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Abstract

Membrane Computing is a bio-inspired computing paradigm, whose devices are the so-

called membrane systems or P systems. The P system designed in this work reproduces

complex  biological  landscapes  in  the  computer  world.  It  uses  nested  “membrane-

surrounded  entities”  able  to  divide,  propagate  and  die,  be  transferred  into  other

membranes, exchange informative material according to flexible rules, mutate and being

selected  by  external  agents.  This  allows  the  exploration  of  hierarchical  interactive

dynamics  resulting  from the  probabilistic  interaction  of  genes  (phenotypes),  clones,

species, hosts, environments, and antibiotic challenges. Our model facilitates analysis of

several aspects of the rules that govern the multi-level evolutionary biology of antibiotic

resistance. We examine a number of selected landscapes where we predict the effects of

different  rates  of patient  flow from hospital  to  the community  and  viceversa,  cross-

transmission  rates  between  patients  with  bacterial  propagules  of  different  sizes,  the

proportion of patients treated with antibiotics, antibiotics and dosing in opening spaces

in  the  microbiota  where  resistant  phenotypes  multiply.  We  can  also  evaluate  the

selective strength of some drugs and the influence of the time-0 resistance composition

of  the  species  and  bacterial  clones  in  the  evolution  of  resistance  phenotypes.  In

summary,  we provide  case studies  analyzing  the hierarchical  dynamics  of  antibiotic

resistance using a novel computing model with reciprocity within and between levels of

biological  organization,  a type of approach that  may be expanded in the multi-level

analysis of complex microbial landscapes.
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Introduction

Antibiotic resistance is the result  of the complex interaction of discrete evolutionary

entities  placed  in  different  hierarchical  levels  of  biological  organization,  including

resistance  genes,  mobile  genetic  elements,  clones,  species,  genetic  exchange

communities, microbiomes, and hosts of these bacterial ensembles placed in particular

biological environments (1,2,3). Under the influence of external environmental variation

(such as exposure to  antibiotics)  each one of these evolutionary entities  might  have

independent rates of variation and selection, but as they are hierarchically-linked, the

changes in each one of them can influence all other entities (4), as they constitute a

global “nested biological system” (5). 

Membrane-computing  is  an  individual-based natural  computing  paradigm aiming  to

abstract computing ideas and models from the structure and the functioning of living

cells, as well as from the way the cells are organized in tissues or higher order structures

(6,7). A kind of computational models using this paradigm are “P systems”, consisting

in placing objects  (in our case biological  entities)  into virtual  cell-like or tissue-like

membrane  structures,  so  that  one  membrane  or  one  cell  (respectively)  represents  a

hierarchical level, a region of the embedded system. For instance, each bacterial cell is a

membrane containing plasmids (as objects), and a plasmid is a membrane containing

genes  (as  objects).  The  mobility  of  entities,  objects,  across  membranes  is  possible

according to pre-established rewriting rules, and the collection of multisets of entities

will evolve in a synchronous, parallel, and non-deterministic manner. The objects have

assigned  rules  to  pass  through  membranes  (to  mimic  intracellular  or  intercellular

transmission  (8,9),  to  dissolve  (to  mimic  elimination),  and to  divide  themselves  (to

mimic replication). In this work, we use a P system to simulate multi-level dynamics of

antibiotic resistance, based on our first published prototype (8,9). This computational
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model  facilitates  an approach  that  is  computationally  hard to  accomplish  or  simply

impossible to address experimentally. Our work allows the estimation and evaluation of

global  and  specific  effects  on  the  frequency  of  each  one  of  the  biological  entities

involved  in  antibiotic  resistance  occurring  because  of  changes  taking  place  (as

following antibiotic exposure) in one or (simultaneously) in several of them. Note that

albeit antibiotic resistance is a major problem in Public Health, in terms of biosystems it

is only a particular example of “evolution in action”. Our model can be easily applied to

many other complex evolutionary landscapes, involving other genes, phenotypes, cells,

populations, communities and ecosystems. 

Results

The main  objective  of  the present  work is  to  present  the possibilities  of membrane

computational  modeling  as  a  powerful  tool  in  the  evaluation  of  the  factors  that,  at

various  biological  levels,  might  influence  the dynamics  of antibiotic  resistance.  The

results provided below should not be taken as predictions of the evolution of resistance,

just as illustrations of some of the possibilities of this model to study the multi-level

dynamics of resistance, by simultaneously changing parameters in state variables and

observing  after  a  single  run  the  effect  in  the  frequency  of  resistant  species  and

populations.  Note  that  the  model  is  probabilistic  and  the  rules  are  selected  in  a

probabilistic way. So, each computation produces an output in such manner that the

results obtained are not entirely identical in consecutive runs of the program, but they

are  relatively  close  (see  Fig  SI1).  In  the  next  paragraphs,  antibiotics  (Ab)  and  the

corresponding resistances (R) are named AbA, AbC and AbF, and AbAR, AbCR, and

AbFR respectively; to facilitate reading, we suggest the identification of AbA as the
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Aminopenicillins,  AbC  as  Cefotaxime-Ceftazidime,  and  AbF  as  Fluoroquinolones,

using the initials of three of the major groups of antibiotics used in clinical practice

(Table 1).

The basic scenario in the hospital and community compartments

Dynamics  of  bacterial  resistance  phenotypes  in  E.  coli.  Waves  of  successive

replacements  of  resistance  phenotypes  in  hospital-based  E. coli during 20,000 time-

steps  (about  2.3  years,  as  the  time-steps  represent  approximately  1  hour/step)  are

illustrated in Fig 1. The main features of this process, mimicking clonal interference,

are: 1) sharp decrease in the density of the fully susceptible phenotype (pink line); 2)

rapid increase of the phenotype AbAR, aminopenicillin resistance, resulting from the

transfer  of  the  plasmid  with  AbAR  to  the  susceptible  population,  and  consequent

selection (red); 3) increase by selection,  and marginally by acquisition of mutational

resistance, of the phenotype AbFR , fluoroquinolone resistance (violet); 4) increase of

double  resistances  AbAR and AbFR,  by  acquisition  of  an  AbFR mutation  with  the

organisms of AbAR-only phenotype, and by the transfer of the plasmid encoding AbAR

from the AbAR-only phenotype to the AbFR-only phenotype (brown); 5) increase of the

phenotype  with double  resistances  AbAR and AbCR by capture  by  the  AbAR-only

predominant  phenotype  of  a  plasmid  containing  AbCR,  cefotaxime  resistance  that

originated in  K. pneumoniae (light blue); 6) almost simultaneous emergence but later

predominance of the multi-resistant organisms with phenotype AbAR, AbCR, and AbFR

by mutational acquisition of AbFR by the double-resistant phenotype AbAR-AbCR and,

also,  of the plasmid-mediated  AbCR by the AbAR-AbFR phenotype (dark blue);  7)

close in time,  emergence, but with low density, of the phenotype AbCR-only, by the

acquisition of the plasmid encoding AbCR by the fully-susceptible phenotype and the

AbAR phenotype,  and  loss  of  plasmid-mediated  AbAR by incompatibility  with  the
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incoming plasmid (light green); 8) the acquisition of the AbFR mutation by the AbCR-

only  phenotype,  or  by  plasmid-reception  of  an  AbCR trait  from  K.  pneumoniae in

AbFR,  giving  rise  to  the  phenotype  AbCR-AbFR (olive  green).  In  the  community,

where the antibiotic exposure is less frequent, a similar dynamic sequence occurs, but at

a much slower rate (fig. 2). 

Dynamics of bacterial species.  Antibiotic use and antibiotic resistance influence the

long-term dynamics of bacterial species in hospital environment (Fig. 2 C, D). In the

conditions of our basic scenario, E. coli populations (black) tend to prevail. E. faecium

(violet)  and  K.  pneumoniae (yellow-green)  populations  were  maintained  along  the

experiment. In the community, E. coli has a stronger dominance over other species, and

similar dynamics occur as in the hospital, at slower rates.

Klebsiella pneumoniae (Fig SM3) is intrinsically resistant to AbA and, in our case, it

harbors a plasmid encoding AbCR (CTX), and a mutation encoding AbFR (FLQ). In the

hospital, the AbCR phenotype is readily selected. However, because of the high density

of  E.  coli with  the  plasmid-mediated  AbAR,  several  Klebsiella  strains  receive  this

plasmid. These  Klebsiella strains have no benefit from this plasmid because they are

intrinsically aminopenicillin-resistant, but incompatibility with the plasmid determining

AbCR occurs, eliminating AbCR from the recipients and giving rise to the phenotype

AbAR-AbFR (purple). That contributes to the decline in AbCR-containing phenotypes

(olive green). In any case, the dominance of E. coli prevents a significant growth of K.

pneumoniae. Enterococcus faecium (Fig SM3) is intrinsically resistant to AbC (AbCR,

CTX), but there are two variants, one AbA (AMP) susceptible, and the other resistant,

this last one has also AbFR. However, the AbAS variant can acquire the AbAR trait

from the resistant one by (infrequent) horizontal genetic transfer and becomes an AbAR

donor. There is replacement dynamics of AbAS by the AbAR phenotype. 
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Influence of baseline resistance composition on the dynamics of bacterial species.

The local evolution of antibiotic resistance can depend on the baseline composition of

susceptible  and  resistant  bacterial  populations  (Fig  3).  In  a  baseline  scenario,  we

consider  a  density  of  8,600  h-cells  (1  h-cell=100  identical  cells,  see  the  section

“quantitative structure of the basic model application” below) of E. coli of which 5,000

are susceptible, 2,500 have plasmid-mediated aminopenicillin-resistance (PL1-AbAR),

1,000 have fluoroquinolone resistance (AbFR), and 100 combines both resistances. To

mimic a “more susceptible scenario,” values were changed to 8,000 susceptible,  500

with  PL1-AbAR,  50  with  AbFR,  and  50  with  PL1-AbAR  and  AbFR.  A  higher

proportion of susceptible E. coli facilitates the increase of the more resistant organisms,

K. pneumoniae and AbAR E. faecium. Because of the selection of K. pneumoniae (olive

green) harboring cefotaxime-resistance (PL1-AbCR), and the ability of transfer of the

PL1 plasmid to  E. coli,  the proportion of  E. coli with cefotaxime-resistance (mainly

light and dark blue) increases in the scenario with a lower resistance baseline for E. coli.

This example illustrates the hypothesis that a higher prevalence of resistance in the E.

coli component of the gut flora might reduce the frequency of other resistant organisms,

which might inspire interventions directed to restore susceptibility in particular species

(10, 11). 

Single  clone  E.  coli dynamics:  influence  of  baseline  resistances. In  the  previous

analysis,  subpopulations  of  E.  coli were  characterized  by  their  antibiotic-resistance

phenotype (phenotype populations). Alternatively, we can follow the evolution of four

independent  E.  coli clones,  each  one  tagged  in  the  model  with  particular  signals

(unrelated with AbR), Ecc0, EccA, EccF, EccAF (see Table 1), and starting with specific

resistance  traits,  allowing  for  the  possibility  that  the  frequency  of  these  “ancestor

clones” may change through time within a clone by the gain or loss of a trait. Figure 4
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shows the densities of these ancestor clones along time. The detail of sequential trait

acquisition for each one of these clones is shown in Fig SM2. The fully susceptible E.

coli clone (Ecc0) first acquires AbAR (red), and AbCR (green). The AbAR phenotype

facilitates the capture by lateral gene transfer of AbCR (CTX), giving rise to the double

AbAR-AbCR phenotype (light blue). The incorporation of AbF-R (violet, FLQ) in the

fully susceptible clone occurs early, later in the AbAR population, so that the rise of the

multi-resistant  phenotype  (dark  blue)  occurs  later  and  again  at  low numbers.   The

presence of the AbAR trait in the clone at time 0 (EccA) increases the success of the

clone,  including  the  acquisition  of  AbFR,  and  the  multi-resistant  phenotype.

Interestingly,  the  presence  of  AbFR (fluoroquinolones-R)  at  the  origin  (EccF),  was

critical to enhance the numbers of double-resistant and multi-resistant phenotypes. The

clones  that  were more susceptible  at  the origin remain  relatively stable in numbers,

suggesting that clonal  composition tends to level-off  along the continued challenges

under antibiotic exposure. 

Dynamics of mobile genetic elements and resistance traits. We consider  E. coli,  K.

pneumoniae, and P. aeruginosa as members of a "genetic exchange community" (12,13)

for the plasmid PL1. In Fig. 5, we can compare the evolutionary advantage of the same

resistance phenotypic trait (AbAR) when harbored in a plasmid, as in E. coli or in the

chromosome, as in K. pneumoniae. The overall success of the plasmid PL1 (blue line)

benefits from the fact that this mobile element is selected by two different antibiotics

(AbA and AbC, resistance  shown in red and green lines  respectively).  Interestingly,

resistance to AbFR (violet) is selected from early stages of the experiment, and after

4,000 steps it converges with the AbCR, a plasmid-mediated trait,  meaning that this

plasmid is maintained almost exclusively in strains harboring AbFR gene, similar to

empirical findings (14,15). If the conjugation rate of PL1 was increased, the main effect
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would be the reduction in selection of K. pneumoniae, as the predominance of the PL1-

AbAR plasmid from the more abundant populations of E. coli tended to dislodge PL1-

AbCR from K. pneumoniae (results not shown).

Dynamics  under changing  scenarios  in  the  hospital  and community

compartments

Frequency  of  patient  flow  between  hospital  and  community.  The  frequency  of

exchange of individuals between the hospital and the community (hospital admission

and discharge rates) influences the evolution of antibiotic resistance (Fig 6). This occurs

because  sensitive  bacteria  enter  the  hospital  with  newly  admitted  patients  from the

community (where resistance rates are low), and this ‘‘immigration’’ allows sensitive

bacteria to ‘‘wash out’’ resistant bacteria (16).  Multi-resistant  E. coli strains emerge

much earlier with decreased flow rates, as bacteria resistant to individual drugs have

more time to coexist and thus exchange resistances by gene flow, and because the length

of  “frequent  exposure”  to  different  antibiotics  increases,  and consequently  selection

(17). The effect of slow flow of patients to the community is a late reduction in multi-

resistance  (AbAR-AbCR-AbFR)  and  earlier  double  resistances  (AbAR-AbFR)  and

(AbAR-AbCR).  In the  community  compartment,  however,  multi-resistance  increases

when the flow from the hospital is more frequent (4 h). 

Frequency of patients treated with antibiotics. The proportion of patients exposed to

antibiotics increases selection of antibiotic resistance (16). We analyzed this effect in

our  model  considering  proportions  of  20%-10%-5%  of  patients  exposed  to  7

consecutive days of antibiotic therapy, three doses per day (Fig 7).  If a high proportion

(20%) of patients are treated,  E. coli multi-resistance is efficiently selected, as well as

resistant  K.  pneumoniae and  E.  faecium. If  this  proportion  is  reduced  to  10%,  and
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particularly to 5%, there is a strong reduction in the amount of resistant E. coli cells and

the  emergence  of  multi-resistant  bacteria  is  delayed  (individual  resistance  data  not

shown  for  these  species).  However,  the  evolution  of  E.  coli towards  more  multi-

resistance partially counteracts the selective advantage of these species, restricting their

growth to some extent, even in the scenario of high density of treated patients. 

Frequency of bacterial transmission rates in the Hospital.  Transmission of bacteria

(any  type  of  bacteria,  including  commensals)  among  individuals  in  the  hospital

influences the spread of antibiotic resistance. The effect of transmission rates of 5%, and

20% per hour was analyzed (Figure 8), expressing the proportion of individuals that

acquire any kind of bacteria from another individual per hour. These rates might appear

exceedingly  high,  indicating  very frequent  transmission between hosts,  but  we refer

here  to  cross-colonization  rate  involving “any type  of  bacteria”.  Normal  microbiota

transmission  rates  between  hosts  have  never  been  measured,  probably  requiring  a

complex metagenomic approach (18). Differences in evolution of  E. coli phenotypes

comparing 10% and 20% of colonization rates are unclear; maybe 10% transmission

produce full effects, and 20% does not add much more. The subtractive representation

allows discernment of a global advantage for the multi-resistant phenotypes (AbAR-

AbCR-AbFR) when the proportion of inter-host transmission rises from 5 to 20%. The

mono-resistant AbAR phenotype tends to be maintained longer under low contagion

rates. Note that multi-resistant phenotype "bursts" occur (dark blue spikes in the figure)

also with low contagion rates (5% box in fig. 8), and "bursts" of less-resistant bacteria

(red spikes) also occur in high contagion rates (20% box). It is to be noticed that the

increase  in  cross-colonization  rates  favors  not  only  the  transmission  of  resistant

populations, but also of the more susceptible ones, in a certain extent compensating the

spread of the resistant phenotypes populations. 
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Size of transmitted bacterial load. The absolute number of intestinal bacteria that are

transmitted from one host to another one is certainly a factor influencing the acquisition

of resistant (or susceptible) bacteria by the recipient. However, this number is extremely

difficult to determine, as it depends not only on the mechanism of transmission (19,20),

but also because the recipient might harbor bacterial organisms indistinguishable from

those  that  are  transmitted  (21).  On  the  other  hand,  efficient  transmission  able  to

influence colonic microbiota depends on the number of bacteria in the donor host, and

the  colonizing  ability  of  different  bacteria,  not  only  in  the  intestine,  but  also  in

intermediate locations in the body, as probably the mouth or upper intestine (22). To

show the potential effect of different bacterial loads acting as inocula, we consider a

final immigrant population reaching the colonic compartment equivalent to 0.1%, 0.5%

and 1% of the donor microbiota. As in previous cases, the evolution of multi-resistance

favors  E.  coli (Fig  SI4).  Multi-resistant  E.  coli emerges  earlier  and  reaches  higher

counts  in  higher-count  inocula,  but  less  resistant  strains  are  maintained because the

higher-count inocula also contain more susceptible bacteria. 

Intensity of the effect of antibiotics on bacterial populations.  The question of the

relation of the “potency” (intensity of antibacterial  activity) of antibiotics in relation

with the selection of resistance has been a matter of recent discussions (23, 24, 25, 26).

To illustrate the point, we changed the bactericidal effect of the antibiotics used in the

model. Clinical species were killed at rates of 30%-15% (reflecting population decrease)

the first and second hour of exposure respectively, and these rates were decreased to

7.5-3.75%. Note that these modest killing rates intend to reflect the diminished effect of

antibiotics in slow-growing clinical bacteria located in a complex colonic microbiome.

The more susceptible  E. coli phenotypes are maintained for longer when the killing

intensity of antibiotics is lower; on the contrary, the multi-resistant phenotype emerges
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earlier and reaches higher numbers when the intensity of antibiotic action increases (Fig

9). Under high antibiotic intensity, there is also a (small) increase in the resistant  K.

pneumoniae and  E.  faecium phenotypes.  This  experiment  shows that  a  high rate  of

elimination  of  the  more  susceptible  bacteria  favors  the  colonization  by  the  more

resistant ones. 

Intensity of the antibiotic effect on colonic microbiota. The proportion of the colonic

microbiota killed by antibiotic treatment, and thus the size of the open niche for other

strains to multiply, constitutes an important factor in the multiplication of potentially

pathogenic bacteria, and hence facilitates acquisition (mutational or plasmid-mediated)

of  resistance,  and  transmission  to  other  hosts.  In  the  basic  model,  reduction  of  the

population is 25% for AbA, 20% for AbC, and 10% for AbF; in an alternative scenario

these proportions  were modified  to 10%, 5% or  2% respectively.  The result  of this

change is impressive (Figure 10): not only the number of bacteria is reduced but the

evolution towards antibiotic  resistance (EC) occurs at  a slower rate,  and even if  the

proportion of resistance phenotypes steadily increases along time, its absolute number

does not grow, thus limiting host-to-host transmission. 

Strength of antibiotic selection on resistance traits. Strength of antibiotic selection is

an  important  parameter  in  evolutionary  biology  of  antibiotic  resistance  (27).  Our

computational model allows heuristic knowledge about the strength of selection of an

antibiotic for a particular resistance trait, considering how the resulting trend is (or not)

compatible with the observed reality. An example case is the unanswered question: -do

plasmid-mediated  cefotaxime-resistance  (AbCR)  also  provides  protection  against

aminopenicillins  (AbAR)?  Strains  harboring  TEM- or  SHV-extended-spectrum beta-

lactamases hydrolyzing cefotaxime probably retain sufficient levels of aminopenicillin

hydrolysis  to  be  selected  by  aminopenicillins.  However,  the  phenotype  cefotaxime-
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resistant/aminopenicillin-susceptible is rare in hospital isolates. In our model, this was

investigated  providing  different  strengths  of  ampicillin  (AbA)  selection  for  a

cefotaxime-resistant phenotype (AbCR): no selection (0%), selection only in 10% of the

cases (10%), and full selection (100%). The results of the model (Fig SM5) show that if

ampicillin were able to select for cefotaxime-resistance the phenotype aminopenicillin-

susceptible and cefotaxime-resistant should be prevalent from early stages. This is not

what is observed in the natural hospital environment, suggesting that ampicillin is not a

major selector for cefotaxime-resistance.

Discussion

The rate of antibiotic resistance among bacterial species in a given environment is the

result of the interaction of biological elements within a framework determined by many

local variables, constituting a complex parameter space (28, 29, 30). There is a need to

consider (in an integrated way) how changes in these parameters might influence the

evolution  of  resistant  organisms.  This  endeavor  requires  the  application  of  new

computational  tools  that  should  consider  the  nested  structure  of  the  microbial

ecosystems, where mechanisms of resistance (genes) can circulate  in mobile  genetic

elements  among  bacterial  clones  and  species  belonging  to  genetic  exchange

communities  (12,  13)  located  in  different  compartments  (as  the  hospital,  or  the

community).  A number  of  different  factors  critically  influence  the  evolution  of  this

complex  system,  such  as  antibiotic  exposure  (frequency  of  treated  patients,  drug

dosages,  the  strength  of  antibiotic  effects  on  commensal  bacterial  communities,  the

replication  rate  of  the microbial  organisms,  as well  as  the fitness costs  imposed by

antibiotic  resistance,  the rate  of exchange of colonized hosts between compartments
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with different levels of antibiotic exposure (hospital  and community), or the rates of

cross-transmission of bacterial  organisms among these compartments.  The challenge

that we are addressing in this work is to simultaneously combine for the first time all

these  (and potentially  more)  factors  in  a  single computing  model  to  understand the

selective  and  ecological  processes  leading  to  the  selection  and  spread  of  antibiotic

resistance.  In comparison with available classic mathematical models that have been

applied to the study of evolution of antibiotic resistance (31), the one we are discussing

in this work is far more comprehensive in terms of the level of capture of the multi-level

parametric complexity of the phenomenon. Note that results obtained with the model

and presented here correspond only to a very limited number of possible “computational

experiments”, chosen to show the possibilities of the model, but a virtually unlimited

number of other experiments, with different combinations of parameters, are feasible à

la carte with a user-friendly interface.  In addition, our model can illustrate principles,

generate hypothesis and guide and facilitate the interpretation of empirical studies (32,

33). Examples of these heuristic predictions are that resistance (less antibiotic effect) in

colonic commensal flora can minimize colonization by resistant pathogens, the possible

minor role of aminopenicillins in the selection of extended-spectrum beta-lactamases

(AbCR),  or  the  possibility  of  the  presence  of  plasmids  containing  aminopenicillin-

resistance  in  K.  pneumoniae,  phenotypically  “invisible”  as  this  organism  has

chromosomal resistance to the drug. 

Our results are presented in terms of the ensemble of biological entities contained in the

whole landscape (for instance the hospital),  aggregated across individual  hosts.  This

“pooling” approach, originated in ecological studies, has already been used in antibiotic

resistance (34). Environments (as the hospital) are depicted as single “big world” units

colonized by “big world populations”, including those with are antibiotic resistant but
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also the susceptible ones, which can limit the spread of resistance, in a sense “spreading

health” (35). In this scenario, how might antibiotics modify the available colonization

space?  (36,  37).   Our  model  includes  the  elimination  of  part  of  the  global  colonic

microbiota  with  antibiotic  use,  favoring  the  colonization  of  resistant  organisms,

previously in minority. 

In  our  computational  experiments  we  can  reproduce  the  successive  “waves”  of

increasingly resistant phenotypes, mimicking the clonal interference phenomenon (38).

We show that the speed and intensity of this process depends on the global resistance

landscape and the density and phenotype of the bacterial subpopulations. Our model

predicts  that  previous mutational  ciprofloxacin-resistance facilitates  fast  evolution  of

multi-resistance by horizontal acquisition of resistance genes (14, 15). We also show

that  the  long-term  dissemination  of  chromosomally-encoded  genes  is  by  far  less

effective than the spread of traits encoded in transferable plasmids, even though some

limitations are detectable because of plasmid incompatibility. A frequently overlooked

aspect of antibiotic resistance suggested by our membrane computing experiments, is

that probably the evolution of multi-resistance favors at long term some predominant

species,  as  E.  coli,  where  there  is  also  an  increasing  benefit  for  the  more  resistant

clones. 

The consequences of changes in the transmission and treatment rates of the hospital and

the community were also explored in our model.  Several mathematical models have

also investigated these changes (16, 37, 38, 39, 40, 41, 42, 43, 44, 45). Is clear that the

effect of reducing patient discharges and admissions in the hospital increases the local

rates  of  antibiotic  resistance,  but  in  our  model,  the  proportion  of  antibiotic  treated

patients in the hospital has the stronger effect, stressing the importance of a precision-

prescribed  antibiotic  therapy  (44).  The  role  of  increasing  rates  of  hospital  cross-
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colonization  also  influences  the  rise  of  resistance,  but  this  effect  seems lower  than

expected, probably because higher transmission rates also assures transmission of the

more susceptible antibiotic populations, a kind of “washing out” process of resistance,

as the one that occurs when the community-hospital flow increases (16). The model also

predicts that the “amount” of bacteria transmitted between hosts favors the ascent of

antibiotic  resistance.  We  considered  another  frequently  overlooked  factor:  the

consequences  of  “intensity”  (aggressiveness)  of  the  antibiotic  therapy,  because  of

frequent dosage and particularly in terms of its ability to reduce the colonic microbiota,

and therefore “colonization resistance” for resistant opportunistic pathogens (47). 

Precise  data  are  not  always  easy  to  obtain,  and  the  type  of  mathematical  or

computational  models  should  influence  the  results  of  predictions  (48).  However,

because of the functional analogy of membrane computing with the biological world,

we hypothesize  that  the  trends  revealed  in  our  computational  model  reflect  general

processes in the evolutionary biology of antibiotic resistance. If the model were fed with

objective  data  extracted  from a real  landscape  (which will  be possible  with  a  user-

friendly  interface),  it  could  provide  a  reasonable  expectation  of  the  potential

evolutionary trends in this  particular environment  and could support the adoption of

corrective  interventions  (49).  Validation  of  this  computational  model  is  the  next

necessary step; to this goal, we are developing an “experimental epidemiology” model

where the parameters could be altered and measured (50), and also planning prospective

hospital-based observations. 

Finally, we would like to stress that the type of membrane-computing model that was

applied in this work can be easily escalated or adapted to a variety of applications in

systems biology (51,52),  and particularly  to  understand complex ecological  systems

with nested hierarchical structures and involving microorganisms (53). 
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Material and Methods

Software implementation and computing model. All computational simulations were

performed  using  an  updated  version  of  ARES  (Antibiotic  Resistance  Evolution

Simulator),  which  is  the  software  implementation  of  a  P  system  for  modeling  of

antibiotic  resistance  evolution  (8).  This  P  system  model  works  with  objects  and

membranes distributed in different regions organized in a tree-like structure, as the P

system classic model, but now with more specific rules: the “object rules” can modify

an  object  (evolution  rules)  or  move the  object  out,  in,  or  between membranes,  the

“membrane rules” can move membranes out, in, or between regions that contain them

as  “object  rules”  and can  dissolve  and duplicate  membranes.  When a  membrane  is

dissolved  all  the  membranes  and  objects  inside  disappears.  For  duplication  we can

define  which  objects  will  be  duplicated  and  which  ones  will  be  distributed;  the

membranes  are  always  distributed.  The  implementation  of  our  P  system  uses  a

stochastic to apply the rules, the rules being ordered by priorities and each rule has a

“probability” to be applied. Other computational objects can be introduced, either to tag

particular  membranes,  or  to  interact  with  the  embedded  membranes,  for  instance

mimicking antibiotics, according to a set of pre-established rules and specifications. We

obtain an evolutionary scenario including several types of nested computing membranes

emulating entities such as: i) resistance genes, located in the plasmid, other conjugative

elements  or  in  the  chromosome;  ii)  plasmids  and  conjugative  elements  transferring

genes  between  bacterial  cells;  iii)  bacterial  cells;  iv)  microbiotas  where  different

bacterial species and subspecies (clones) can meet; v) hosts containing the microbiotic

ensembles;  vi) environment(s) where the hosts are contained. The current version of

ARES  (2.0)  that  can  be  freely  downloaded  at  https://sourceforge.net/projects/ares-

simulator/.   ARES 2.0 runs in any computer (is a java application) albeit it is highly
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recommendable to install it in at least a 4× 6 Core Server and 128 GB of RAM. The

original ARES web site at http://gydb.org/ares offers sections with information about

the rules and parameters currently used by ARES. 

Anatomy  of  the  model  application.  The  current  application  of  the  model  was

structured  accordingly  with  the  following  composition:  1)  compartments  containing

individual  hosts  at  particular  densities,  mimicking  a  hospital  (H)  and  a  community

environment  (C);  flux of  individuals  between both  compartments  occurs  at  variable

rates,  mimicking  admission  or  discharge  from  the  hospital.  2)  clinically  relevant

bacterial populations colonizing these hosts, from the species, Ec, Escherichia coli; Ef,

Enterococcus faecium; Kp, Klebsiella pneumoniae), and Pa, Pseudomonas aeruginosa.

These populations  diversify from their  initial  phenotype by acquisition  of mutations

and/or mobile genetic elements, plasmids PL1 and for Ec, Kc, Pa circulating in these

species, or, in Ef, conjugative elements (CO1). The cell can maintain two copies of the

plasmid PL1 (containing resistance to AbA (PL1-AbAR) or AbC (PL1-AbCR) but not

more, so that when a third plasmid PL1 enters the cell, one of the three is stochastically

removed.  AbCR produces  some degree  of  resistance  to  AbA,  and we consider  this

antibiotic also selects, in 10% of the cases, cells containing the plasmid PL1-AbCR.

CO1 is an Ef “plasmid-like” mechanism of transfer of chromosomal gene AbAR (CO1-

AbAR); a single copy of CO1-AbAR exist in the receiving host. Acquired resistance

(not  intrinsic)  to  AbA (AbAR)  is  mediated  by  the  acquisition  of  PL1  (or  CO1),

resistance  to  AbC (AbCR),  by  acquisition  of  PL1  containing  the  AbCR resistance

determinant, and resistance to AbF (AbFR) by mutation. Note that our representations,

for example, when Ec0 (susceptible) receives PL1 with AbAR it becomes EcA, if PL1

with AbCR becomes Ec2C, and when Ec0, Ec1 or Ec2 mutate to AbFR become EcF,
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EcAF3, and EcCF. The acquisition of PL1 with AbAR by EcCF or PL1 with AbCR by

EcAF produces the multi-resistant strain EcACF. 

Quantitative structure of the basic model application. 

Hospitalized  hosts  in  the  population.  The  number  of  hosts  in  the  hospital  and

community environments reflects an optimal proportion of 10 hospital beds per 1,000

individuals in the community (https://data.oecd.org/healtheqt/hospital-beds.htm). In our

model,  the  hospital  compartment  has  100  occupied  beds,  and  corresponds  to  a

population of 10,000 individuals in the community. 

The  admission  and  discharge  rates  from  hospital are  equivalent,  3-10

individuals/10,000  population/day  (http://www.cdc.gov/nchs/data/nhds/  1general/).  In

the basic model, 6 individuals from the community are admitted to the hospital and 6

are discharged from the hospital to the community per day (approximately at 4 hour-

intervals). Patients are stochastically admitted or discharged, meaning that about 75% of

the patients stay in the hospital between 6 and 9 days.

The bacterial colonization space of the populations of the clinical species considered

here (Table 1) and other basic colonic microbiota populations is defined as the volume

occupied  by  these  bacterial  populations.  In  natural  conditions,  the  sum  of  these

populations was estimated in 108 cells per ml of the colonic content. Clinical species

constitute only 1% of the cells in each ml, and have a basal colonization space of 1% of

each ml of colonic content, 0.01 ml. In the next section is explained how these spaces

are considered for counting populations in the model. 

The ensemble of other microbiota populations is considered in our basic study model as

an ensemble surrounded by a single membrane. The colonic space occupied by these

populations  can change because of antibiotic  exposure.  Along a treatment  course (7
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days) the antibiotics AbA, AbC, and AbF reduce the intestinal microbiota 25%, 20%

and 10% respectively.  As an example,  if  we consider that  10% of the basic colonic

populations were eliminated by antibiotic exposure, their now empty space (0.1 ml),

will  be  occupied  by  antibiotic  resistant  clinical  populations,  and  by  the  colonic

populations that have survived the challenge. In the absence of antibiotic exposure, the

colonic populations are restored in two months to their original population size. Clinical

populations are comparatively faster in colonizing the empty space.

Populations’ operative  packages  and  counts.   To  facilitate  the  process  of  model

running, we consider that 108 cells in nature is equivalent to 106 cells in the model. In

other words, one “hecto-cell” (h-cell) in the model is an “operative package” of 100

cells in the real world.  Because of the very high effective population sizes in bacteria,

these 100 cells are considered as a uniform population of a single cell type. A certain

increase in stochasticity might occur because of using h-cells; however, run replicates

do not differ significantly (fig SM1). Also for computational efficiency, we considered

that  each  patient  (in  hospital)  or  individual  (in  the  community  compartment)  is

represented in the model by 1 ml of its colonized colonic space (about 3,000 ml) and is

referred as a “host-ml”. Consequently, in most of the figures we represent our results as

“number of h-cells in all hosts-ml". 

Quantitative distribution of clinical  species  and clones.  In the basal  scenario,  the

distribution of species in these 1,000,000 cells, contained in 1 ml, is the following: for

EC, 860,000 cells, including 500,000 susceptible cells, 250,000 containing PL1-AbAR,

100,000  with  the  AbFR  mutation,  and  10,000  with  both  PL1-AbAR  and  AbFR

mutation;  for  EF,  99,500 AbA susceptible  and 20,000 AbAR. For  KP,  20,000,  with

chromosomal AbAR, PL1-AbCR and AbFR; and PA, 500 containing PL1-AbCR. At

time 0, this distribution is identical in hospitalized and community patients. 
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Tagging starting clone populations in  E. coli. To be able to follow the evolution of

particular  lineages  inside  E.  coli,  four  ancestral  clones  (Ecc)  were  distinguished,

differing in the original resistance phenotype, Ecc0 as a fully susceptible clone, EccA

harboring PL1 determining AbAR, EccF harboring AbFR, and with EccAF with PL1-

AbAR,  and AbFR (Table  1).  At  time  0  each  one  of  these  clones  is  tagged  with  a

distinctive “object” in the model which remains fixed to the membrane, multiplies with

the  membrane,  and  is  never  lost.  Each  one  of  the  daughter  membranes  along  the

progeny can alter its phenotype by mutation or lateral gene acquisition, but the ancestral

clone will remain detectable.

Multiplication  rates.  We  consider  the  basal  multiplication  rate  (=1)  the  one

corresponding to Ec0, where each bacterial cell gives rise to two daughter cells every

hour.  Comparatively,  Ef=0.85, Kp=0.9,  and Pa=0.15. The acquisition  of a  mutation,

plasmid  of  a  mobile  element  imposes  an  extra  cost  of  0.03.   Therefore,  Ec0=1,

EcA=0.97 (because of the cost of PL1-AbAR), EcC=0.97 (cost of PL1-AbCR), EcF=

0.97 (cost of mutation); EcAF=0.94 (PL1-AbAR and AbFR), Ef(1)=0.85, Ef(2)=0.79

(CO1-AbAR and AbFR), Kp=0.84 (PL1-AbAR and AbFR), and Pa with PL1-AbCR

=0.12 (PL1-AbCR). The number of cell  replications will be limited by the available

space (see above).

Transfer of bacterial organisms from one host to another one is expressed by the

proportion  of  individuals  that  can  stochastically  produce  an  effective  transfer  of

commensal or clinical, susceptible or resistant bacteria to another one (contagion index,

CI). If contagion is 5%, or CI=5, that means that from 100 patients, 5 “donors” transmit

bacteria to 5 others “recipients” per hour. In the case of the basic scenario, CI=5 in the

hospital and CI=1 in the community (all results with CI=0.01 are available on request).

In  the  basic  scenario,  donors  contribute  to  the  colonic  microbiota  of  recipient
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individuals  with  0.1,  0.5  and  1%  of  their  own  bacteria.  This  inoculum  does  not

necessarily  reflect  the  number  of  cells  transferred,  but  also  reflects  endogenous

multiplication  after  transfer,  as  proposed in  other  models  (54).   In  any case,  cross-

transmission is responsible for most new acquisitions of pathogenic bacteria (55).

Frequency of plasmid transfer between bacteria occurs randomly and reciprocally at

an equivalent high frequency among Ec and Kp; in the basic model, the rate is 0.0001,

one effective transfer occurring in 1 of 10,000 potential recipient cells. Plasmid transfer

occurs  at  a  lower  rate,  of  0.000000001  in  the  interactions  of  Ec  and  Kp  with  Pa.

Conjugative-elements) mediated transfer of resistance among Ef occurs at a frequency

of 0.0001, but Ef are unable to receive or donate resistance genes to any of the other

bacteria considered. In the case of Ec and Kp plasmids we consider plasmid limitation

in the number of accepted plasmids, so that if a bacterial cell with two plasmids receives

a  third  plasmid,  there  is  a  stochastic  loss  of  one  of  the  residents  or  the  incoming

plasmid, but all three cannot coexist in the same cell. 

Mutational  resistance  is  only  considered  in  the  present  version  of  the  model  for

resistance  to  AbF,  fluoroquinolones.  Organisms  of  the  model-targeted  populations

mutate to AbF at the same rate, 1 mutant every 108 bacterial cells per cell division.

Antibiotic  exposure.  In  the  basic  model,  5%-10%-20%  of  the  individuals  in  the

hospital  compartment  are  under  antibiotic  exposure each day,  each individual  being

exposed (treated) for 7 days. In the community compartment 1.3 % of individuals are

under treatment, also exposed each of them to antibiotics for 7 days. Antibiotics AbA-

AbC-AbF  are  used  in  hospital  and  the  community  compartments  at  a  proportion

(percentage) of 30-40-30; and 75-5-20 respectively. In the basic scenario a single patient

treated with only one antibiotic, administered every 8 hours. 
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Intensity of the effect of antibiotics on susceptible clinical populations.  After each

dose administered, all three (bactericidal) antibiotics induce after a decrease of 30% in

the susceptible population after the first hour of dose exposure, and 15% in the second

hour.   These  relatively  modest  bactericidal  effects  reflect  the  reduction  in  antibiotic

killing  rates  of  clinical  populations  when  inserted  in  the  colonic  microbiota.  The

antibiotic stochastically penetrates in these percentages of bacterial cells, and those that

are susceptible are removed (killed).  Therapy is maintained in the treated individual

along 7 days.

Intensity of the effect of antibiotics on colonic microbiota. Antibiotics exert an effect

reducing the density of the colonic commensal microbiota, resulting in free-space and

nutrients that can benefit the clinical populations. In the basic model, such reduction is

25% for AbA, 20% for AbC, and 10% for AbF. 
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Figure Legends

Figure 1. Dynamics of bacterial resistance phenotypes in E. coli. Pink, susceptible; red,

AbAR (AMP); violet, AbFR (FLQ); brown, AbAR and AbFR; light blue, AbAR and

AbCR; dark blue, AbAR, AbCR and AbFR; light green, AbCR; olive green, AbCR and

AbFR. In ordinates, number of hecto-cells (h-cells, packages of 100 identical cells) in

all hosts-ml (each host represented by 1 ml of colonic content); in abscissa, time (1000

steps, roughly equivalent to 42 days). 

Figure 2. Comparative  dynamics of  E. coli phenotypes  in the hospital  (A),  and the

community (B); axes and color code, as in Fig 1. Species dynamics in the hospital (C)

and the community  (D):  E.  coli (black),  K. pneumoniae (yellow green),  E.  faecium

AbAS (violet), and E. faecium AbAR (dark green).  P. aeruginosa is not visible in this

representation (low numbers).

Figure  3.  Influence  of  baseline  E.  coli resistance  phenotypes  composition  on  the

dynamics of bacterial species. On the left, comparative dynamics of E. coli phenotypes

in the basic hospital scenario (up) and with reduced numbers of resistant phenotypes

(down). Colors and axes, as in Fig. 1. On the right, comparative dynamics of bacterial

species in the basic model (up), and the reduced basal resistances (down); colors as in

Fig 2. 

Figure  4.  Single  clone  E.  coli dynamics  in  the  hospital:  influence  of  baseline

resistances.  In  pink,  clone  Ecc0 starting  with  full  susceptibility,  in  red,  with  AbAR

(EccA); in violet, with AbFR (EccF)); in brown, with AbAR and AbFR (EccAF).

Figure 5. Dynamics of a plasmid and resistance traits in the hospital environment. The

species  E. coli,  K. pneumoniae and  P. aeruginosa are included as a genetic exchange
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community. In blue, total number of the plasmid PL1; in bright red, plasmid PL1 with

the gene AbAR (AMP); in green, PL1 with AbCR (CTX); in violet, chromosomal AbFR

(FLQ) gene; in red-brown, chromosomal AbAR (as in  K. pneumoniae). In ordinates,

number of plasmids or resistance traits in h-cells (packages of 100 identical cells) in all

hosts-ml (each host represented by 1 ml of colonic content).

Figure 6. Influence of  patients’ flow between hospital  and community.  On the left,

influence on E. coli resistance phenotypes in the hospital when one patient is admitted

at/discharged from the hospital every 2 (top), 4 (middle), or 8 hours (bottom).  

Figure 7. Influence of the frequency of patients treated with antibiotics. On the left, E.

coli phenotypes when 20% (up), 10% (mid) or 5% (down) of patients receive antibiotics

during a week, three doses per day. In the right part, effect on bacterial species. Colors

as in Figs 1 and 2.

Figure  8.   Influence  of  the  frequency  of  bacterial  cross-transmission  rates  in  the

hospital. On the left, dynamics of E. coli phenotypes when bacterial exchanges between

patients  occur  in  5% (up)  or  20% (down)  per  hour.  A subtractive  representation  is

provided below (5 vs. 20%). On the right, influence on the species composition: 5%

(up), and 20% (down). Colors as in Figs 1 and 2.

Figure 9. Influence of the activity of the antibiotic on E. coli phenotypes (left) and the

species composition (right). Upper panels, susceptible bacteria are eliminated 30% after

the  first  hour  of  exposure and 15% after  the  second hour;  in  the lower  panels,  the

elimination is lower, 7.5% the first hour and 3.75% the second hour. Colors as in Figs 1

and 2.

Figure 10. Influence of the intensity of the antibiotic effect on colonic microbiota of

patients  in the hospital.   On the left,  effects  on  E. coli phenotype of a reduction in
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microbiota of 25% for AbA, 20% for AbC, and 10% for AbF (upper panel); these values

were reduced to 10%, 5% or 2% respectively (lower panel). The effects on the species

composition is shown at the right side.

Figures (Supplementary material)

Figure  SM1.  Three  consecutive  model  iterations,  in  the  three  panels  of  the  figure,

representing the dynamics of E. coli resistance phenotypes in the hospital compartment.

As the model include several stochastic and probabilistic steps, the results obtained are

not entirely identical in replicated runs of the program. However, there are extremely

close. 

Figure SM2. Dynamics of E. coli clones starting with different resistance phenotypes in

the hospital  compartment.  On the left  half,  from top to down, Ecc0 starting without

resistance, EccA starting with AbAR; EccF starting with AbFR, and EccAF with AbAR

and  AbFR.  On the  right  half  of  the  figure,  the  same  in  logarithmic  representation,

allowing to perceive minority phenotypes. 

Figure SM3. Dynamics of K. pneumoniae (top), susceptible E. faecium Ef(1) (middle)

and  Ef(2)  AbAR  (bottom)  in  the  hospital  and  community  (left  and  right  columns

respectively).  Figure SM4. Influence of the size of transmitted bacterial load. On the

left  half  of the figure,  E. coli phenotypes  dynamics  in the hospital,  when the mean

transmitted bacterial load is equivalent to 0.1% (up), 0.5% (mid) or 1% (bottom) of the

colonic  microbiota.  On the  right  side,  evolution  of  the  different  species  with  these

transmission loads. Color codes as in Fig 1 and 2.
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Figure SM5. Expected dynamics of hospital-based  E. coli under the hypothesis that

AbCR might  provide:  0% of resistance  to  AbA (upper  panel),  10% (mid panel),  or

100% (lower panel). Colors as in Fig 1.
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