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Abstract

Background: Regularized generalized linear models (GLMs) are popular regression

methods in bioinformatics, particularly useful in scenarios with fewer observations than

parameters/features or when many of the features are correlated. In both ridge and

lasso regularization, feature shrinkage is controlled by a penalty parameter λ. The elas-

tic net introduces a mixing parameter α to tune the shrinkage continuously from ridge

to lasso. Selecting α objectively and determining which features contributed signifi-

cantly to prediction after model fitting remain a practical challenge given the paucity

of available software to evaluate performance and statistical significance.

Results: eNetXplorer builds on top of glmnet to address the above issues for linear
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(Gaussian), binomial (logistic), and multinomial GLMs. It provides new functionalities

to empower practical applications by using a cross validation framework that assesses

the predictive performance and statistical significance of a family of elastic net models

(as α is varied) and of the corresponding features that contribute to prediction. The user

can select which quality metrics to use to quantify the concordance between predicted

and observed values, with defaults provided for each GLM. Statistical significance for

each model (as defined by α) is determined based on comparison to a set of null mod-

els generated by random permutations of the response; the same permutation-based

approach is used to evaluate the significance of individual features. In the analysis

of large and complex biological datasets, such as transcriptomic and proteomic data,

eNetXplorer provides summary statistics, output tables, and visualizations to help as-

sess which subset(s) of features have predictive value for a set of response measurements,

and to what extent those subset(s) of features can be expanded or reduced via regular-

ization.

Conclusions: This package presents a framework and software for exploratory data

analysis and visualization. By making regularized GLMs more accessible and inter-

pretable, eNetXplorer guides the process to generate hypotheses based on features sig-

nificantly associated with biological phenotypes of interest, e.g. to identify biomarkers

for therapeutic responsiveness. eNetXplorer is also generally applicable to any research

area that may benefit from predictive modeling and feature identification using regu-

larized GLMs.

Availability and implementation: The package is available under GPL-3 license at

the CRAN repository, https://CRAN.R-project.org/package=eNetXplorer

Background

Rigorous, exploratory analysis for the identification of correlates and predictors in a

multi-parameter/feature setting is needed in a variety of contexts, especially in sys-

tems biology where data involving a large number of parameters are highly prevalent.
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Oftentimes, bioinformatics analysis in such settings involves generalized linear models

where observations (N) are outnumbered by parameters/features (p) measured. This

class of problems can be addressed by the elastic net,1 which uses a mixing parameter

α to tune the number of features used in the model continuously from ridge (α = 0) to

lasso (α = 1).

Algorithmically, the elastic net was efficiently implemented by the package glmnet,

a coordinate descent algorithm2,3 that, for each α, generates an entire path of solutions

in the regularization parameter λ, which controls the penalty for using more param-

eters. While the choice of λ is usually guided by prediction performance using cross

validation, α is often viewed as a higher-level parameter and chosen based on more

subjective grounds.3 Lasso generates parsimonious solutions in that a small number of

predictor variables are selected from a large number of input parameters, particularly

useful in p � N scenarios; however, in the presence of complex correlation structures

among input variables (or degeneracies), lasso can arbitrarily pick one as a predictor

among a set of correlated variables and ignore the rest. This characteristic may lead to

models that are idiosyncratic of the input data set, as opposed to more robust solutions

capturing relevant signals, or it may even lead to unstable solutions in some extreme

cases.3 On the contrary, ridge regression promotes redundancy by shrinking correlated

features towards each other, thus allowing information to be borrowed across them.

In multi-parameter exploratory analysis where the primary goal is to generate hy-

potheses, e.g. to assess which variables correlate with a biological phenotype of interest,

it is desirable to examine the entire family of elastic net models spanning the range from

ridge to lasso. In this scenario, an objective, quantitative framework is needed to as-

sess the statistical significance of individual models and, within each model, that of

individual parameters/features. Towards this goal of transforming large-scale data sets

into biological hypotheses, this paper introduces eNetXplorer, an R package providing

a quantitative framework to explore elastic net families for generalized linear models

(GLM). In the current version, three important GLM types are implemented: linear

regression, two-class logistic, and multinomial classification. In future releases, we plan
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to extend it to other GLM types such as Poisson regression and the Cox model for

survival data.

eNetXplorer is built on top of the existing R package glmnet and provides new

functionalities to empower practical applications, including evaluating the statistical

significance of a family of fitted models and the corresponding features that contributed

significantly to prediction via a cross validation framework. Both bioinformaticians

and biologists can utilize our package to help transform data into biological insights,

for example, to help answer which biological variables, often out of a large number in

the current age of large-scale ‘omics’ datasets, provide predictive information about an

outcome variable (e.g., drug responses). Furthermore, our package provides a set of

standard plots, summary statistics, and output tables to enable the visualization and

interpretation of the results, thus making regularized GLMs more readily accessible to

a larger user base of diverse scientific backgrounds.

Fig. 1 provides a conceptual schema of eNetXplorer in the context of GLM regu-

larization. Multiple datasets of size N × pd (d = 1, ..., D) can be aggregated into an

input matrix N × p, where p =
∑D

d=1 pd (Fig. 1(a)). In p� N scenarios, such as (but

not limited to) typical single- and multi-omics datasets, regression analysis requires

regularization models such as ridge and lasso (Fig. 1(b)). The elastic net provides an

integrated framework to analyze the full regularization path from ridge to lasso; how-

ever, there remained a number of issues ranging from model selection and assessing

statistical significance of individual models to feature selection and their statistical sig-

nificance (Fig. 1(c)). By generating null-model ensembles via random permutations of

the sample label of the response variable (Fig. 1(d1)), eNetXplorer addresses these is-

sues (Fig. 1(d2−4)). Although the emphasis of our presentation is placed on biomedical

applications, for which high-throughput technologies such as DNA/RNA sequencing,

deep-phenotyping flow and mass cytometry, as well as highly multiplexed proteomics

typically generate p� N datasets, eNetXplorer is generally applicable to datasets be-

yond biomedicine. The accompanying vignette (Additional file 1) illustrates in detail

the application of eNetXplorer to synthetic datasets with different feature/response co-
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variance structures, which further highlight the flexibility of our approach in a variety

of scenarios.

Implementation

eNetXplorer generates a family of elastic net models for multiple values of α from ridge

(α = 0) to lasso (α = 1). Fig. 2 shows a flowchart of the algorithm’s implementation.

The algorithm is composed of three main modules: (a) model building, (b) null model

building, and (c) model vs null comparison, which are sequentially executed for each

value of α; at the end, the results are integrated across α for downstream analysis and

visualization.

In the model building module (Fig. 2(a)), a set of nλ values is obtained using the full

data; independently from nλ, the user may also specify a value for nextλ > nλ to extend

the range of λ values symmetrically while keeping its density constant in log scale. For

each λ, elastic net cross-validation models are generated for nr runs, where each run

randomly assigns instances (i.e. theN measured samples/observations) among nf folds.

The chosen regularization λ∗ is determined by maximizing a quality function (QF) that

compares the out-of-bag (OOB, i.e. not used in training) predicted response against

the observed response. User-defined QFs can be provided. Otherwise, GLM-specific

defaults are used: for linear regression, the default QF is correlation (where the user

can choose among Pearson’s, Spearman’s and Kendall’s methods); for binomial models,

it is accuracy; and, for multinomial models, average accuracy. For the latter two, the QF

defaults are chosen based on the property of invariance under class label permutations.

Other popular performance measures implemented are precision, recall (sensitivity),

F-score, specificity, and area-under-the-curve, which are not invariant under class label

permutations,4 but may be useful for some applications. Any of these performance

measures can be selected as QF by the end user.

Individual features are characterized by their distribution of model coefficients across

cross-validation iterations, which we summarize by the following measures. From the
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feature frequency per run, νrmodel, defined as the fraction of folds (within a run) for which

the given feature was assigned a non-zero model coefficient, we derive the mean and

standard deviation of feature frequency (averaged over all runs). Similarly, we define

the feature coefficient per run, κrmodel, as the mean of non-zero model coefficients across

all folds in the run. We perform a weighted average over all runs, where weights are

wr ∝ νrmodel, to determine the weighted mean and weighted standard deviation of the

feature coefficient.

A key aspect of eNetXplorer is the generation of an ensemble of null models as-

sociated with each (α−specific) member of the elastic net model family, which is ac-

complished by the null model building module (Fig. 2(b)). Each one of nr runs are

assigned into folds (based on the same fold assignments used previously) and np null

models per run are generated by randomly shuffling the sample labels of the response;

for each permutation, the overall OOB performance of the null model is evaluated via

the QF, whereas the contribution of individual features is characterized by νr,pnull and

κr,pnull, following analogous definitions to those given above.

The empirical statistical significance of a model, implemented by the model vs null

comparison module (Fig. 2(c)), is hence determined as

pval =
1

1 + nrnp

1 +

nr∑
r=1

np∑
p=1

Θ
(
QF r,pnull −QF

r
model

) , (1)

where Θ is the right-continuous Heaviside step function. For sampling permutations

with replacement, this expression provides a conservative estimate;5 expressions for the

exact p-value, as well as numerical approximations thereof, are provided by Ref.6

As discussed above (recall Fig. 1), eNetXplorer aims to tackle the following questions

that remained unaddressed by the elastic net framework implemented in glmnet:

• Which α provides the best-performing regularized model?

• What is the statistical significance of the predictive performance for each model

across different α?

• For each α, what is the statistical significance, in terms of contribution to predic-
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tion, of individual features included in the model? And how does the statistical

significance change across α?

In order to address these questions, eNetXplorer generates quantitative results and

provides a variety of standard plots (Figs. 3-6) that enable their interpretation.

Let us highlight a few key graphical outputs of our package, generated by the use

case studies below, wherein further details on the data and goals of the analyses can be

found. Model performance results are visualized by a summary plot, which shows the

average OOB QF (red plot, left axis) and the model vs null p-value significance (blue

plot, right axis) spanning the full range of α values for the example discussed below

(Fig. 3(a)); Fig. 3(b) shows the lasso QF vs λ profile and the chosen λ∗ (dashed line);

using this λ∗, Fig. 3(c) shows OOB predictions vs response for all observations in the

dataset.

Replacing QF in Eq. (1) by ν or |κ|, our framework also provides empirical p-

value estimates of the importance and statistical significance of individual features.

Caterpillar plots are generated to display the top features ranked by their importance, in

which significance thresholds are indicated by customary dot and asterisk annotations.

Fig. 4(a) shows the top features ranked according to statistical significance based on the

frequency at which each feature is selected across cross validation iterations; red symbols

and bars represent the mean and standard deviation of the model feature frequency,

while those for the null model are displayed in blue. Similarly, Fig. 4(c) shows the

top features ranked according to statistical significance of feature coefficients. While

caterpillar plots show the top-ranking features for a single value of α, eNetXplorer also

generates heatmaps of feature frequencies (Fig. 4(b)) and feature coefficients (Fig. 4(d))

across all α−models.

The same analysis strategy can be applied to any GLM in a similar fashion; two

additional plot types are available to display results for binomial and multinomial clas-

sification models. Figs. 5(a,c) illustrate graphical representations of the contingency

table for a multinomial classification analysis performed by eNetXplorer. Figs. 5(b,d)

show boxplot representations of the OOB predictive accuracy for each class of samples,

7

made available for use under a CC0 license. 
certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also 

The copyright holder for this preprint (which was notthis version posted March 21, 2019. ; https://doi.org/10.1101/305870doi: bioRxiv preprint 

https://doi.org/10.1101/305870


which can be thought of as the categorical counterparts of Fig. 3(c) for linear regression.

Figs. 3-6 were generated by functions provided by eNetXplorer; these functions can be

called with custom graphics parameters. The package also includes additional methods

to provide summary and data export functionality to facilitate downstream analysis.

Results

Linear regression case study: Predicting H1N1 influenza

titers upon vaccination

Figs. 3-4 illustrate a typical eNetXplorer workflow to assess predictive models and pa-

rameters in the context of predicting antibody responses to H1N1 influenza vaccination

using cell frequency data from Ref.7 (included in the package). Here we focus on day 7

data (specifically, log fold-change from the baseline, i.e. log(day7)-log(day0)) to predict

the antibody response on day 70.

The overall model performance across the entire elastic net family is summarized in

Fig. 3(a), which shows that the statistical significance against the null model is p ∼ 0.1

for α ' 0.35 and increases monotonically towards the lasso (p ∼ 0.05). Based on the

assessment for this specific dataset, we will focus our discussion on the lasso solution;

however, it is useful to retain the ability to examine parameters for other values of

α, which may pick up additional informative predictors and thus could provide further

biological insights. It should be noted that the model-level statistical significance across

α is dataset-specific; the accompanying vignette (Additional file 1) discusses varying

effects of regularization on model performance, which arise in different scenarios of

predictor/response covariance structure.

For α = 1, Fig. 3(b) shows the QF vs λ profile and the chosen λ∗ (dashed line)

that was used to build the solution for this particular value of α. If, instead of dis-

playing a well defined maximum, this profile happened to appear flat or monotonically

increasing/decreasing, this could suggest that the range of λ is insufficiently large and
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needs to be extended via nextλ , which is functionality implemented in eNetXplorer for

this purpose. If the profile continues to appear flat or monotonic, that may suggest

that the model is a poor fit to the data. Fig. 3(c) shows OOB predictions vs response

for individual subjects. The positive correlation (r = 0.24) suggests that some cell

populations at day 7 may indeed be informative of the antibody response after vacci-

nation, although the substantial width of the 95% confidence interval (shown in light

blue) suggests a weak statistical significance. This plot also highlights outliers such as

subject ‘s244’, which appears with a large standard deviation and far from the region

of correlation, which may be due to other covariates, such as demographic, clinical, or

technical factors, not taken into account in the model. Note that in this illustrative

analysis all subjects were used and the antibody response (as captured by the adjMFC

metric7) was modeled as a continuous variable in the linear regression. In the original

publication,7 the analysis focused on building predictive models and finding predictive

parameters for high vs. low responders.

The caterpillar plot of Fig. 4(a) displays the top 15 cell populations ranked by model

vs null significance according to feature frequency; the top features thus obtained are

plasmablasts (p < 0.01) and IgD-CD38+ B-cell memory (p < 0.05), which were both

reported as day 7 predictors in the original publication.7 Fig. 4(b) shows these same

top features (which were chosen based on the lasso solution) in the larger context of

the entire elastic net family. Frequencies are trivially equal to 1 for ridge (α = 0), thus

none appears as significant compared to the null; however, as α is increased, we observe

the selection of several features that gradually decrease statistical significance towards

the lasso. A complementary view is offered by the feature coefficient caterpillar plot

(Fig. 4(c)) and corresponding heatmap (Fig. 4(d)), which show the direction (plus or

minus sign) in which a given cell subpopulation affects the titer response. Taken to-

gether, feature frequency and feature coefficient maps point to potentially predictive cell

populations, including those positively correlated with the titer response (plasmablasts,

IgD-CD38+ memory B, CD25+ activated T cytotoxic) and others negatively associ-

ated with the titer response (HLA-DR+ activated monocytes, IFNa+ plasmacytoid
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dendritic cells, CD8+Perforin+ T cytotoxic, effector memory T helper).

Multinomial classification case study: Uncovering microRNA

signatures of acute leukemia subtypes

Figs. 5-6 present eNetXplorer results for multinomial models from a study of microRNA(miR)-

based signatures of acute myeloid leukemia (AML) in contrast to B-cell (B-ALL) and

T-cell (T-ALL) lymphoblastic leukemias,8 where features correspond to 370 miRs mea-

sured in multiple cell lines and primary leukemia samples. The full dataset is included

in the package; details on data processing following Ref.8 are provided in the accom-

panying vignette (Additional file 1).

Figs. 5(a,c) display the contingency matrix with the average number of instances

predicted for each acute leukemia type; Figs. 5(b,d) show boxplot representations of

OOB predicted samples in each class. The top panels correspond to ridge (α = 0),

while the bottom panels correspond to slightly more regularized models (α = 0.2).

The contingency matrix for ridge, Fig. 5(a), shows a good overall OOB classification

performance, although with some misclassifications across the lymphoblastic classes;

Fig. 5(b) displays predictions for individual samples. By increasing feature shrinkage,

performance is quickly increased and the model is able to classify most samples correctly,

as shown in Fig. 5(c-d). It is important to note that these results are based on a large

number of cross validation iterations, where (for each run and for each fold within the

run) a model was built using the in-bag, training data only, and the model was then

applied to generate predictions on unseen, out-of-bag samples, followed by assessing the

concordance between the predicted and known response (class labels). This process is

free of data leakages since the training and testing sets are independent, thus mitigating

the risk of having biased accuracy estimates due to overfitting.

For multinomial models, feature significance is separately assigned to each class. For

AML, we observe that the top features selected by lasso are miR-27a, miR-223, and

miR-145 (Fig. 6(a)), which agree with the most connected miRs in the cell-line based
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AML-centric dyad networks reported in Ref.8 By considering less regularized models

(i.e. for smaller values of α), miR-23a, miR-24, and other related miRs showed up

as significantly associated with AML. miR-27a is co-localized in mammalian genomes

with miR-23a and miR-24 and they form the so-called ‘miR-23a’ cluster, which was

reported to be misregulated in multiple cancers; similarly, miR-145 was shown to be

involved in proliferation and differentiation of hematopoietic cells and to be altered

during leukemogenesis.9 This example illustrates the ability of eNetXplorer to help

explore AML signatures ranging from a minimal, informationally non-redundant set

of markers (which can be useful prototypes of a diagnostic panel) to a larger, corre-

lated set of signals (which can provide biological insight and guide the formulation of

testable hypotheses). For B-ALL, we observe that miR-146a, miR-708, miR-629 and

other significant miRs in the elastic net family (Fig. 6(c-d)) were also reported as hubs

in B-ALL-centric network ensembles.8 Most notably, quantitative reverse transcription

polymerase chain reaction (qRT-PCR) analysis of relative miR-708 expression levels

showed that it could be a good biomarker for B-ALL.8 Similarly, the most significant,

differentially expressed miRs for T-ALL previously reported are recapitulated, at var-

ious degrees of parsimony controlled by α (Fig. 6(e-f)). Beyond their potential role

as diagnostic biomarkers, some of these differentially expressed microRNAs have been

reported as clinically informative in the context of prognosis and treatment response in

chronic and acute leukemia patients.10

Discussion

In a biomedical context, observations are associated with biological samples (derived

from patients, model organisms, or cell lines), features are cellular and molecular mea-

surements obtained from those samples (as well as demographic and clinical information

associated with the subjects) and responses are categorical or numerical representations

of phenotype, diagnosis, prognosis, or outcome (i.e. response to interventions). The

number of available observations (N) in a study is severely constrained by limiting
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factors such as subject enrollment, ethical, financial and logistic considerations; on the

contrary, the number of features per observation (p) enabled by state-of-the-art biotech-

nology assays and electronic health records is ever increasing. As represented by the con-

ceptual schema of Fig. 1, regression models in these pervasive p� N scenarios require

regularization; the elastic net provides a framework to generate mixed-regularization

model families. In this context, eNetXplorer plays a critical role by providing a quan-

titative assessment of model and feature performance, as well as of their statistical

significance; it is to be viewed as the compass to navigate the regularization path.

In order to illustrate applications of eNetXplorer to real biomedical datasets, we

presented two case studies. In the first one, we found cell populations that may explain

the antibody response to H1N1 influenza vaccination. In the second study, we found

micro-RNAs that may play key roles in leukemogenesis, and/or may be utilized as

biomarker signatures. As discussed above, while some of the findings were validated by

existing literature, others suggest novel associations that remain to be further explored.

Naturally, regression models alone are unable to elucidate the molecular mechanisms

at play; their role is that of showing (potentially novel) associations in large and com-

plex datasets, thus aiding field experts in the process of formulating hypotheses and

suggesting further experiments to confirm or rule out those hypotheses.

Lastly, let us emphasize that eNetXplorer, although primarily conceived in the con-

text of biomedical research, it is generally applicable to other research areas as well. The

accompanying vignette (Additional file 1) illustrates eNetXplorer workflows of general

applicability.

Conclusions

Uncovering correlates and predictors in a multi-parameter setting is an ubiquitous prob-

lem in systems biology. In this context, regularized generalized linear modeling is a

popular approach due to its flexibility, but it is often desirable to retain the ability to

explore different levels of regularization and examine elastic net families that span the
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full range from ridge to lasso.

Our package is built on top of glmnet to provide novel functionalities that neither

glmnet itself, nor (to the best of our knowledge) other currently available software pack-

ages provide. Importantly, one of the most valuable new functionalities our software

enables is to empower biological applications in real-world settings to address one of

the most frequently asked questions: which biological variables, often out of a large

number in the current age of large-scale ‘omicsâĂŹ datasets, provide predictive infor-

mation about an outcome variable (e.g. diagnosis, vaccination efficacy, drug/treatment

response, etc.)? Specifically, both the null model evaluation functions (based on re-

sponse label permutations) that quantitatively assess which parameters are important

and statistically significant for prediction, as well as a set of functions for visualization

of these results across parameter space provided by our software, are novel and provide

a systematic framework to rigorously assess parameter significance.

Thus, eNetXplorer aims to make regularization approaches to generalized linear

modeling more readily available to a larger user base of diverse scientific background in

order to transform large-scale data sets into biological hypotheses and insight.

Availability and requirements

Project name: eNetXplorer

Project home page: https://CRAN.R-project.org/package=eNetXplorer

Operating system(s): Platform independent

Programming language: R (≥ 2.10)

Other requirements: R packages glmnet, stats, Matrix, RColorBrewer, calibrate, progress,

graphics, methods, grDevices, gplots

License: GPL-3

Any restrictions to use by non-academics: none
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Figures

Figure 1: Conceptual schema of eNetXplorer. (a) One or more datasets can be aggregated
into an N × p input matrix. Depending on the GLM of interest, the response is a numeric
vector (linear), 2-class factor (binomial) or multi-class factor (multinomial). (b) Ridge and
lasso implement different regularization penalty terms, which are tuned by the regularization
parameter λ. (c) The elastic net introduces the mixing parameter α as a continuous tuner
from ridge to lasso. (d) eNetXplorer generates a null-model ensemble via random permuta-
tions of the response (d1), which allows the quantitative exploration of elastic net families by
assessing the statistical significance of each model (d2), the feature-level significance within
each model (d3) and across the entire elastic net family (d4).
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Figure 2: Flowchart of the algorithm’s implementation. The algorithm consists of three main
modules: (a) model building, (b) null model building, and (c) model vs null comparison,
sequentially executed for each value of α; at the end, the results are integrated across α for
downstream analysis and visualization. Abbreviations used: in-bag (IB), out-of-bag (OOB),
quality function (QF). More details provided in the Implementation Section.
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Figure 3: Linear regression model of postvaccination immune cell frequency correlates of
H1N1 titer response. (a) Performance across α: quality function (QF) and statistical signifi-
cance (p-value of model vs null). The default QF for linear regression is Pearson’s correlation
between out-of-bag predictions and the response. (b) Selection of λ by QF maximization
(α = 1). (c) Scatterplot of response vs out-of-bag predictions across all subjects (α = 1);
best linear fit (solid line) and 95% CL (shaded region) also shown.
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Figure 4: Linear regression model of postvaccination immune cell frequency correlates of
H1N1 titer response. Top features selected from the lasso (α = 1) solutions. (a) Caterpillar
plot of feature frequencies. Red symbols (bars) display the mean (standard deviation) of
model feature frequencies across runs. Blue symbols (bars) display the mean (standard
deviation) of null model feature frequencies across run/permutation null model combinations.
(b) Heatmap of feature frequencies across α. (c) Caterpillar plot of feature coefficients. (d)
Heatmap of feature coefficients across α. White denotes missing values, which occur for
features whose frequencies are zero across all runs for a given α.
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Figure 5: Multinomial classification model of microRNA expression in acute leukemias.
Top (a,b): α = 0. Bottom (c,d): α = 0.2. Left (a,c): Contingency matrix of out-of-bag
predictions vs response. Right (b,d): Boxplots of out-of-bag quality function (QF) per class
across samples. The default QF for multinomial classification is the average accuracy, which
is invariant under class label permutations.
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Figure 6: Multinomial classification model of microRNA expression in acute leukemias. Top
features selected from the lasso (α = 1) solutions. Top (a,b): Acute myeloid leukemia
(AML). Center (c,d): B-cell acute lymphoblastic leukemia (B-ALL). Bottom (e,f): T-cell
acute lymphoblastic leukemia (T-ALL). Left (a,c,e): Heatmaps of feature frequencies. Right
(b,d,f): Heatmaps of feature coefficients.
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