑛(𝑀) 849 

with ak1 = a =1 and bk2 = b = 1. 850 

Consider the derivatives 851 

𝑑𝐴

𝑑𝑎𝑖
= 𝑝1𝑖 ; 

𝑑𝐵

𝑑𝑏𝑗
= 𝑝2𝑗; 

𝑑𝑀

𝑑𝑎𝑖
= 𝑝1𝑖𝐵; 

𝑑𝑀

𝑑𝑏𝑗
= 𝑝2𝑗𝐴 852 

Now by taking the derivative of the log-likelihood with respect to ai or bj and equating to 0 853 

we get the estimates 854 

𝑎𝑖̂ =
∑ 𝑛𝑖𝑗

′𝑘2
𝑗 /∑ 𝑞𝑖𝑗⁡

𝑘2
𝑗

𝑛

𝑀
𝐵

=
𝜆(𝑎𝑖 + ∑ 𝑎𝑖𝑏𝑗)𝑗

𝜆𝑓𝑒𝑚(1)
 855 

𝑏𝑗̂ =
∑ 𝑛𝑖𝑗

′𝑘1
𝑖 /∑ 𝑞𝑖𝑗⁡

𝑘𝑖
𝑖

𝑛

𝑀
𝐴

=
𝜆(𝑏𝑗 + ∑ 𝑎𝑖𝑏𝑗)𝑖

𝜆𝑚𝑎𝑙𝑒(1)
 856 

Where  857 
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𝑛

𝑀
𝐵 =

∑ 𝑛𝑘1𝑗
′𝑘2

𝑗

𝑝1𝑘1
≡ 𝜆𝑓𝑒𝑚(1) 858 

𝑛

𝑀
𝐴 =

∑ 𝑛𝑖𝑘2
′𝑘1

𝑖

𝑝2𝑘2
≡ 𝜆𝑚𝑎𝑙𝑒(1) 859 

 860 

Mate choice models with parameterized heterotypes 861 

Consider models in which the homotype mating has absolute propensity of 1 while the 862 

different heterotypes have absolute value of cij. The maximum likelihood estimate is  863 

𝑐̂ℎ1ℎ2 =
𝜆(𝑐ℎ1ℎ2)

𝜆(1)
   864 

The number of parameters in this type of model is K – min{k1, k2} – ΣS(Cs-1) where the 865 

sum is over the set of different heterotype matings and Cs is the cardinality of each set.  866 

  867 

Double effect models 868 

The following models generate a double pattern of sexual selection and assortative mating 869 

even when the population frequencies are uniform. 870 

 871 

Double effect models producing sexual selection in one sex under uniform frequencies 872 

A simple approach consists in building a new model by setting m'ii = 1 and m'jj = 1 + c. 873 

Then, if we desire assortative mating jointly with sexual selection only in females we 874 

additionally set m'ij = 1 – c; on the contrary, if we desire selection only in males we set m'ji 875 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 12, 2019. ; https://doi.org/10.1101/305730doi: bioRxiv preprint 

https://doi.org/10.1101/305730
http://creativecommons.org/licenses/by-nc/4.0/


= 1 – c with -1 < c < 1. If the frequencies are not uniform the model generates assortative 876 

mating jointly with sexual selection in both sexes.  877 

In the case of the model with m'ij = 1 - c (female sexual selection if frequencies are 878 

uniform) the maximum likelihood estimate of c is one of the roots of the quadratic 879 

 (xjj - xij + n'D ) - c[xij + xjj + D(xjj - xij)] - c
2D[n' - (xij +xjj)] = 0 880 

where D = qij - qjj and n' = ∑xij is the number of matings (sample size).  881 

If the frequencies are uniform and k1 = k2, i.e. p1i = p1j = p2i = p2j Ɐ i, j then  882 

𝑐̂ =
𝑥𝑗𝑗−𝑥𝑖𝑗

𝑥𝑗𝑗+𝑥𝑖𝑗
   883 

The case for male sexual selection is obtained simply by interchanging xij by xji and qij by 884 

qji in the formulas. 885 

The above model has only one parameter c; we can introduce a more complex two 886 

parameter model, M(a,c) by setting m'ii = a, m'jj = 1 +c and m'ij = 1 - c, for female sexual 887 

selection (or m'ji = 1 - c for male sexual selection). For obtaining the MLE of this two 888 

parameter double model, with restrictions a > 0, c < |1|, I have used a numerical bounded 889 

Nelder-Mead simplex algorithm (Press 2002; Singer and Singer 2004; Gao and Han 2012). 890 

 891 

Double effect models with sexual selection in both sexes under uniform frequencies 892 

To get assortative mating jointly with sexual selection in both sexes under uniform 893 

frequencies, we just need to combine the above uniform one parameter models of each sex, 894 

so that  m'ii = 1,  m'jj = 1 +c and m'ij = m'ji = 1 - c. 895 
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The maximum likelihood estimate of c involves the solution of the quadratic  896 

 [xjj – xs + n'D2 ] - c[xjj + xs + D2(xjj - xs)] + c2D2[xjj + xs - n'] = 0   897 

where xs = xij + xji and D2 = qij + qji –qjj.  898 

 899 

General double effect models 900 

We can also define a set of general models where any propensity m'ij has parameter ij with 901 

at least one propensity having value of 1. The MLE of the parameters of this kind of model 902 

is 903 

𝜃𝑖𝑗 =
𝜆(𝜃𝑖𝑗)

𝜆(1)
   904 

where λ(ij) is defined as in (A2). 905 

The simplest model defined in this way is  906 

m'ii = c and m'ij = m'ji = m'jj =1,  907 

which produces assortative mating and sexual selection in both sexes.  908 

Consider as an example of this model, the case with k1 = k2 = 2 so that 0 < p11 < 1; 0 < p21 < 909 

1; m'11 = c and m'12 = m'21 = m'22 =1. The mean mating propensity is M = q11(c - 1) +1. The 910 

absolute marginal propensity for the first female type m’Fem_1 = cp21 + 1 – p21 = p21(c - 1) 911 

+1, and for the second female type m’Fem_2 = 1. Similarly the male marginals are m’Male_1 = 912 

p11(c - 1) +1 and m’Male_2 = 1.  913 
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Recall that the condition for the sexual selection pattern within a given sex is that the 914 

marginal mating propensities are different which here is true for both sexes provided that c 915 

≠ 1. Regarding the assortative mating pattern it can be proved that the joint isolation index 916 

(IPSI) is 0 only if c = 1. However, it is sufficient to prove that the model is not multiplicative 917 

(Carvajal-Rodríguez 2018b). Consider that the model is multiplicative, this implies, m'12 /M 918 

= (m’Fem_1 /M) × (m’Male_2 /M) that given the model values becomes 919 

M = (m’Fem_1) × (m’Male_2) 920 

which can be true only when p11 = 1 and so it is false by definition. 921 

The estimate of c under this model is λ(c) / λ(1). 922 

The most parameterized model that can be defined in this way has K-1 free parameters and 923 

coincides with the saturated model so that the estimates are the corresponding pair total 924 

indices (PTIij).  925 

Moreover, note that if no mutual propensity is fixed to 1 then λ(1) = (n - A) / (1- P) = n 926 

where A = number of observations having value 1 = 0 and P = product of  population 927 

frequencies of the involved types having mutual propensity 1 = 0. Therefore the estimate of 928 

ij can also expressed as λ(ij) /n which is the observed frequency of mating pairs (i, j) 929 

divided by the expected frequency by random mating which is the definition of the pair 930 

total index PTIij (K-1 are free and one PTI is dependent on the others).  931 

All the above derived MLE formulae have been checked by a numerical bounded Nelder-932 

Mead simplex algorithm (Press 2002; Singer and Singer 2004; Gao and Han 2012). 933 

 934 
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Appendix B) Monte Carlo simulation of mating tables 935 

The mating tables for the simulation experiments were generated by the program MateSim 936 

(Carvajal-Rodríguez 2018a) available at http://acraaj.webs.uvigo.es/MateSim/matesim.htm.  937 

The number of replicates for each case was 1 000. For each run the program first generated 938 

the number of premating males and females from a given population size. For example, if 939 

the population size consisted in n1 (= 5 000) females and n2 (= 5 000) males, the program 940 

got n1A = n1  U females of the A type and n1B = n1 - n1A females of the B type. Where U is 941 

a value sampled from the standard uniform distribution. The premating males were 942 

obtained similarly. Then, the female population frequencies were p1i = n1i / n1, and p2i = n2i 943 

/ n2 for the male ones. Finally, a sample of n' (= 500) matings was obtained, where the 944 

number of counts for each mating phenotype i  j was  945 

  Q(i,j) = n'  p1i  p2j  m'ij  / M 946 

where m'ij are the mutual-propensity parameters as defined for each kind of model, and M = 947 

∑ p1i  p2j  m'ij. 948 

The format of the obtained tables was the same as the JMating (Carvajal-Rodriguez and 949 

Rolan-Alvarez 2006) input files (Fig. B1). 950 
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 951 

Fig. B1. Example of a table generated by the simulations. The format is the same as for the JMating 952 
software.   953 

  954 

Appendix C) Polygamous species with low sample size and monogamous species 955 

 956 

Table C1. Average (standard error) parameter estimates under sample size 50 for a 957 

polygamous species with large population size (N = 10 000). 958 

Model  m'11 m'12 m21 m22 

M0 Expected 1 1 1 1 

 AICc 1.0 ± 0.0000 1.0 ± 0.0000 1.0 ± 0.0000 1.0 ± 0.0000 

 KICc 1.0 ± 0.0000 1.0 ± 0.0000 1.0 ± 0.0000 1.0 ± 0.0000 

 BIC 1.0 ± 0.0000 1.0 ± 0.0000 1.0 ± 0.0000 1.0 ± 0.0000 

SfC Expected 2 2 1 3 
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 AICc 1.38 ± 0.0106 1.45 ± 0.0119 1.0 ± 0.0003 2.03 ± 0.0206 

 KICc 1.32 ± 0.0104 1.35±0.0110 1.0 ± 0.0003 1.76 ± 0.0226 

 BIC 1.29 ± 0.0106 1.29 ± 0.0105 1.0 ± 0.0003 1.64 ± 0.0225 

SfCc Expected 6 2 1 3 

 AICc 4.71 ± 0.0204 1.86 ± 0.0201 1.0 ± 0.0000 2.36 ± 0.0286 

 KICc 4.45 ± 0.0236 1.57 ± 0.0216 1.0 ± 0.0000 2.06 ± 0.0316 

 BIC 4.28 ± 0.0283 1.42 ± 0.0198 1.0 ± 0.0000 1.99 ± 0.0324 

M0: Random mating model. SfC: female competition and mate choice with independent parameters. SfCc: 959 

female competition and mate choice with compound parameters. 960 

 961 

Table C2. Average (standard error) parameter estimates under sample size 500 for a 962 

monogamous species (mass-encounter mating process) with large population size (N = 963 

10 000). 964 

Model  m'11 m'12 m21 m22 

M0 Expected 1 1 1 1 

 AICc 1.07 ± 0.0053 1.07 ± 0.0053 1.07 ± 0.0059 1.07 ± 0.0056 

 KICc 1.05 ± 0.0044 1.04 ± 0.0043 1.05 ± 0.0052 1.04 ± 0.0050 

 BIC 1.01 ± 0.0028 1.01 ± 0.0020 1.01 ± 0.0033 1.01 ± 0.0026 

SfC Expected 2 2 1 3 
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 AICc 1.95 ± 0.0158 1.95 ± 0.0160 1.0 ± 0.0001 2.04 ± 0.0176 

 KICc 1.93 ± 0.0162 1.93±0.0166 1.0 ± 0.0001 2.03 ± 0.0180 

 BIC 1.82 ± 0.0183 1.82 ± 0.0189 1.0 ± 0.0000 1.93 ± 0.0195 

SfCc Expected 6 2 1 3 

 AICc 3.02 ± 0.0341 2.07 ± 0.0210 1.0 ± 0.0001 2.84 ± 0.0298 

 KICc 3.0 ± 0.0343 2.04 ± 0.0216 1.0 ± 0.0000 2.82 ± 0.0302 

 BIC 2.86 ± 0.0353 1.92 ± 0.0244 1.0 ± 0.0000 2.73 ± 0.0313 

M0: Random mating model. SfC: female competition and mate choice with independent parameters. SfCc: 965 

female competition and mate choice with compound parameters. 966 

 967 

Table C3. Average (standard error) parameter estimates under sample size 50 for a 968 

monogamous species (mass-encounter mating process) with large population size (N = 969 

10 000). 970 

Model  m'11 m'12 m21 m22 

M0 Expected 1 1 1 1 

 AICc 1.0 ± 0.0362 1.04 ± 0.0414 1.0 ± 0.0365 1.02 ± 0.0406 

 KICc 1.02 ± 0.0339 1.03 ± 0.0374 1.0 ± 0.0324 1.02 ± 0.0377 

 BIC 1.03 ± 0.0312 1.03 ± 0.0340 1.0 ± 0.0283 1.03 ± 0.0361 

SfC Expected 2 2 1 3 
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 AICc 2.0 ± 0.0568 2.05 ± 0.0638 1.08 ± 0.0155 2.23 ± 0.0635 

 KICc 1.76 ± 0.0539 1.78±0.0605 1.06 ± 0.0145 1.96 ± 0.0597 

 BIC 1.62 ± 0.0515 1.66 ± 0.0578 1.05 ± 0.0143 1.79 ± 0.0555 

SfCc Expected 6 2 1 3 

 AICc 3.36 ± 0.1004 2.19 ± 0.0731 1.03 ± 0.0073 3.11 ± 0.0997 

 KICc 3.06 ± 0.0951 1.94 ± 0.0715 1.03 ± 0.0066 2.85 ± 0.0964 

 BIC 2.89 ± 0.0919 1.79 ± 0.0687 1.02 ± 0.0048 2.68 ± 0.0929 

M0: Random mating model. SfC: female competition and mate choice with independent parameters. SfCc: 971 

female competition and mate choice with compound parameters. 972 

 973 

Table C4. Average (standard error) parameter estimates under sample size 100 for a 974 

monogamous species (mass-encounter mating process) with small population size (N = 975 

200). 976 

Model  m'11 m'12 m21 m22 

M0 Expected 1 1 1 1 

 AICc 1.07 ± 0.0083 1.10 ± 0.0141 1.09 ± 0.0141 1.07 ± 0.0090 

 KICc 1.04 ± 0.0064 1.05 ± 0.0094 1.05 ± 0.010 1.04 ± 0.0070 

 BIC 1.02 ± 0.0047 1.02 ± 0.0056 1.02 ± 0.0065 1.02 ± 0.0052 

SfC Expected 2 2 1 3 
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 AICc 1.15 ± 0.0173 1.11 ± 0.0157 1.07 ± 0.0118 1.11 ± 0.0145 

 KICc 1.10 ± 0.0141 1.06±0.0125 1.04 ± 0.0091 1.06 ± 0.0108 

 BIC 1.03 ± 0.0072 1.03 ± 0.0079 1.02 ± 0.0059 1.03 ± 0.0060 

SfCc Expected 6 2 1 3 

 AICc 1.85 ± 0.0555 1.30 ± 0.0317 1.07 ± 0.0124 2.12 ± 0.0757 

 KICc 1.66 ± 0.0515 1.22 ± 0.0289 1.04 ± 0.010 1.94 ± 0.070 

 BIC 1.49 ± 0.0476 1.13 ± 0.0248 1.02 ± 0.0039 1.71 ± 0.0637 

M0: Random mating model. SfC: female competition and mate choice with independent parameters. SfCc: 977 

female competition and mate choice with compound parameters. 978 

 979 

Appendix D) Incomplete set-up: toy example 980 

The proposed modelling framework requires at least two phenotypes by sex (mating tables 981 

of 2×2 dimensions or higher) for measuring sexual competition and mate choice effects. 982 

However it still can be applied if some sex, say females, have only one phenotype. In this 983 

case we just need to duplicate the row (see Fig. D1). Obviously, only male sexual selection 984 

can be measured. 985 

 986 
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 987 

Fig. D1. Examples of two toy models with only one type of female and two types of males. Note 988 

that the rows of the mating table are duplicated (same female type). A: Random mating B: Male 989 

sexual selection. 990 

The examples in Fig. D1 correspond to a population with only one female but two male 991 

phenotypes (phenotype-1 and phenotype-2). There were sampled 269 females plus 277 992 

males with phenotype-1 and 133 males with phenotype-2. In the first example (Fig. D1-A) 993 

there were 70 matings involving the male phenotype-1 and 39 with male phenotype-2. In 994 

the second example (Fig. D1-B) the matings were 100 with phenotype-1 and 9 with 995 

phenotype-2. 996 

The analysis of the first case indicated that there was no significant deviation from random 997 

mating (JPTI = 0.005, P = 0.78). The best model was the random mating model M0. As 998 

expected, the multimodel estimation of the mutual mating parameters was 1 for every 999 

parameter. The results were the same for the three information indices (AICc, KICc and 1000 

BIC). 1001 
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The analysis of the second case detected a deviation from random mating (JPTI = 0.405, P < 1002 

10-7) due to male sexual selection (JPS2 = 0.405, P < 10-7) see (Carvajal-Rodríguez 2018b) 1003 

for details of the J indices. The best model was male sexual selection with one parameter 1004 

(Smale-1P). The male sexual selection component indicated five times higher mating 1005 

propensity of male phenotype-1 with respect to phenotype-2.  1006 
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