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ABSTRACT 

Genomic  data  allow  an  in-depth  and  renewed  study  of  local  adaptation.  The  red  coral

(Corallium  rubrum,  Cnidaria)  is  a  highly  genetically  structured  species  and  a  promising

model for the study of adaptive processes along an environmental gradient. Here, we used

RAD-Sequencing in order to study the vertical genetic structure of this species and to search

for signals of local adaptation to depth and thermal regime in the red coral. Previous studies

have shown different thermotolerance levels according to depth in this species which could

correspond to genetic or environmental differences. We designed a sampling scheme with six

pairs of 'shallow vs deep' populations distributed in three geographical regions as replicates.

Our results showed significant differentiation among locations and among sites separated by

around 20 m depth. The tests of association between genetics and environment allowed the

identification  of  candidate  loci  under  selection  but  with  a  potentially  high  rate  of  false

positive. We discuss the methodological obstacles and biases encountered for the detection of

selected loci in such a strongly genetically structured species. On this basis, we discuss the

significance of the candidate loci for local adaptation detected in each geographical region

and the evolution of red coral populations along environmental gradients. 

INTRODUCTION

The study of the mechanisms of adaptation of species to their local environment is of great

interest in evolutionary biology. The interaction between between environmental conditions,

biological traits and evolutionary factors (selection, drift, migration and mutation) will shape
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the relative importance of genetic and plastic responses for each species facing heterogeneous

environmental conditions. If selection is predominant, and if the environmental gradient is

persistent for an extended period of time, each local population exposed to local selection

could  become  genetically  adapted  to  the  corresponding  local  environment  (Kawecki  and

Ebert,  2004;  Gagnaire  and  Gaggiotti,  2016).  An  organism  can  also  cope  with  local

environmental  conditions  via  plasticity  or  acclimatization,  whereby  a  given  genotype

develops during its lifetime morphological or physiological responses  (DeWitt  et al., 1998;

Pigliucci, 2001). Although particular situations favoring local adaptation or acclimatization

are documented, it is often difficult to disentangle the effects of these two mechanisms and

establish  their  relative  contributions  to  adaptability  (Palumbi  et  al.,  2014).  In  addition,

understanding these mechanisms has a fundamental interest in the current context of climate

change for improving predictive models and proposing management strategies (Mumby et al.,

2011; Gagnaire and Gaggiotti, 2016).

Apart from natural selection, gene flow is a key factor in the evolution of adaptive processes.

It  can hinder local adaptation through the input in a population of potentially maladapted

individuals (migration load; Lenormand, 2002). Conversely, several theoretical studies have

shown that gene flow can counteract the effects of genetic drift and promote local adaptation

(Hastings and Rohlf, 1974; Felsenstein, 1975; Slatkin and Maruyama, 1975; Nagylaki, 1978;

Alleaume-Benharira et al., 2006). The use of high throughput sequencing renewed the study

of  local  adaptation.  Various  bottom  –  up approaches  are  now  available  to  study  local

adaptation  through  the  identification  signals  of  selection  along  the  genome  (Barrett  and

Hoekstra, 2011). In the marine realm, such studies have been conducted at very large scale on
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highly dispersive teleost species  (Bradbury  et al., 2010; Limborg  et al., 2012; Wang  et al.,

2013;  Milano  et  al.,  2014;  Bernardi  et  al.,  2016;  Guo  et  al.,  2016),  and  on  benthic

invertebrates with a highly dispersive,  planctonic larvae stage  (Chu  et al.,  2014; Bay and

Palumbi, 2014; Araneda et al., 2016; Benestan et al., 2016). Marine species with high genetic

structure are less frequent than more dispersive ones, and genomic studies of local adaptation

in such species are still scarce (see Bongaerts et al., 2017 for a recent example). The study of

local  adaptation  in  a  context  of  high  genetic  structure  may  also  be  difficult  from  a

methodological point of view: high average  FST values can lead to a high number of false

positives in outlier tests for the detection of selection by the corresponding increase in the

variance of FST values (Bierne et al., 2013; Hoban et al., 2016). Furthermore, in a context of

high average genomic differentiation,  it  could be difficult  to  identify selected loci  with a

higher differentiation than expected under the neutral model. Finally, if genetic drift is strong,

it can generate outlier loci with apparent correlation with an environmental variable outside

any  selective  effect  (Kawecki  and  Ebert,  2004;  Hofer  et  al.,  2009;  Coop  et  al.,  2010).

Therefore the empirical study of local adaptation in such situation remains often challenging

and with few empirical data in the marine realm.

Marine  coastal  environments  offer  particularly  interesting  conditions  for  studies  of  local

adaptation,  because of the gradual changes in environmental conditions along coastline at

small scale, the more or less gradual vertical changes from shallow to deep water and the

patchy  distribution  of  contrasted  habitats  at  different  scales  (Sanford  and  Kelly,  2011;

Lundgren  et  al.,  2013;  Wrange  et  al.,  2014).   This  interest,  promoted  studies  of  local

adaptation in coastal ecosystems  (Ayre, 1995; Ulstrup and Van Oppen, 2003; Smith et al.,
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2007; Sherman and Ayre, 2008; Barshis  et al., 2010; Bongaerts  et al., 2011; Barshis  et al.,

2013; Lundgren  et al., 2013; Kersting  et al., 2013; Haguenauer  et al., 2013; Ziegler  et al.,

2014; Palumbi et al., 2014; Bay and Palumbi, 2014; Ledoux et al., 2015; Pivotto et al., 2015;

Jin et al., 2016; Bongaerts et al., 2017). Studying the genetic basis of local adaptation and the

connectivity between habitats, could also give some information on the response to climate

change (e.g. Bongaerts et al., 2017). In this context genome scans are powerful approaches to

explore adaptive processes in natural populations (Manel et al., 2016).

The  red  coral  (Corallium  rubrum)  is  an  asymbiotic  (without  Symbiodinium) temperate

octocoral distributed from 5 to 1016 m depth in the Mediterranean sea and the near Atlantic

(Boavida et al., 2016; Knittweis et al., 2016). It is a sessile and long-living species (more than

100 years), with low growth and recruitments rates (Marschal et al., 2004; Santangelo et al.,

2012). The study of a few microsatellite loci has demonstrated a strong genetic structure in

this species (Ledoux et al., 2010a; Ledoux, et al., 2010b). The shallowest populations, above

the seasonal thermocline, are exposed to high maximum temperatures and to frequent and

intense thermal fluctuations in summer (Haguenauer et al., 2013). The intensity and frequency

of extreme thermal events decrease with depth, and the deepest populations are exposed to

stable thermal regimes. Since the observation of mass mortality events affecting this species

during thermal anomalies in 1999 and 2003, the thermotolerance of the red coral has been

intensively studied in the region of Marseille (France; Garrabou et al., 2001, 2009). Common

garden experiments highlighted differences in polyp activities, calcification rate, necrosis rate

and expression of HSP70 between shallow and deep individuals (10 or 20 m compared to 40

m depth) facing thermal stress (Torrents et al., 2008 ; Ledoux et al. 2015; Haguenauer et al.,
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2013). Transcriptomes of individuals from 5 and 40 m were compared and several genes were

detected  as  differentially  expressed  without  the  application  of  any stress  (Pratlong  et  al.,

2015). These results suggested the possibility of local adaptation to depth in this species, but

the possibility of environmental effects could not be excluded.

Together, these studies highlighted phenotypic differences in thermotolerance levels between

individuals from different depths in Marseille, with shallower individuals more tolerant than

deeper ones. Nevertheless we still  do not know if these differences are the result of local

adaptation or of individual acclimatization, or both. Previous works on this species enabled us

to have a precise idea of the geographic scale at which local adaptation may occur, and were

useful to optimize our sampling design. Because populations from different regions may have

evolved similar responses to thermal stress, through similar or different genetic basis, it is

interesting to investigate local adaptation in pairs of 'shallow vs deep' populations exposed to

contrasted thermal regimes in distinct geographical regions (Jones et al., 2012; Hoban et al.,

2016). Finally, the study of the genetic structure of this species would be useful to better

understand the potential  role of deeper populations in reseeding shallower ones following

disturbances (Bongaerts et al., 2017).

Here we applied Restriction site Associated DNA sequencing (RAD-Seq) to individuals from

pairs of 'shallow vs. deep' populations in three geographical regions of the Mediterranean Sea.

The goal of this study was to characterize the neutral and adaptive genomic variation in this

species  and  to  test  the  possibility  of  local  adaptation  to  depth  through  a  genome  scan

approach. Our results enable us to discuss the neutral genetic structure of the red coral. Then

we highlight the methodological obstacles expected in the detection of local adaptation in this
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context. Finally, we discuss the robustness of the candidates of local adaptation detected in

each geographical region. 

MATERIAL AND METHODS

Sampling and DNA extraction 

Corallium rubrum colonies were collected by scuba diving at two depths of two sites in three

geographical  regions  (Marseille,  Banyuls,  Corsica)  between  February  and  August  2013

(Fig. S1,  Table 1).  Red coral  populations from these three regions correspond to different

genetic  clusters  according  to  microsatellites  (Ledoux et  al.,  2010b) and  RAD-Seq  (see

results). The two depths of each site presented contrasted thermal regimes with higher mean,

maximum and standard deviation of temperature at shallower depths (surveys from March

2012 to October 2014; Table 2). Samples from the two depths at each site will be referred as

shallow and deep. The three geographical regions presented different annual  variations of

temperatures between the two studied depths: a difference of 3.8 °C between the maximum

observed at the two depths in Marseille, 1.7 °C in Corsica and 0.5 °C in Banyuls (Table 2).

Thirty individuals per site and depth were collected (total 360 individuals), preserved in 95 %

ethanol  and  stored  at  -20 °C  until  DNA extraction.  Total  genomic  DNA was  extracted

according to the protocol of Sambrook et al. (1989), followed by a purification using Qiagen

DNeasy blood and tissue spin columns (Qiagen). Genomic DNA concentration was quantified

using a Qubit 2.0 Fluorometer (Life Technologies).

RAD-Sequencing
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Twelve RAD libraries were prepared according to the protocol described in Etter et al. (2011),

with small modifications. Briefly, 1 µg of genomic DNA for each sample was digested using

high-fidelity PstI during 60 min at 37 °C. P1 adapters, with 4-6 bp individual barcodes were

then ligated to each sample using 0.5 µL of T4 DNA ligase (NEB), 0.5 µL of rATP 100 mM

(Promega),  1 µL of  DTT 500 mM (Promega),  1 µL of  10X T4  ligase  buffer  (NEB)  and

incubated during 60 min at 22 °C, 10 min at 65 °C and 1 min at 64 °C. Individual samples

were pooled by 32 (generally by location), sheared, size selected and P2-barcoded. Final PCR

for RAD-tags enrichment were performed with 16 cycles and primers dimers were removed

during  a  final  AMPure  Beads  Purification  (Agencourt).  Libraries  were  sequenced  on  an

Illumina HiSeq2000 using 100 bp single-end reads, at  the Biology Institute of Lille (IBL,

UMR 8199 CNRS) and at the MGX sequencing platform in Montpellier (France).

The STACKS pipeline (Catchen et al., 2011, 2013) was used for the loci  de novo assembly

and  genotyping.  Quality  filtering  and  demultiplexing  were  performed  with  the

process_radtags module  with  default  parameters  which  enables  to  remove  any read  with

uncalled base and to perform a phred-33 quality filtering of raw reads. Exact-matching RAD

loci (putative orthologous tags) were individually assembled using ustacks with a minimum

depth  of  coverage  of  five  reads  per  allele  (m = 5)  and  a  maximum  of  five  nucleotide

mismatches  between  allele  (M = 5).  These  parameters  were  optimized during  preliminary

runs.  Cstacks was used to build a catalog of consensus loci from all individuals, with five

mismatches allowed between individuals  at  the same locus (n = 5).  Matches of individual

RAD loci to the catalog of loci were searched using sstacks. Finally, the population module

was used to obtain the loci that were successfully genotyped in at least 75 % of individuals
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from all populations. We observed an increase in the number of SNPs from position 86 bp to

91 bp and  we removed these  positions  from the  analysis  which  were  due  to  sequencing

problems. In order to filter for poor-quality SNPs and artifacts due paralogous sequences, we

used VCFtools (Danecek et al., 2011) to remove SNPs that were not at the Hardy-Weinberg

equilibrium within at least one of the 12 populations with a p-value threshold of 0.01. SNPs

with a minor allele frequencies below 0.01 were removed using VCFTools. Individuals with

more than 30 % of missing genotypes were discarded. Finally, only the first SNP of each

RAD locus was kept for further analysis. The whole dataset has been previously used for the

study of sex determinism in C. rubrum (Pratlong et al., 2017); we develop here the study of

genetic structure and local adaptation.

Diversity and neutral genetic structure

Global FIS over alleles and gene diversity were estimated using GENEPOP and ARLEQUIN

v.3.5 (Rousset, 2008; Excoffier and Lischer, 2010). The C. rubrum genetic structure was first

analyzed by principal component analysis (PCA) using the package adegenet in R (Jombart,

2008; R Core Team, 2016). This analysis was performed on the total dataset (12 populations)

and inside each of the three studied geographical regions (four populations in  each).  The

dataset was centered and missing data were replaced by the mean allele frequency for each

locus  (http://adegenet.r-forge.r-project.org/files/tutorial-basics.pdf).  In  a  second  step,  we

performed  a  Bayesian  population  clustering  implemented  in  the  program  STRUCTURE

v.2.3.4 (Pritchard et al., 2000; Falush et al., 2003, 2007; Hubisz et al., 2009). We performed

ten independent replicates from K = 1 to 10 with a burn-in of 50 000 and a number of MCMC
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iterations after  burn-in of 100 000,  with the model  allowing for  admixture and correlated

allele frequencies. We calculated the ∆K statistic of Evanno et al. (2005) to help in the choice

of the most appropriate number of genetic clusters but we also considered different K values.

We used CLUMPAK to summarize the STRUCTURE results from the ten independent runs

(Kopelman  et  al.,  2015).  The  global  and  pairwise  populations  FST and  exact  tests  for

population  differentiation  were  computed  with  GENEPOP  4.0.10  (Rousset,  2008).  The

correlation between the spatial  distance between the two depths  of  the same site  and the

corresponding  population  pairwise  FST was  tested  with  the  correlation  test  of  Spearman

implemented  in  R (R Core Team,  2016).  Finally,  we conducted  an analysis  of  molecular

variance  (AMOVA)  in  ARLEQUIN  v.3.5  (Excoffier  and  Lischer,  2010)  with  10 000

permutations. The hierarchy for this  analysis  was chosen to follow the three geographical

regions of our samples (Marseille, Corsica and Banyuls). This choice was justified by the

PCA on the overall dataset. Finally, we performed the PCA and FST calculation using a dataset

comprising only putatively neutral SNPs (without the SNPs detected as outliers by FST outlier

methods, see below).

Detection of local adaptation 

In order to search for loci potentially involved in local adaptation, we first used BayeScEnv

(Villemereuil  and  Gaggiotti,  2015).  This  method  identifies  FST outlier  loci  that  show  a

relationship  between  genetic  differentiation  and  environmental  differentiation.  Runs  were

performed using default parameters, except the number of pilot runs that was set at 40. The

maximal temperature recorded in each site was used as environmental variable (Table 2). We
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tested other descriptors of the thermal regime and we got similar results (data not shown). The

convergence  of  runs  was  checked  with  the  Gelman  and  Rubin's  diagnostic  using  the  R

package coda (Plummer et al., 2006). 

Second, we searched for FST outliers among red coral populations using ARLEQUIN v.3.5

(Hofer et al., 2009; Excoffier and Lischer, 2010). Because hierarchical genetic structures are

known to lead to a high number of false positives in the search of outlier loci (Hofer et al.,

2009), we performed this analysis independently in the three geographical regions in order to

down a level in the structure. With this method, a distribution of FST across loci as a function

of  heterozygosity  between  populations  is  obtained  by  performing  simulations  under  a

hierarchical island model (two depths in one site and two sites in one geographical region).

Outliers were identified as  loci  being in  the tails  of the generated distribution (p < 0.01).

Outliers detected by ARLEQUIN could be false positives or the result of a selective pressure

independent of depth. Therefore, we selected among these candidate loci, those linked with

depth  differentiation  by  searching,  inside  each  geographical  regions,  loci  with  significant

differences in genotypic frequencies between depths according to a Chi² test (p < 0.01). We

corrected the obtained p-values using a false discovery rate of 0.05 (Benjamini and Hochberg,

1995).

Finally, we used the R package pcadapt to search for outliers loci by taking into account

population  structure  and  individual  admixture  (Luu  et  al.,  2017).  This  method  is

recommended  in  cases  of  hierarchical  genetic  structure  for  a  better  control  of  the  false

positive  rate.  By  identifying  outliers  loci  linked  with  a  particular  principal  component,

pcadapt  enabled us  to  focus  on candidates  linked with our  biological  question.  From the
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pcadapt  analyses,  we  selected  outliers  candidates  linked  with  the  relevant  principal

components with a q-value cutoff of 0.01.

Functional annotation and enrichment tests

The RAD tags were aligned on the red coral transcriptome (Pratlong et al., 2015) using the

Burrows-Wheeler Alignment Tool (BWA; Li and Durbin, 2009). Blast2GO was used for the

annotation of resulting contigs and functional enrichment analysis (Conesa et al., 2005). First,

a  blastp was first  performed on the NCBI nr  database with an  e-value  threshold of  10-10

(Altschul et al., 1990). Then, Blast2GO retrieved Gene Ontology (GO) terms associated with

the obtained BLAST hits. Finally, in order to identify function potentially over-represented in

outliers, we performed an enrichment analysis using a Fisher's exact test corrected using a

false discovery rate of 0.05 (Benjamini and Hochberg, 1995).

 

RESULTS

RAD-Sequencing and genotyping

An average of 191 ± 21 millions of reads by library was obtained after sequencing. After the

demultiplexing and cleaning processes of the STACKS's process_radtags module, an average

of 180  ± 22 millions of reads by library was obtained. From these reads, we were able to

assemble  138 810  unique  consensus  RAD-tags  present  in  at  least  75 %  of  our  360

individuals. After all quality filter steps (Table 3), 27 461 SNPs were available. Finally, we

removed six individuals presenting more than 30 % of missing data (one individual from the

MEJ40 population, two from the BANN40 population, two from the GAL20 population and
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one from the GAL40 population). Our final dataset used for further analysis consisted in 359

individuals genotyped on 27 461 SNPs. 

Genetic diversity

Multilocus values of the FIS ranged between 0.005 (ELV12) and 0.065 (BANS40) (Table 4).

Gene diversity varied from 0.12 (GAL20) to 0.18 (all populations of Marseille) (Table 4).

Populations of Marseille had higher values of expected heterozygosity than populations from

Corsica and Banyuls (p = 0.02, Wilcoxon–Mann–Whitney test). 

Population structure analysis

The positioning of individuals with respect to the first two principal components reflected the

geographical and depth origin of the individuals (Fig. 1A). Individuals from Marseille and

from Banyuls formed two clear and homogeneous groups while individuals from the two sites

of  Corsica formed two different  groups with an important  distance  between them on the

second  axis.  The  first  PCA axis  explained  7.28  %  of  the  total  genotypic  variance  and

separated individuals from Marseille from individuals from Banyuls and Corsica. The second

axis explained 4.4 % of the total genetic variance and separated individuals from the Porto

site in Corsica from other individuals. The fifth axis of the PCA separated all individuals

according to their sex, independently from their geographical origin (Pratlong et al., 2017).

Concerning PCA inside geographical regions, individuals from the two sites of Corsica and

Marseille (north and south) were separated along the first axis (13.41 % and 6.74 % of the

total genetic variance respectively; Fig. 1B and 1C). The second axis (2.77 % of the total
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genetic variance) separated populations from the two depths of the two sites of Marseille. In

Corsica and Banyuls, no PCA axis showed clear association with depth. Individuals from the

two depths of the Galeria (GAL) site of Corsica were separated along the second axis (4.02 %

of the total genetic variance) but this was not the case for individuals from the two depths of

the Porto site (POR). Individuals from Banyuls showed much less structure than individuals

from Marseille and Corsica (Fig. 1D). The first axis (2.99 % of the total genetic variance)

separated individuals from the two sites (north and south). The second axis (2.46 % of the

total genetic variance) separated individuals according to their sex (Pratlong et al., 2017). The

PCA on the overall dataset and inside each geographical region gave similar results when only

putatively neutral SNPs were considered (Fig. S2).

The delta(K) criterion (Evanno et al., 2005) indicated K = 2 as the most informative number

of clusters for the STRUCTURE analysis. We present here the results for K =2 to K =4 which

captured the main information of the results (Fig. 2). In all cases, all clusters corresponded to

the main geographical boundaries and the two depths of each site always clustered together.

For K = 2, a clear separation between the Marseille regions and the Corsica / Banyuls regions

was observed, confirming the separation of populations along the first PCA axis (Fig. 1). The

clustering  at  K = 3  separated  the  three  geographical  regions  in  7/10  replicates,  and  the

remaining replicates grouped either one or the other Corsican sites with Banyuls populations

(Fig. S3). Finally, K = 4 separated the two Corsican sites.

The overall multilocus FST of the total dataset was 0.13. Pairwise FST values ranged from 0.01

(BANS20 vs BANS40, BANS20 vs BANN40 and BANN40 vs BANS40) to 0.24 (ELV12 vs

GAL20 and FIG8 vs GAL20; Table 5). The exact test of genetic differentiation was highly
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significant for all pairwise comparisons (p < 0.001), even for populations separated by 10 m

(FST = 0.022 for BANN20 vs BANN40, FST = 0.012 for BANS20 vs BANS40 and FST = 0.10

for GAL20 vs GAL40). Considering the FST between depths, high FST values can be observed

for different loci and different samples comparisons (Fig. S4). The average FST between the

two depths of the same site was 0.04 in Marseille, 0.08 in Corsica and 0.02 in Banyuls (0.04

for the total dataset). Considering only putatively neutral loci (see below for outliers loci), the

overall FST of the total dataset was 0.12 and pairwise FST values ranged from 0.01 (BANS20

vs BANS40, BANS20 vs BANN40 and BANN40 vs BANS40) to 0.23 (ELV12 vs GAL20)

(Table S1). There was no correlation between the distance between two depths of the same

site and the corresponding population pairwise FST (p = 0.75). We obtained a similar result

(p = 1) if we removed the four populations of Marseille whose sampling sites for the two

considered depths were not exactly the same (653 m horizontal distance between FIG8 and

MOR40 and 995 m between ELV12 and MEJ40). Finally, the FST between the two shallow

sites inside a geographical region was in all three cases higher than those between the two

deep sites of the same region (0.10 vs 0.058 in Marseille, 0.20 vs 0.14 in Corsica and 0.025 vs

0.014 in Banyuls, p < 1.10-16 with a t-test in all three comparisons). In a similar way, the FST

between two shallow sites of two different geographical regions were in all cases higher than

those  between the  two corresponding deep sites,  except  for  the  comparisons  between the

Porto sites and the Banyuls sites (p = 0.38 and p = 0.02 for the POR/BANN and POR/BANS

comparisons respectively; p < 1.10-16 for the other comparisons).

The  AMOVA  indicated  a  similar  percentage  of  the  molecular  variance  explicated  by

differences among group and within groups (7.8 and 7.07 % respectively) and approximately
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85 % of variance explicated by differences within populations (Table 6). There was significant

genetic differentiation at the three studied levels (FST = 0.15, FSC = 0.08, FCT = 0.08 ; p < 0.001

in the three cases).

Outliers SNPs 

We identified 82 outliers with BayeScEnv. However, we noticed that all these outliers seemed

to be driven by the divergence between particular populations, with one allele being always

fixed  in  one  or  several  populations  without  logical  association  with  depth.  ARLEQUIN

detected 563 loci potentially under selection in Marseille, 869 in Corsica and 397 in Banyuls.

Among these  SNPs,  all  corresponded to  a  signal  of  divergent  selection  in  Marseille  and

Banyuls,  207 of the 869 candidate loci  corresponded to a signal of balanced selection in

Corsica  and  the  remaining  662  loci  corresponded  to  a  signal  of  divergent  selection.

Considering only these outliers, the overall FST of the total dataset was 0.25 and pairwise FST

values ranged from 0.02 (BANS20 vs BANS40) to 0.42 (GAL20 vs POR40) (Table S2). The

207 loci potentially under balanced selection in Corsica were linked with sex differentiation

and were not further analyzed here (Pratlong et al. 2017). Eight outlier SNPs were detected

both in Marseille and Banyuls, 12 both in Marseille and Corsica and 12 both in Corsica and

Banyuls. No SNP was detected as potentially under divergent selection and common in the

three  regions.  The  complementary  Chi²  test  of  homogeneity  of  genotypic  frequencies

between depths inside each region detected 162 candidate loci in Marseille, 1 371 in Corsica

and 3 in Banyuls. Among these loci, 35, 248 and 2 where also respectively detected with the

ARLEQUIN analysis. The numbers of outlier loci were correlated with the variance and the

16

31

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

32

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 23, 2018. ; https://doi.org/10.1101/306456doi: bioRxiv preprint 

https://doi.org/10.1101/306456


average of FST values inside each geographical regions (correlation coefficient of 0.97). The

second axis of the PCA using the Marseille individuals showed apparent association with

depth and appeared to be influenced by the variation of the candidates for local adaptation to

depth  detected  by  ARLEQUIN:  51 %  of  these  loci  were  in  the  top  1 %  of  the  axis

contributions, and 86 % were in the top 5 %.

Because the Marseille region is the only one presenting a principal component linked with

depth (Fig. 1C), the pcadapt results obtained for the Corsica et Banyuls regions have poor

biological relevance for our biological question. We chose thus to present only the pcadapt

results obtained for the Marseille region. Pcadapt detected 58 outliers loci linked with the

second PCA axis, the one which was linked to depth differentiation. All these candidates were

detected by the ARLEQUIN analyses and 20 were also common with the Chi² test presented

above. 

Functional annotation 

Among  the  27 461  analyzed  RAD-tags,  6 376  had  hits  on  the  red  coral  transcriptome

(23.2 %). Concerning SNPs detected as outliers by ARLEQUIN and contributing to the depth

divergence, 8 on the 35 detected in Marseille had hits on the transcriptome, 46 on the 248

detected in Corsica and 2 on the 2 detected in Banyuls (Table S3). We did not observed  any

GO term enriched in coding regions among candidates SNPs, nor any functional enrichment

in these outliers. 

DISCUSSION
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Genetic diversity and structure

Our results  confirm at  a  genomic  the  high  genetic  structure  of  the  red  coral,  which  was

observed with a small number of microsatellite loci  (Costantini  et al., 2007; Ledoux  et al.,

2010b). These results could be the consequence of reduced mean larval dispersal distance,

despite  a  quite  long  pelagic  larval  duration  estimated  in  aquarium (from 16 to  42  days;

Martínez-Quintana  et  al.,  2015).  Genetic  incompatibilities  could  also  contribute  to  the

observed differentiation at least for some loci (Kulmuni and Westram, 2017). Our analysis of

the genetic structure of the red coral revealed several clusters mainly corresponding to the

geographical  distributions  of  this  species.  The  relative  and  unexpected  proximity  of  the

populations from Banyuls and the two populations of Galeria (GAL20 and GAL40) according

to  PCA  was  also  suggested  with  microsatellite  data  (Ledoux  et  al.,  2010b).  A  high

differentiation  was  observed here  with  PCA and STRUCTURE between  the  two sites  of

Corsica separated by around 22 km. This pattern of genetic structure could be explained by a

putative barrier to gene flow (through currents or lack of suitable habitats) between the two

Corsican sites, or it could also correspond to an historical separation of these populations: two

lineages could then be present in Corsica, with one being related to Banyuls populations.

We reported here a significant vertical genetic structure between the two depths of the same

site (populations separated by less than 20 m). This differentiation was also observed when

outlier loci were removed indicating that it is also shaped by neutral processes (migration /

drift) as suggested previously with microsatellites (e.g. Ledoux et al., 2010a). In a study of the

vertical genetic structure of red coral in two western Mediterranean sites (Cap de Creus, Spain

and Portofino, Italia), Costantini et al. (2011) observed a drop in connectivity around 40 – 50
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m depth, with genetic diversity declining with depth, but our sampling scheme did not allow

us to test this hypotheses. The study of the vertical genetic structure in corals is important in

the context of climate change. As deeper populations may be less affected by climate change,

they could possibly reseed shallower populations (Bongaerts  et al., 2017). Nevertheless this

possibility of reseeding depends on the connectivity or potential barriers between depths.  A

lack of connectivity could erroneously be inferred in cases of cryptic species  (Pante  et al.,

2015). Contrary to  Prada  et al. (2008) who showed the existence of two cryptic lineages at

two different depths in a tropical octocoral, the populations of red coral from the two studied

depths clearly correspond here to the same species, and the differentiation between depth was

lower than the differentiation between sites and regions. This vertical structure may be the

result of both inherent life history traits and environmental variables. Weinberg (1979) has

described a negative geotropism for the planulae of C. rubrum, and Martínez-Quintana et al.

(2015) demonstrated that this was an active behavior. Depending on the orientation of the

substrate, this can limit the connectivity between depths. The seasonal stratification during

larval emission (which can occur from June to September; Haguenauer A., pers. comm.) could

also limit  dispersal.  According to these hypotheses  the larval behavior and oceanographic

factors  should  lead  to  the  genome-wide  neutral  differentiation  between  depths.  This

differentiation is probably also shaped by drift induced by the small effective size of red coral

populations (Ledoux et al., 2010a).

The horizontal genetic differentiation between the two shallow sites was higher than those

between  the  two corresponding  deep  sites,  inside  and  between  geographical  region.  This

suggests a higher connectivity or lower rate of genetic drift for deep populations compared to
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shallow ones. The repeated colonization of shallow depths from deeper ones or the higher

harvesting pressure on shallow populations compared to deep one could enhance genetic drift

as well (Rossi et al., 2008; Cannas et al., 2016). We did not observe here a reduction in gene

diversity for shallow populations, connectivity differences then seem to be more probable in

explaining the observed differences of genetic differentiation. Interestingly, Rossi et al. (2008)

observed a higher frequency of patches of red coral below 50 m compared to above 50 m: if

such pattern is present in the area and depths considered here, then it could increase gene flow

through stepping stones  migration.  The observed vertical  and horizontal  genetic  structure

could indicate reduced recolonization abilities following disturbances such as mortality event

induced by heat waves. Nevertheless the observed genetic structure could also be shaped by

colonization history and monopolization effect (Orsini et al., 2013). In this case, a disturbance

leading to free habitats would facilitate recolonization from other populations.

Potential biases in the search of outlier loci

We observed high FST values for different loci and different sample comparisons, and not only

between depths (Fig. S4). The methods used here to identify selected loci will most likely

detect loci with strong effects (Pritchard and Di Rienzo, 2010; Gagnaire and Gaggiotti, 2016),

and it is highly improbable to observe such a high number of selected loci. Both hierarchical

genetic structure and high levels of differentiation are known to lead to a high number of false

positives in genomic studies of local adaptation (Bierne et al., 2013; Hoban et al. 2016). Here

we observed a  positive  correlation between the  number of  outliers  detected  and both the

variance and average of FST values inside each geographical region, with the strongest effect
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in Corsica, stressing the role of false positive in these results.

The markers density obtained with RAD-Seq may be also insufficient to detect a RAD-tag in

linkage disequilibrium with a selected locus  (Lowry  et al.,  2017; McKinney  et  al.,  2017;

Catchen  et al.,  2017). With 138 810 detected SNPs and a genome size of about 500 Mb

(Ganot et al., 2016), we expected in the case of the red coral, a SNP sampling of 1 for 3,60 kb

(278 SNPs per Mb) and 1 for 18 kb after the SNPs filtering steps (55 SNPs per Mb). The

reduced gene flow and high genetic drift in the red coral probably lead to much higher linkage

disequilibrium (maybe a few kb) than in most other marine metazoans. We thus expect that

our RAD-tags at least detect a signal of genetic adaptation, even if we did not detect a certain

number of genomic regions under selection.

Apart from the detection of selected loci, the observed levels of genetic structure raises an

interrogation on the mere evolution of local adaptation.  Indeed the red coral displays life

history  traits  potentially  favorable  to  the  evolution  of  local  adaptation  such  as  reduced

dispersal  limiting  gene  swamping;  (Lenormand,  2002).  But  in  each  local  population  the

important genetic drift (Ledoux et al., 2010a) can counteract the effects of local selection and

limit differences in allele frequencies for low to moderately selected loci.

In order to better understand if local adaptation is involved in the observed genomic pattern

we could test the correlation between differences in allele frequencies between depths and the

strength  of  divergent  selection,  as  estimated  from  the  thermal  regime  for  example.

Unfortunately,  in  the  red  coral  the  ecological  distances  are  usually  paired  with  genetic

differentiation in such a way that we can't disentangle the drift and selective effects on the

number of outliers detected.
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Considering these limits, and in order to identify the most promising candidate genes, we

applied a combination of different methods and a careful evaluation of the general structure

and of the loci shaping differences between depths. The loci identified in this way are those

which best support the hypothesis of local adaptation. Approaches dedicated to the study of

polygenic adaptation (Daub et al., 2013) or to the genomic distribution of FST or nucleotide

diversity (Hohenlohe et al., 2010) could be interesting here used, but a reference genome is

still lacking for the red coral.

On  a  more  theoretical  point  of  view,  outlier  loci  could  be  linked  to  intrinsic  genetic

incompatibilities whose allelic frequencies coupled with environmental barriers (Bierne et al.,

2011). The frequency of genetic incompatiblities in marine populations is largely unknown

but  probably  under-estimated  (Plough  et  al.,  2016).  Even  if  not  directly  linked  to  local

adaptation, such loci are important factors in the evolution of red coral populations.

Local adaptation to depth in the red coral

We focused on candidate loci meeting the following criteria: i) detection with ARLEQUIN

and  pcadapt,  ii)  significant  differentiation  between  depth,  iii)  function  relevant  to  the

adaptation to thermal regime. These loci are the most relevant as factors of local adaptation.

The absence of candidate SNPs common to the three geographical regions could indicate that

the adaptation to comparable shallow environmental pressures in  these independent regions

are based on different genetic pathways, or on non-genetic mechanisms (Putnam and Gates,

2015). However, most candidate loci should be in linkage disequilibrium with selected loci,

and  such  association  can  easily  be  lost  between  distant  locations  through  recombination.
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Differences in the strength of selective pressure in the three regions could also explain the

differences in the detected loci. In Marseille we evidenced a clear signal of differentiation

between depths according to multivariate and outlier loci analyses. This detection of a signal

of local adaptation in the Marseille region is consistent with the observations from studies of

thermotolerance differences in this region  (Torrents  et al.,  2008; Haguenauer  et al.,  2013;

Ledoux et al., 2015; Pratlong et al., 2015). In the case of the Marseille region there are then

strong evidences of the existence of adaptive differentiation at a scale of few tens of meters

only. Concerning Corsican populations, Ledoux et al. (2015) reported no phenotypic signal of

local adaptation after reciprocal transplant experiment. Here, the most promising candidate for

the  adaptation  to  thermal  regime,  was  an  homologous  to  an  allene  oxide  synthase-

lipoxygenase which is known to be involved in the response to thermal stress in octocorals

(Lõhelaid et al., 2015). This indirect argument would support the presence of local adaptation

in  this  area  as  well,  but  more  experimental  analyzes  will  be  necessary  to  confirm  the

involvement  of  this  function  in  adaptation  to  thermal  stress  in  this  species.  Finally,  the

detection  of  a  reduced  number  of  candidate  loci  (two)  in  the  Banyuls  region  would  be

consistent with the weaker selective pressure here (see above, Table 2).

Previously, we have sequenced the transcriptome of individuals from the two depths of the

Marseille  site  studied  here  in  Marseille  (Pratlong  et  al.,  2015).  Several  genes  were

differentially  expressed  between  individuals  from  the  two  depths  outside  thermal  stress

conditions. Some of these genes, such as those from the Tumor Necrosis Factors Receptor

Associated  Factors  (TRAF)  family,  have  been  identified  as  involved  in  the  response  to

thermal stress in the hexacoral Acropora hyacinthus (Barshis et al., 2013). However, none of
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these differentially expressed genes were identified in our RAD-Seq study. Additionally the

differences of expression may result from acclimatization, and are not necessarily adaptive.

The use of  a  reference  genome would  be  useful  here  as  well  to  study the  potential  link

between candidate SNPs and genes location and function (Manel et al., 2016).
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CONCLUSION 

To our knowledge, the red coral presents among the highest levels of differentiation among

studies  of  local  adaptation  thought  genome  scans  approaches  in  marine  environment

(Bradbury et al., 2010; Limborg et al., 2012; Wang et al., 2013; Chu et al., 2014; Milano et

al., 2014; Bay and Palumbi, 2014; Bernardi  et al., 2016; Araneda  et al., 2016; Guo  et al.,

2016; Benestan  et al., 2016; Bongaerts  et al., 2017). This study enabled us to empirically

emphasize the limitations in the detection and the interpretation of signals of local adaptation

using usual statistical methods in this strongly structured species. Both neutral an adaptive

divergence highlighted here demonstrate the genetically singularity of shallow populations of

the red coral, especially in the Marseille region were the shallowest populations of this species

are found. Together, the strong genetic structure we observed between shallow populations,

the low dispersal abilities of the red coral and the local adaptation of these individuals to the

highly variable thermal conditions they experiment, raise strong concerns about the evolution

of shallow populations and the possibility of loss of adaptive variations in case of mortality

events. Extending the genomic study initiated here would be useful to study the evolution of

this species in heterogeneous and changing environments. Whatever their origin (genetic or

environmental), the different thermotolerance levels observed between depths and populations

in the red coral should also be taken into account in future studies of adaptive evolution in this

species.
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Figure 1. Principal component analysis (Axes 1 and 2) of A) the 12 red coral populations

(n = 354 individuals, 27 461 SNPs), B) the four red coral populations from Marseille (n =119

individuals,  27 461  SNPs),  C)  the  four  red  coral  populations  from  Corsica  (n =117

individuals,  27 461  SNPs),  D)  the  four  red  coral  populations  from  Banyuls  (n =118

individuals, 27 461 SNPs).
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Figure 2. Results from Bayesian individual clustering with STRUCTURE for K = 2 to K = 4. For K = 2 and K = 4, all ten replicates produced the same

structure. For K = 3, the major mode presented here was the result of 7/10 replicates. Minor modes are presented in Fig. S3.
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Table 1. Characteristics of red coral sampling sites. 

Population Geographic

region

Site Depth (m) GPS GPS

FIG8 Marseille Marseille South 8 43° 12.330'N 5° 26.790'E

MOR40 Marseille Marseille South 40 43° 12.060'N 5° 27.100'E

ELV12 Marseille Marseille North 12 43° 19.780'N 5° 14.210'E

MEJ40 Marseille Marseille North 40 43° 19.700'N 5° 13.480'E

BANN20 Banyuls Banyuls North 25 42° 26.890'N 3° 10.330'E

BANN40 Banyuls Banyuls North 35 42° 26.890'N 3° 10.330'E

BANS20 Banyuls Banyuls South 26 42° 26.390'N 3° 10.790'E

BANS40 Banyuls Banyuls South 36 42° 26.390'N 3° 10.790'E

POR20 Corsica Porto 21 42° 16.292'N 8° 41.255'E

POR40 Corsica Porto 33 42° 16.292'N 8° 41.255'E

GAL20 Corsica Galeria 26 42° 28.210'N 8° 38.950'E

GAL40 Corsica Galeria 36 42° 28.210'N 8° 38.950'E
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Table  2.  Temperatures  (in  °C)  characteristics  of  the  sampling  sites  from March  2012  to

October 2014.

Depth (m) Minimum Maximum Mean
Standard

Deviation

FIG8 8 12.63 26.92 17.03 3.52

MOR40 40 12.73 23.06 15.40 2.11

ELV12 12 11.81 26.70 16.60 3.24

MEJ40 40 11.86 22.87 15.29 2.18

BANN20 25 12.22 24.29 17.20 2.63

BANN40 35 9.41 23.83 14.49 2.45

BANS20 26 12.22 24.29 17.20 2.63

BANS40 36 9.41 23.83 14.49 2.45

POR20 21 12.51 25.91 17.51 3.41

POR40 33 12.56 23.83 16.26 2.45

GAL20 26 12.46 25.09 17.13 3.13

GAL40 36 12.56 23.83 16.26 2.45
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Table 3. Counts of SNP loci after each filtering step. 

Step Number of SNPs Software

After assembly

raw data
138 810

Stacks 

(Catchen et al., 2011, 2013)

Excluding loci not

in within

population HWE

86 520
VCFtools 

(Danecek et al., 2011)

MAF 1 % 56 844
VCFtools 

(Danecek et al., 2011)

One SNPs per

RAD-tag
27 461

Table 4. Measures of FIS and gene diversity of the red coral populations based on 27 461

SNPs. 

Population FIS Gene diversity 

BANN20 0.018 0.15

BANN40 0.012 0.15

BANS20 0.019 0.15

BANS40 0.065 0.13

ELV12 0.005 0.17

MEJ40 0.053 0.18

FIG8 0.005 0.18

MOR40 0.036 0.18

GAL20 0.013 0.09

GAL40 0.019 0.13

POR20 0.023 0.13

POR40 0.009 0.15
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Table  5.  Pairwise  FST estimates.  All  comparisons  were  highly  significant.  Intra-region

comparisons are highlighted.

BANN20 BANN40 BANS20 BANS40 ELV12 MEJ40 FIG8 MOR40 GAL20 GAL40 POR20 POR40

BANN20 -

BANN40 0.02 -

BANS20 0.03 0.01 -

BANS40 0.03 0.01 0.01 -

ELV12 0.13 0.13 0.13 0.13 -

MEJ40 0.11 0.11 0.11 0.11 0.03 -

FIG8 0.14 0.13 0.13 0.13 0.10 0.08 -

MOR40 0.11 0.10 0.10 0.10 0.08 0.06 0.05 -

GAL20 0.18 0.17 0.17 0.17 0.24 0.22 0.24 0.21 -

GAL40 0.11 0.10 0.10 0.10 0.19 0.16 0.18 0.15 0.10 -

POR20 0.14 0.13 0.13 0.13 0.17 0.16 0.17 0.14 0.20 0.13 -

POR40 0.14 0.13 0.13 0.13 0.17 0.15 0.17 0.14 0.21 0.14 0.05 -

Table  6.  Percent  of  the  variation  explained  by  grouping  populations  according  to  their

geographical region on the analysis of molecular variance (performed with ARLEQUIN).

Source of variation d.f. Percentage of variation

Among groups 2 7.80

Among populations within groups 9 7.07

Within populations 696 85.13
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Figure  S1.  Location  of  the  sampling  sites  of  the  red  coral  among  the  three  studied

geographical regions.
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Figure S2. Principal component analysis (Axes 1 and 2), using only putative neutral SNPs, of

the  A)  12  red  coral  populations  (n = 354  individuals,  25 669  SNPs),  B)  four  red  coral

populations from Marseille (n =119 individuals, 26 898 SNPs), C) four red coral populations

from Corsica (n =117 individuals, 26 592 SNPs), D) four red coral populations from Banyuls

(n =118 individuals, 27 069 SNPs).
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.

Figure S3. Results from Bayesian individual clustering with STRUCTURE for K = 3. The three figures correspond to major and minor modes detected.
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Figure S4. Joint distribution of between-depths FST in the three geographical regions.
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Table S1. Pairwise FST estimates using only putatively neutral SNPs. All comparisons were 
highly significants. Intra-region comparisons are highlighted.

BANN20 BANN40 BANS20 BANS40 ELV12 MEJ40 FIG8 MOR40 GAL20 GAL40 POR20 POR40

BANN20 -

BANN40 0.02 -

BANS20 0.02 0.01 -

BANS40 0.02 0.01 0.01 -

ELV12 0.13 0.12 0.12 0.12 -

MEJ40 0.11 0.10 0.10 0.10 0.03 -

FIG8 0.13 0.12 0.12 0.12 0.09 0.07 -

MOR40 0.10 0.10 0.09 0.09 0.07 0.05 0.04 -

GAL20 0.17 0.16 0.16 0.16 0.23 0.21 0.22 0.20 -

GAL40 0.11 0.09 0.09 0.09 0.18 0.16 0.18 0.15 0.10 -

POR20 0.13 0.12 0.12 0.12 0.17 0.15 0.16 0.14 0.17 0.11 -

POR40 0.13 0.12 0.12 0.12 0.16 0.15 0.16 0.14 0.18 0.12 0.04 -

Table S2. Pairwise FST estimates using only outlier SNPs from the ARLEQUIN analysis. All 
comparisons were highly significants. Intra-region comparisons are highlighted.

BANN20 BANN40 BANS20 BANS40 ELV12 MEJ40 FIG8 MOR40 GAL20 GAL40 POR20 POR40

BANN20 -

BANN40 0.04 -

BANS20 0.06 0.03 -

BANS40 0.06 0.03 0.02 -

ELV12 0.19 0.18 0.19 0.18 -

MEJ40 0.16 0.14 0.15 0.15 0.04 -

FIG8 0.19 0.17 0.18 0.18 0.23 0.19 -

MOR40 0.14 0.12 0.13 0.13 0.19 0.14 0.08 -

GAL20 0.27 0.27 0.28 0.27 0.37 0.35 0.36 0.32 -

GAL40 0.15 0.13 0.15 0.13 0.26 0.24 0.26 0.22 0.17 -

POR20 0.23 0.21 0.21 0.21 0.26 0.22 0.22 0.18 0.41 0.30 -

POR40 0.24 0.23 0.24 0.23 0.26 0.23 0.23 0.19 0.42 0.31 0.07 -
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Table S3. Results of the annotation analysis of candidates for local adaptation in the three

geographical regions. 
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evalue Description GO Region

Contig_16793 1.1E-117
LON peptidase N-terminal domain and RING

finger partial

ubiquitin-protein transferase activity
zinc ion binding

metal ion binding
proteolysis

ATP-dependent peptidase activity
protein ubiquitination

Marseille

Contig_20016 0 Chromodomain-helicase-DNA-binding 1-like

Contig_23068 2.8E-117
RNA-directed DNA polymerase from mobile

element jockey-like

nucleic acid phosphodiester bond
hydrolysis

RNA-directed DNA polymerase activity
endonuclease activity

RNA-dependent DNA biosynthetic
process

Contig_38936 4.1E-23 E3 ubiquitin-ligase DZIP
nucleic acid binding

zinc ion binding

Contig_44372 3.1E-61
PREDICTED : uncharacterized protein

LOC107346707
binding

Contig_47492 7.8E-98 No description

metal ion binding
oxidoreductase activity

metabolic process
oxidation-reduction process

Contig_7346 2.3E-150 FAM46C-like

Contig_10570 4.8E-37 PREDICTED : uncharacterized protein Corsica

Contig_10731 2.8E-68 allene oxide synthase-lipoxygenase oxidoreductase activity, acting on single
donors with incorporation of molecular
oxygen, incorporation of two atoms of

oxygen
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metal ion binding
fatty acid metabolic process

Contig_11268 2.3E-90 neuronal acetylcholine receptor subunit alpha-9

integral component of membrane
plasma membrane part

extracellular ligand-gated ion channel
activity

ion transport
synaptic transmission
response to stimulus
biological regulation

Contig_11731 0 E3 ubiquitin-ligase RNF213 binding

Contig_12920 5.5E-149 Stonin-2 isoform X2

cytoplasmic part
vesicle-mediated transport
single-organism process

intracellular transport

Contig_13771 4.0E-151 A-kinase anchor mitochondrial
hemopoiesis

cell differentiation

Contig_16202 6.5E-65 PIN2 TERF1-interacting telomerase inhibitor 1

Nucleus
chromosome

intracellular organelle part
nucleic acid binding

regulation of cellular process

Contig_16843 0 Succinate-semialdehyde mitochondrial aldehyde dehydrogenase (NAD) activity
succinate-semialdehyde dehydrogenase

(NAD+) activity
succinate-semialdehyde dehydrogenase

[NAD(P)+] activity
glycosylceramide metabolic process
multicellular organism development

glutamine family amino acid metabolic
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process
gamma-aminobutyric acid catabolic

process
dicarboxylic acid metabolic process

oxidation-reduction process

Contig_16868 4.3E-24
glioma tumor suppressor candidate region gene 1-

like
Membrane

integral component of membrane

Contig_17255 7.0E-53 Nanos 1
zinc ion binding

RNA binding

Contig_18282 1.3E-44 centromere K nucleus

Contig_19099 0
epithelial growth factor receptor substrate 15-like

partial
Calcium ion binding

Contig_19611 2.0E-134 DDB1- and CUL4-associated factor 5
mitochondrion

Cul4-RING E3 ubiquitin ligase complex

Contig_24102 1.6E-62 nuclease HARBI1

Contig_24221 0 tRNA (guianine(26)-N(2))-diethyltransferase

nucleus
mitochondrion

tRNA (guanine-N2-)-methyltransferase
activity
binding

tRNA N2-guanine methylation

Contig_31623 0 No description binding

Contig_32690 1.4E-163 ubiquitin carboxyl-terminal hydrolase isozyme L5 nucleus
cytoplasm

thiol-dependent ubiquitin-specific
protease activity

binding
ubiquitin-dependent protein catabolic
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process
protein deubiquitination
regulation of proteolysis
forebrain development

regulation of cellular protein metabolic
process

Contig_33144 6.6E-56 Dok-7

protein kinase binding
positive regulation of protein tyrosine

kinase activity
insulin receptor binding

Contig_35407 3.8E-11 hypothetical protein AC249_AIPGENE14243

Contig_36059 5.9E-47 cytosolic non-specific dipeptisase
exopeptidase activity

metabolic process

Contig_36102 2.8E-135 nucleolar complex 4 homolog Nuclear part

Contig_37478 8.9E-28 fibroblast growth factor receptor 3 

membrane
cell part

protein kinase activity
phosphorylation

positive regulation of phosphorylation
regulation of primary metabolic process

Contig_38721 2.3E-41 L-seryl-tRNA(Sec) kinase
phosphorylation
kinase activity

Contig_38739 2.0E-56 Dr1 Ada2/Gcn5/Ada3 transcription activator
complex

DNA binding
transcription corepressor activity

TBP-class protein binding
protein heterodimerization activity

negative regulation of transcription from
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RNA polymerase II promoter
transcription, DNA-templated

histone H3 acetylation

Contig_39033 7.1E-155 homeodomain transcription factor 1 isoform X1
intracellular membrane-bounded

organelle

Contig_40626 1.0E-51
RNA-directed DNA polymerase from mobile

element jockey-like

nucleic acid phosphodiester bond
hydrolysis

RNA-directed DNA polymerase activity
RNA binding

endonuclease activity
RNA-dependent DNA biosynthetic

process

Contig_41259 9.9E-45 serine protease 23-like

proteolysis
serine-type endopeptidase activity

serine-type peptidase activity
peptidase activity

Contig_41360 8.9E-134 tonsoku

nuclear lumen
protein complex

DNA metabolic process
cellular response to DNA damage

stimulus
single-organism metabolic process
single-organism cellular process

Contig_41417 3.3E-27 eukaryotic translation initiator factor 4E-binding 1

cytosol
eukaryotic initiation factor 4E binding

translational initiation
signal transduction

negative regulation of translational
initiation

Contig_41500 1.8E-128 Cytoplasmic 1-like cytoskeleton
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plasma membrane
focal adhesion

dense body

Contig_42135 0 No description
membrane

exopeptidase activity

Contig_42435 3.8E-84 Tensin-partial 3

focal adhesion
actin binding

cell-substrate junction assembly
fibroblast migration

Contig_43083 2.0E-47 No description

Contig_45623 0 kinesin KIF16B isoform X2 early endosome
cytosol

kinesin complex
phosphatidylinositol-3,4,5-trisphosphate

binding
ATP-dependent microtubule motor

activity, plus-end-directed
phosphatidylinositol-3-phosphate

binding
phosphatidylinositol-3,4-bisphosphate

binding
phosphatidylinositol-3,5-bisphosphate

binding
formation of primary germ layer
regulation of receptor recycling

Golgi to endosome transport
microtubule-based movement

epidermal growth factor receptor
signaling pathway

endoderm development
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fibroblast growth factor receptor
signaling pathway

cytoskeleton-dependent intracellular
transport

receptor catabolic process
early endosome to late endosome

transport

Contig_45771 8.3E-94 No description

membrane
dopamine neurotransmitter receptor

activity
G-protein coupled receptor signaling

pathway

Contig_47280 2.0E-168 No description

regulation of Rho protein signal
transduction

metabolic process
Rho guanyl-nucleotide exchange factor

activity
transferase activity

positive regulation of GTPase activity

Contig_47344 0 allene oxide synthase-lipoxygenase

oxidoreductase activity, acting on single
donors with incorporation of molecular
oxygen, incorporation of two atoms of

oxygen
metal ion binding

fatty acid metabolic process

Contig_5993 1.5E-95 GA-binding subunit beta-partial nucleus
protein homodimerization activity

transcription regulatory region DNA
binding

protein heterodimerization activity
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transcription, DNA-templated
positive regulation of transcription from

RNA polymerase II promoter

Contig_7742 0 Indole-3-acetaldehyde oxidase-like oxidoreductase activity
ion binding

single-organism metabolic process

Contig_8936 5.2E-105 drebrin isoform X1

actin filament binding
synapse assembly
ruffle assembly
actin binding

neuron projection morphogenesis
receptor-mediated endocytosis

intracellular

Contig_8963 3.4E-169 tubuline delta chain Intracellular part

Contig_26377 6.7E-138 ribokinase isoform X1 2 ribokinase activity
D-ribose metabolic process

carbohydrate phosphorylation

Banyuls

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 23, 2018. ; https://doi.org/10.1101/306456doi: bioRxiv preprint 

https://doi.org/10.1101/306456

