

gmxapi: a high-level interface for advanced
control and extension of molecular dynamics
simulations
M. Eric Irrgang1,2, Jennifer M. Hays1,2 and Peter M. Kasson1,2,*
1Department of Biomedical Engineering and 2Department of Molecular Physiology and Biological
Physics, University of Virginia, Box 800886 Charlottesville VA 22908, USA.

*To whom correspondence should be addressed.

Abstract
Summary: Molecular dynamics simulations have found use in a wide variety of biomolecular applica-
tions, from protein folding kinetics to computational drug design to refinement of molecular struc-
tures. Two areas where users and developers frequently need to extend the built-in capabilities of
most software packages are implementing custom interactions, for instance biases derived from ex-
perimental data, and running ensembles of simulations. We present a Python high-level interface for
the popular simulation package GROMACS that 1) allows custom potential functions without modify-
ing the simulation package code, 2) maintains the optimized performance of GROMACS, and 3) pre-
sents an abstract interface to building and executing computational graphs that allows transparent
low-level optimization of data flow and task placement. Minimal dependencies make this integrated
API for the GROMACS simulation engine simple, portable, and maintainable. We demonstrate this
API for experimentally-driven refinement of protein conformational ensembles.
Availability:	 Source and installation instructions are available at https://github.com/kassonlab/gmxapi.	
Contact:	 kasson@virginia.edu

1 Introduction
As biomolecular simulations have advanced in complexity and scale,

programmatic control of simulations has become a common mode of
use. This has been accomplished both through middleware layers
(Balasubramanian, et al., 2016; Pronk, et al., 2011) and native program-
ming interfaces (Eastman, et al., 2013; Phillips, et al., 2005), with Python
interfaces becoming increasingly common due to Python’s popularity in
the scientific computing community, its robust scripting interface, and
the rich ecosystem of data analysis and visualization tools available.
Among major molecular dynamics (MD) software packages, the few that
offer native Python interfaces tend to do so via procedural calls so that
the resulting code is executed in a linear, stepwise fashion. This is a
natural programming paradigm for users accustomed to writing shell
scripts, but it prevents more advanced task placement and parallelization
strategies. Packages such as TensorFlow (Abadi, et al., 2016) or the MD
overlay software Copernicus (Pronk, et al., 2011) demonstrate an alterna-
tive paradigm where the API provides an interface for constructing a
computational task graph that can then be executed in an optimized
manner by the underlying software.

Our design approach is to provide a native interface to the
GROMACS MD engine (Pronk, et al., 2013) that supports two common
use patterns that require either middleware packages or custom modifica-
tion of the GROMACS source. This interface also allows simple, intui-
tive construction of computational task graphs in a manner that permits
abstraction of parallel optimizations and ultimately is compatible with

advanced machine-learning packages such as TensorFlow to permit
mixing of molecular simulation and machine-learning operations.

We therefore present a native Python API to the GROMACS simula-
tion engine that implements these features. Users may drive simulations
from Python via simple high-level procedural commands, a more granu-
lar object-oriented interface, or through their own extension code. We
include a framework for extending GROMACS with MD plugin mod-
ules for which Python interfaces are automatically generated, permitting
developers to customize GROMACS without modifying the source. The
current interface focuses on the MD engine itself; future versions will
encompass analysis tools and facilitate integration with third-party anal-
ysis software. Here, we outline key features of gmxapi and demonstrate
its utility by implementing restrained-ensemble MD simulations for
hybrid refinement of protein structures based on experimental data.

2 Methods
The gmxapi package consists of a high-level interface in pure Python
with a lower-level API implemented as a C++ extension. The Python
component provides the gmx module as a stable external interface. Bind-
ings to the libgmxapi C++ API are provided in the submodule gmx.core.
C++ implementations for different compute platforms (cloud platforms,
GPUs, parallel architectures) may be coded differently but are presented
through a consistent interface that abstracts these details away.

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 22, 2018. ; https://doi.org/10.1101/306043doi: bioRxiv preprint

https://doi.org/10.1101/306043
http://creativecommons.org/licenses/by-nd/4.0/

M. Irrgang et al.

Fig. 1: Restrained-ensemble simulations using gmxapi. Schematized
are the Python commands to declare an array of MD simulations, bind a
custom potential, and run, and the corresponding computational graph.

The high-level Python interface provides essential abstractions for
workflow construction and execution. Procedural commands initialize
and construct a workflow, which may be serial or parallel at both the
individual-simulation and simulation-ensemble levels. Once the work-
flow is fully described, a single Python function discovers and allocates
computing resources and hands off the work specification to an execu-
tion manager that translates it into a task graph and executes it.

A plugin API is included to allow custom extensions of GROMACS
MD potentials without recompiling the MD engine code itself. Plugins
are constructed via C++ templating and Python bindings via pybind11
(sample code is provided). Users can thus build a custom plugin and add
it to the work specification, and the gmxapi execution manager will bind
the custom code into the MD loop at runtime. The result is a friendly
Python interface for custom extensions that nonetheless maintains native
GROMACS performance. Details on work specification grammar and
the plugin interface are given in the Supplementary Data.

3 Results
To demonstrate the power of the gmxapi package, we have tested it on
restrained-ensemble refinement of protein conformational ensembles
using experimental DEER spectroscopy data. This approach, originally
published and implemented using CHARMM (Roux and Islam, 2013), is
a common workflow in our group using GROMACS that requires cus-
tom code in three places: user-specified biasing forces in the core MD
engine, analysis code to process predicted ensemble data and update the
biasing forces, and parallelization scripts to manage execution, analysis,
and data exchange between many ensemble members simultaneously.
We have replaced all three of these using the gmxapi plugin interface
and simple high-level calls to the gmxapi Python API.

At a high level, restrained-ensemble simulations compute population
properties from a set of molecular dynamics simulations, compare those
to an experimental measurement, and compute biases to bring the simu-
lated ensemble in better agreement with the experimental one. The
experimental data we use are residue-residue distance distributions
measured via double electron-electron resonance (DEER) spectroscopy.
The simulation algorithm is thus to compute a distance histogram from
the estimated ensemble, compare to the measured ensemble, and calcu-
late a distance-dependent biasing force for the simulations, which are run

for an interval ∆t before the process is repeated (see Supplement). Mul-
tiple DEER restraints can be applied in a single simulated ensemble.

The gmxapi calls required to set up a restrained-ensemble workflow
are schematized in Fig. 1, and the full source is given in the Supplemen-
tary Data. Prior to gmxapi, our group wrote a custom implementation of
restrained-ensemble simulations for GROMACS that required 6984 lines
of code. With gmxapi our C++ plugin and python source are 127 lines
once include and comment statements are excluded. Performance using
the external plugin is within 5% of the custom implementation where
restraint forces are deeply embedded in the GROMACS code.

The gmxapi package thus provides a high-level interface for the
GROMACS MD engine and enables custom plugins for user-specified
forces, abstraction of computational context in a task-graph architecture,
and first-class management of simulation ensembles. Further improve-
ments will expand this API to cover parallel analysis tasks as well.

Acknowledgements
We thank Mark Abraham, Michael Shirts, Shantenu Jha, and members of the
GROMACS core developer and MolSSI communities for helpful discussions.

Funding
This	 work	 was	 supported	 by	 the	 National	 Institutes	 of	 Health	 [R01GM115790	 to	

P.M.K],	 a	 MolSSI	 fellowship	 to	 M.E.I,	 and	 a	 Blue	 Waters	 fellowship	 to	 J.M.H.	

Conflict	 of	 Interest:	 none	 declared.

References
Abadi, M., et al. Tensorflow: Large-scale machine learning on heterogeneous
distributed systems. arXiv preprint arXiv:1603.04467 2016.
Balasubramanian, V., et al. Extasy: Scalable and flexible coupling of md
simulations and advanced sampling techniques. In, e-Science (e-Science), 2016
IEEE 12th International Conference on. IEEE; 2016. p. 361-370.
Eastman, P., et al. OpenMM 4: A Reusable, Extensible, Hardware Independent
Library for High Performance Molecular Simulation. J. Chem. Theory Comput.
2013;9(1):461-469.
Phillips, J.C., et al. Scalable molecular dynamics with NAMD. J Comput Chem
2005;26(16):1781-1802.
Pronk, S., et al. Copernicus: A new paradigm for parallel adaptive molecular
dynamics. Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis 2011:60.
Pronk, S., et al. GROMACS 4.5: a high-throughput and highly parallel open source
molecular simulation toolkit. Bioinformatics 2013;29(7):845-854.
Roux, B. and Islam, S.M. Restrained-ensemble molecular dynamics simulations
based on distance histograms from double electron-electron resonance
spectroscopy. J Phys Chem B 2013;117(17):4733-4739.

Execution manager

gmxapi.load_file
params: [filename1, filename2, .. .]

Data Input

gmxapi.md
MD Engine

a
>>> md = gmx.from_file([filename1, filename2, filename3, .. .])

c
>>> gmx.run()

b

>>> md.add_dependancy(potential)

>>> potential = myplugin.EnsembleRestraint(sites, *args, **kwargs)

myplugin.mdmodule
params: [...]

Plug-in module

gmxapi.ensemble_reduce
params: [SUM]

Calculation on ensemble

MD Engine

Data Input

MD Engine

Data Input

Calculation on ensemble

Plug-in module

Work graphPython command

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 22, 2018. ; https://doi.org/10.1101/306043doi: bioRxiv preprint

https://doi.org/10.1101/306043
http://creativecommons.org/licenses/by-nd/4.0/

