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Abstract

Accurate detection and localization for angiodysplasia lesions is an important problem in
early stage diagnostics of gastrointestinal bleeding and anemia. Gold-standard for an-
giodysplasia detection and localization is performed using wireless capsule endoscopy. This
pill-like device is able to produce thousand of high enough resolution images during one
passage through gastrointestinal tract. In this paper we present our winning solution for
MICCAI 2017 Endoscopic Vision SubChallenge: Angiodysplasia Detection and Localiza-
tion its further improvements over the state-of-the-art results using several novel deep
neural network architectures. It address the binary segmentation problem, where every
pixel in an image is labeled as an angiodysplasia lesions or background. Then, we ana-
lyze connected component of each predicted mask. Based on the analysis we developed a
classifier that predict angiodysplasia lesions (binary variable) and a detector for their local-
ization (center of a component). In this setting, our approach outperforms other methods
in every task subcategory for angiodysplasia detection and localization thereby providing
state-of-the-art results for these problems. The source code for our solution is made publicly
available at https://github.com/ternaus/angiodysplasia-segmentation

1. Introduction

Angiodysplasia (AD) is the most common vascular lesion of the gastrointestinal (GI) tract
in the general population (Foutch et al., 1995). This condition may be asymptomatic, or
it may cause gastrointestinal bleeding or and anemia (Regula et al., 2008). Small bowel
angiodysplasia may account for 30-40% of cases of GI bleeding of obscure origin (OGIB).
In a retrospective colonoscopic analyses study, it was shown that 12.1% of 642 persons
without symptoms of irritable bowel syndrome (IBS), and 11.9% of those with IBS had
colonic angiodysplasia (Akhtar et al., 2006). In patients older than 50 years, small bowel
AD is the most likely reason of OGIB (Sidhu et al., 2008). Liao et al. (2010) performed
a systematic review of all original articles relevant to wireless capsule endoscopy (WCE)
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Figure 1: Sample images from the training set for Angiodysplasia detection and localization
challenge (MICCAI 2017 Endoscopic Vision Challenge). The upper row corre-
sponds to normal images. In the middle row the images contain angiodysplasia
area represented as red spots. The down row contains masks for angiodysplasia
from the middle row.

for the evaluation of patients with small bowel signs and symptoms published between
2000 and 2008. A total of 227 studies involving 22 840 procedures were included. OGIB
(overt and occult) was the most common indication (66.0%) and AD was the most common
cause (50.0%) of bleeding in those patients. In another study, small bowel AD lesions were
the most common cause (35%) of severe lifethreatening overt OGIB (Lecleire et al., 2012).
Lesions are often multiple, and frequently involve the cecum or ascending colon, although
they can occur at other places (Sami et al., 2014).

The diagnosis of a vascular anomaly can be based upon endoscopic findings, histologic
characteristics, or association with systemic diseases. Commonly used endoscopic modal-
ities for assessment of the small bowel include WCE, push enteroscopy, deep small bowel
enteroscopy [doubleballoon enteroscopy (DBE), singleballoon enteroscopy (SBE) and spiral
enteroscopy (SE)] or intraoperative enteroscopy (Sami et al., 2014). Wireless capsule en-
doscopy (see Fig.2) is the preferred firstline investigation for the small bowel in the context
of GI bleeding as it is safe, acceptable and has significantly higher or at least equivalent
yield for lesions when compared with other, more invasive modalities like push enteroscopy,
mesenteric angiography and intraoperative enteroscopy (Triester et al., 2005; Marmo et al.,
2005). Last generation of these pill-like devices can produce more than 60 000 images
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with a resolution of approximately 520× 520 pixels. However, only 69% of angiodysplasias
are detected by gastroenterologist experts during the reading of WCE videos, and blood
indicator software (provided by WCE provider like Given Imaging), in the presence of an-
giodysplasias, presents sensitivity and specificity values of only 41% and 67%, respectively
(MICCAI 2017 Endoscopic Vision Challenge). Therefore, there is a compelling need to im-
prove accuracy of AD detection and localization for clinical practice. In this work we apply
modern deep learning techniques for automatic detection and localization of angiodysplasia.

There is a number of computer vision-based methods developed for the video capsule en-
doscopy analysis (Iakovidis and Koulaouzidis, 2015), including rule-based and conventional
machine learning algorithms that are applied to extracted color, texture, and other features
(Mackiewicz et al., 2008; Karargyris and Bourbakis, 2010; Szczypiski et al., 2014). Recently,
deep learning-based approaches demonstrated performance improvements over conventional
machine learning methods for many problems in biomedicine (Ching et al., 2018; Kalinin
et al., 2018). In the domain of medical imaging, convolutional neural networks (CNN) have
been successfully used, for example, for breast cancer histology image analysis (Rakhlin
et al., 2018), bone disease prediction (Tiulpin et al., 2018) and age assessment (Iglovikov
et al., 2017b), and other problems (Ching et al., 2018). In the analysis of video capsule
endoscopy, deep learning has recently demostrated promising results for polyp detection
(Tajbakhsh et al., 2015; Yuan and Meng, 2017; Byrne et al., 2017; Murthy et al., 2017).

In this paper, we present a deep learning-based solution for angiodysplasia lesions seg-
mentation from video capsule endoscopy that achieves state-of-the-art results in both binary
and multi-class setting. We used this method to produce a submission to the MICCAI 2017
Endoscopic Vision SubChallenge: Angiodysplasia detection and localization (MICCAI 2017
Endoscopic Vision Challenge) that placed first, winning the competition. Here we describe
the details of that solution based on a modification of the U-Net model (Ronneberger et al.,
2015; Iglovikov et al., 2017a). Moreover, we provide further improvements over this solution
utilizing recent deep architectures: TernausNet (Iglovikov and Shvets, 2018) and AlbuNet
(Shvets et al., 2018). To our knowledge this is first paper that try to examine angiodysplasia
detection and localization using deep learning tools as a results it will serve as state of the
art for other investigators.

Figure 2: A wireless capsule endoscope (WCE): (1) Optical Dome, (2) Lens holder,(3) Lens,
(4) Illuminating LEDs, (5) CMOS imager, (6) battery, (7) ASIC RF transmitter,
(8) Antenna. Source: http://www.yalemedicalgroup.org/news/ymg proctor.html
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2. Methods

2.1 Dataset description and preprocessing

A wireless capsule endoscope, is a disposable plastic capsule that weights 3.7g and measures
11mm in diameter and 26mm in length, Fig.2. Image features include a 140 degree field
of view, 1:8 magnification, 1 to 30mm depth of view, and a minimum size of detection of
about 0.1mm. The capsule is passively propelled through the intesine by peristalsis while
transmitting color images. Last generation of this device is able to acquire more than 60,000
images with a resolution of approximately 520× 520 pixels (Mishkin et al., 2006).

The dataset consists of 1200 color images obtained with WCE, Fig.2. The images are
in 24-bit PNG format, with 576× 576 pixel resolution. The dataset is split into two equal
parts, 600 images for training and 600 for evaluation. Each subset is composed of 300
images with apparent AD and 300 without any pathology. The training subset is annotated
by human expert and contains 300 binary masks in JPEG format of the same 576×576 pixel
resolution. White pixels in the masks correspond to lesion localization. Several examples
from the training set are given in Fig.1, where the first row corresponds to images without
pathology, the second one to images with several AD lesions in every image, and the last
row contains masks that correspond to the pathology images from the second row. In the
dataset each image contains up to 6 lesions and their distribution is shown in Fig.3 (left). As
shown, the most images contain only 1 lesion. In addition, Fig.3 (right) shows distribution
of AD lesion areas that reach the maximum of approximately 12,000 pixels with the median
value of 1,648 pixels.

Figure 3: Distribution of angiodysplasia lesions per image (left figure) and distribution of
lesions area (right figure) in the data set.
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Images are cropped from 576 × 576 to 512 × 512 pixels to remove the canvas and text
annotations. Then we rescale the data from [0...255] to [0...1] and standardize it following
the ImageNet scheme (Iglovikov and Shvets, 2018). For training and cross-validation we
only use 299 images annotated with binary masks that contain pathology. With those,
we randomly split the dataset into five folds of 60, 60, 60, 60, and 59 images. In order
to improve model generalization during training, random affine transformations and color
augmentations in HSV space are applied.

2.2 Model architecture and training

In this work we evaluate 4 different deep architectures for segmentation: U-Net (Ron-
neberger et al., 2015; Iglovikov et al., 2017a), 2 modifications of TernausNet (Iglovikov and
Shvets, 2018), and AlbuNet34, a modifications of LinkedNet (Chaurasia and Culurciello,
2017; Shvets et al., 2018).

In general, a U-Net-like architecture consists of a contracting path to capture context
and of a symmetrically expanding path that enables precise localization (for example, see
Fig.4). The contracting path follows the typical architecture of a convolutional network
with alternating convolution and pooling operations and progressively downsamples feature
maps, increasing the number of feature maps per layer at the same time. Every step in
the expansive path consists of an upsampling of the feature map followed by a convolution.
Hence, the expansive branch increases the resolution of the output. In order to localize,
upsampled features, the expansive path combines them with high-resolution features from
the contracting path via skip-connections (Ronneberger et al., 2015). The output of the
model is a pixel-by-pixel mask that shows the class of each pixel. We use slightly modified
version of the original U-Net model that previously proved itself very useful for segmentation
problems with limited amounts of data, for example, see (Iglovikov et al., 2017a,b). Our
winning submission to the MICCAI 2017 Endoscopic Vision SubChallenge: Angiodysplasia
detection and localization (MICCAI 2017 Endoscopic Vision Challenge) was produced using
this architecture.

As an improvement over the standard U-Net architecture, we use similar networks with
pre-trained encoders. TernausNet (Iglovikov and Shvets, 2018) is a U-Net-like architecture
that uses relatively simple pre-trained VGG11 or VGG16 (Simonyan and Zisserman, 2014)
networks as an encoder (see Fig. 4). VGG11 consists of seven convolutional layers, each
followed by a ReLU activation function, and five max polling operations, each reducing
feature map by 2. All convolutional layers have 3× 3 kernels. TernausNet16 has a similar
structure and uses VGG16 network as an encoder (see Fig.4).

In contrast, AlbuNet uses an encoder based on a ResNet-type architecture (He et al.,
2016). In this work, we use pre-trained ResNet34, see Fig.5. The encoder starts with the
initial block that performs convolution with a kernel of size 7×7 and stride 2. This block is
followed by max-pooling with stride 2. The later portion of the network consists of repetitive
residual blocks. In every residual block, the first convolution operation is implemented with
stride 2 to provide downsampling, while the rest convolution operations use stride 1. In
addition, the decoder of the network consists of several decoder blocks that are connected
with the corresponding encoder block. In this case, the transmitted block from the encoder
is added to the corresponding decoder block. Each decoder block includes 1×1 convolution
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Figure 4: Segmentation networks based on encoder-decoder architecture of U-Net family.
TernausNet uses pre-trained VGG16 network as an encoder Each box corresponds
to a multi-channel feature map. The number of channels is pointed below the
box. The height of the box represents a feature map resolution. The blue arrows
denote skip-connections where information is transmitted from the encoder to the
decoder.

operation that reduces the number of filters by 4, followed by batch normalization and
transposed convolution to upsample the feature map.

We use Jaccard index (Intersection Over Union) as the evaluation metric. It can be
interpreted as a similarity measure between a finite number of sets. For two sets A and B,
it can be defined as following:

J(A,B) =
|A ∩B|
|A ∪B|

=
|A ∩B|

|A|+ |B| − |A ∩B|
(1)

Since an image consists of pixels, the last expression can be adapted for discrete objects in
the following way:

J =
1

n

n∑
i=1

(
yiŷi

yi + ŷi − yiŷi

)
(2)

where yi and ŷi are a binary value (label) and a predicted probability for the pixel i,
correspondingly.

Since image segmentation task can also be considered as a pixel classification problem,
we additionally use common classification loss functions, denoted as H. For a binary seg-
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mentation problem H is a binary cross entropy, while for a multi-class segmentation problem
H is a categorical cross entropy.

The final expression for the generalized loss function is obtained by combining (2) and
H as following:

L = H − log J (3)

By minimizing this loss function, we simultaneously maximize probabilities for right pixels to
be predicted and maximize the intersection J between masks and corresponding predictions.
We refer reader to Iglovikov et al. (2017a) for further details. Each model is trained with
Adam optimizer (Kingma and Ba, 2014) for 10 epochs with learning rate 0.001, and then
for another 5 epochs with the learning rate 0.0001.

As an output of a model, we obtain an image, in which each pixel value corresponds to
a probability of belonging to the area of interest or a class. The size of the output image
matches the input image size. For binary segmentation, we use 0.3 as a threshold value
(chosen using validation dataset) to binarize pixel probabilities. All pixel values below the
specified threshold are set to 0, while all values above the threshold are set to 255 to produce
final prediction mask.

Following the segmentation step, we perform postprocessing in order to find the coor-
dinates of angiodysplasia lesions in the image. In the postprocessing step we use OpenCV

Figure 5: AlbuNet-34 uses pre-trained ResNet-34 as an encoder. It is different from Ter-
nausNet in that is adds skip-connections to the upsampling path, while Ternaus-
Net concatenates downsampled layers with the upsampling path (just like original
U-Net does)
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implementation of connected component labeling function: connectedComponentsWith-
Stats (Bradski, 2000). This function returns the number of connected components, their
sizes (areas), and centroid coordinates of the corresponding connected component. In our
detector we use another threshold to neglect all clusters with the size smaller than 300
pixels. Therefore, in order to establish the presence of the lesions, the number of found
components should be higher than 0, otherwise the image corresponds to a normal condi-
tion. Then, for localization of angiodysplasia lesions we return centroid coordinates of all
connected components.

3. Results

To test our prediction and compare it with known mask we performed calculations on an
image taken from the validation set. The exemplar result of the prediction is shown in
Fig.6. For a visual comparison we also provide the original image and its corresponding
mask. Given imperfect segmentation, this example does show that the algorithm sucessfully
detects angiodysplasia lesions. When there are few lesions in an image and they are well
separated in space, the detector performs almost very well. In case of many lesions that
somehow overlap in space, further improvements are required, specifically in choosing model
hyperparameters, to achieve better performance.

The quantitative comparison of our models’ performance is presented in the Table1. For
the segmentation task the best results is achieved by AlbuNet-34 providing IoU = 0.754
and Dice = 0.831. When compared by the inference time, AlbuNet is also the fastest
model due to the light encoder. In the segmentation task this network takes around 20ms

Figure 6: The prediction of our detector on the validation data image. Here, the first
picture correspond to original image, the second one to the training mask, the
last one to the predicted mask. Green dots inside the clusters corresponds to the
centroid coordinates that define a localization of the appropriate angiodysplasia.
For example, the real values for centroid coordinates are p1mask = (376, 144), p1pred
= (380, 143) for the first cluster and p2mask = (437, 445), p2pred = (437, 447) for
the second one.
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Table 1: Segmentation results. Intersection over Union (IoU) and Dice coefficient (Dice)
are in % and inference time (Time) is in ms.

Model IOU Dice Time

U-Net 73.18 83.06 30
TernausNet-11 74.94 84.43 51
TernausNet-16 73.83 83.05 60

AlbuNet-34 75.35 84.98 21

for 512× 512 pixel image and more than three times as fast as TernausNets. The inference
time was measured using one NVIDIA GTX 1080Ti GPU.

4. Conclusions

We present deep learning-based segmentation and detection algorithms for angiodyspla-
sia lesions localization in video capsule endoscopy. This study compares U-Net network
architecture with its improved modifications that use custom pretrained encoders. Sub-
sequent postprocessing based on the analysis of connected components is used to fur-
ther refine predictions. Our approach shows quite good results on the validation. To
the best of our knowledge, this study presents the first attempt in appllication of con-
volution neural networks for the problem of angiodysplasia lesion detection and classifi-
cation. We demostrate state-of-the-art results in the MICCAI 2017 Endoscopic Vision
SubChallenge: Angiodysplasia Detection and Localization. These results can be further
improved by more accurate hyperparameter tuning as well as better postprocessing of con-
nected components. Our code is available as an open source project under MIT licence at
https://github.com/ternaus/angiodysplasia-segmentation.
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