Fanning, S.W.

eLife

1 The SERM/SERD Bazedoxifene Disrupts ESR1 Helix 12 to Overcome Acquired Hormone 2 Provide the Propert Concert Colls

2 **Resistance in Breast Cancer Cells**

- 3 Sean W. Fanning¹, Rinath Jeselsohn^{2,3}, Venkatasubramanian Dharmarajan⁴, Christopher G. Mayne^{5,6},
- 4 Mostafa Karimi⁷, Gilles Buchwalter², Rene Houtman⁸, Weiyi Toy⁹, Colin E. Fowler¹, Muriel Lainé¹,
- 5 Kathryn E Carlson⁵, Teresa A. Martin⁵, Jason Nowak⁴, Jerome Nwachukwu⁴, David J. Hosfield¹, Sarat
- 6 Chandarlapaty⁹, Emad Tajkhorshid⁶, Kendall W. Nettles⁴, Patrick R. Griffin⁴, Yang Shen⁷, John A.
- 7 Katzenellenbogen⁵, Myles Brown^{2,3}, Geoffrey L. Greene¹
- 8
- 9 1: Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637 USA
- 10 2: Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215 USA
- 11 3: Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215 USA
- 12 4. Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
- 13 5: Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
- 14 6: Department of Biochemistry, College of Medicine, Center for Biophysics and Computational Biology,
- 15 and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-
- 16 Champaign, Urbana, IL 61801 USA
- 17 7: Department of Electrical and Computer Engineering, TEES-AgriLife Center for Bioinformatics and
- 18 Genomic Systems Engineering, Texas A&M University, College Station, TX 77843 USA
- 19 8. PamGene International B.V, 's-Hertogenbosch, Netherlands 5211
- 20 9: Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center (MSKCC),
- 21 New York, NY 10065, USA
- **Running Title:** Bazedoxifene inhibits ERα with activating mutations.
- 23 **Precis:** Bazedoxifene's SERD activities enable it to resist the impact of activating ESR1
- 24 mutations.
- 25 Keywords (5): ESR1 Somatic Mutations, Breast Cancer
- 26 **Significance:** Bazedoxifene (BZA) is a potent orally available antiestrogen that is clinically
- approved for use in hormone replacement therapy (DUAVEE). We explore the efficacy of BZA
- to inhibit activating somatic mutants of ER α that can arise in metastatic breast cancers after
- 29 prolonged exposure to aromatase inhibitors or tamoxifen therapy. Breast cancer cell line,
- 30 biophysical, and structural data show that BZA disrupts helix 12 of the ER α ligand binding
- domain to achieve improved potency against Y537S and D538G somatic mutants compared to 4-
- 32 hydroxytamoxifen.

Financial Support:

- 34 SWF: Susan G. Komen Foundation PDF14301382
- SWF, BDG, CEF, ML, GLG, WT, SC: Department of Defense Breakthrough Award W81XWH 14-1-0360
- JAK: NIH DK015556, Breast Cancer Research Foundation BCRF-17-083
- SC: NCI Cancer Center Support Grant (CCSG, P30 CA08748) and NIH R01CA204999
- 39 YS: NIH R35GM124952 and NSF CCF-1546278

Fanning, S.W.

eLife

40 **Conflicts of Interest:** Giles Buchwalter is an employee and shareholder at Celgene. Rene

- 41 Houtman is an employee at PamGene International.
- 42 Abstract

43	Acquired resistance to endocrine therapy remains a significant clinical burden for breast cancer
44	patients. Somatic mutations in the <i>ESR1</i> (estrogen receptor alpha (ER α) gene ligand-binding
45	domain (LBD) represent a recognized mechanism of acquired resistance. Antiestrogens with
46	improved efficacy versus tamoxifen might overcome the resistant phenotype in ER+ breast
47	cancers. Bazedoxifene (BZA) is a potent antiestrogen that is clinically approved for use in
48	hormone replacement therapies. We find BZA possesses improved inhibitory potency against the
49	Y537S and D538G ER α mutants compared to tamoxifen and has additional inhibitory activity in
50	combination with the CDK4/6 inhibitor palbociclib. In addition, comprehensive biophysical and
51	structural biology studies show that BZA's selective estrogen receptor degrading (SERD)
52	properties that override the stabilizing effects of the Y537S and D538G ER α mutations.
53	
54	
55	
56	
57	
58	
59	
60	

Fanning, S.W.

eLife

61

62 Introduction

63	Estrogen receptor alpha (ER α) plays critical roles in the etiology, treatment and
64	prevention of the majority of breast cancers [1]. Due to the high degree of efficacy and wide
65	therapeutic indices of endocrine therapies, patients may receive such treatments for progressive
66	disease over the course of several years [2]. Unfortunately, the majority of ER+ metastatic breast
67	cancers that initially respond to endocrine treatment will become refractory despite continued
68	ER α expression [2]. Selective estrogen receptor modulators (SERMs) like tamoxifen are
69	antagonistic in the breast and agonistic in the bone and endometrium. SERM agonist activity
70	stems from tissue-specific co-regulator binding in the presence of tamoxifen [3]. In addition,
71	somatic mutations to <i>ESR1</i> (gene for ER α) ligand binding domain (LBD) were identified in 25-
72	30% of patients who previously received endocrine treatment [2, 4-6]. Y537S and D538G are the
73	two most prevalent mutations, and pre-clinical studies show that these mutations confer
74	hormone-free transcriptional activity and relative resistance to tamoxifen and fulvestrant
75	treatment [2, 4-6]. Both mutants enable constitutive ER α activity by favoring the agonist-like
76	conformation of the receptor activating function-2 (AF-2) surface and significantly reduce
77	hormone and 4-hydroxytamoxifen (the active metabolite of tamoxifen) binding affinities [7, 8].
78	Endocrine treatments with improved efficacy could potentially overcome resistance
79	engendered by the activating somatic mutants and other mechanisms. In pre-clinical studies,
80	fulvestrant (FULV, a selective estrogen receptor degrader (SERD) and complete antiestrogen) at
81	high concentrations was the only molecule that reduced the Y537S and D538G ER α mutant
82	transcriptional activity to basal levels [2, 4-6]. However, its clinical efficacy is limited by poor

Fanning, S.W.

83	solubility and oral bioavailability [9-11]. Consequently, new complete antiestrogens with
84	improved oral bioavailability and pharmacokinetics, including AZD9496, GDC-0927, and
85	RAD1901, are currently in development, although their suitability as long-term endocrine
86	therapies remains to be determined [10, 12-14].
87	Here, we explore whether bazedoxifene (BZA), a potent antiestrogen that retains some
88	SERM properties, shows activity against breast cancer cells that express ESR1 somatic mutants.
89	We chose BZA because it has been extensively studied in clinical trials and is approved for the
90	use in combination with conjugated equine estrogens for hormone replacement therapy in
91	postmenopausal women (DUAVEE, Pfizer) in the US and for the prevention of osteoporosis as a
92	single agent in Europe [9, 15]. Importantly, it displayed strong antagonist and SERD profiles in
93	the breast while retaining beneficial agonist properties in the bone and did not stimulate
94	endometrial tissue in pre-clinical studies [9, 16, 17]. Further, BZA showed good oral
95	bioavailability and improved pharmacokinetics compared with fulvestrant (FULV) [9, 18].
96	In this study, breast cancer reporter gene assays reveal the inhibitory capacity of BZA against
97	the ER α mutants compared to the SERM 4-hydroxytamoxifen (4-OHT) and SERD FULV in
98	several ER+ breast cancer cell lines (MCF-7, ZR75, T47D). We further assessed the ability of
99	BZA to induce the degradation of WT, Y537S, and D538G somatic mutant ER α in MCF7 cells.
100	Additionally, because inhibitors of CDK4/6 combined with antiestrogens are approved for first
101	line therapy and beyond in metastatic ER+ breast cancers [19-21], we examined whether the
102	CDK4/6 inhibitor, palbociclib, can be used in combination with BZA to enhance the inhibition of
103	breast cancer cell proliferation. Importantly, comprehensive structural and biophysical studies
104	provide additional molecular insights into the chemical differences between BZA, 4-OHT, and
105	raloxifene (RAL, another SERM) that appear to underlie the SERD properties of BZA and its

Fanning, S.W.

- 106 improved inhibitory efficacy against the Y537S and D538G mutants in breast cancer cells. **Table**
- 107 **1** shows the chemical structures of the molecules examined in this study and summarizes their
- 108 clinical indications.
- **Table 1:** Competitive inhibitors of estrogen receptor alpha.

Antiestrogen	Class	Approved Clinical Indications
Ho 4-Hydroxytamoxifen (4-OHT)	SERM	 Adjuvant treatment for ER+ breast cancers [22]. Metastatic Breast Cancer [23]. Ductal Carcinoma in Situ [24]. Reduction in Breast Cancer Incidence in High Risk Women [25].
N HO Raloxifene (RAL)	SERM	 Osteoporosis in postmenopausal women [26]. Reduction in Breast Cancer Incidence in High Risk Women[27].
HO HO Fulvestrant (FULV) HO	SERD	 First-line therapy for metastatic breast cancer [28]. Postmenopausal women with progressive breast cancer following other antiestrogen therapy [29, 30].
но Ме Bazedoxifene (BZA)	SERM/SERD	• In combination with conjugated equine estrogens (DUAVEE) to prevent postmenopausal osteoporosis [15].

Fanning, S.W.

eLife

110

111 **Results**

112 Bazedoxifene Displays SERD Activity in MCF-7 Cells that Express WT ERa

113 To assess the ability of BZA to inhibit WT ER α in breast cancer cells, we examined its

impact on ERα transcriptional activity, degradation and cell growth in MCF-7 cells. 4-

115 hydroxytamoxifen (4-OHT) was used as a representative SERM and FULV was used as a

representative SERD (**Figure 1**). In MCF7 cells that expressed an ERE-luciferase reporter gene,

117 BZA was a more potent inhibitor of WT ERα transcription than either 4-OHT or FULV

(inhibition of luciferase IC₅₀ for BZA = 0.12 nM, 4-OHT = 0.39 nM and FULV = 0.76 nM)

119 (Figure 1A). To test the effect of BZA on endogenous WT ERα transcriptional activity, qPCR

120 was used to quantify the relative mRNA levels of known ER target genes, including cyclin D1,

121 c-myc, CA12, and GREB1, in MCF-7 cells treated with estradiol (E2) or with E2 in combination

with BZA, 4-OHT or FULV at 10^{-8} and 10^{-6} M (antagonistic mode). For cyclin D1, 4-OHT

increased the mRNA level at 10^{-8} M and showed little effect at 10^{-6} M, while both FULV and

124 BZA decreased mRNA levels at 10^{-6} M (Figure 1B). The agonist activity of tamoxifen at low

125 concentrations has been described previously [31]. BZA increased c-myc mRNA levels at 10^{-8} M

while it significantly decreased c-myc mRNA at 10^{-6} M (Figure 1C). Presumably this effect is

similar to the behavior of low-level tamoxifen stimulation and merits further examination.

128 Interestingly, 10⁻⁶ M BZA showed the greatest reduction in mRNA levels of both CA12 and

129 GREB compared to 4-OHT and FULV (**Figure 1, D and E**).

As BZA was shown to behave as a SERM/SERD in previous studies [9, 17], we next
tested the activity of BZA as an inducer of ERα degradation and observed dose-dependent ER

Fanning, S.W.

degradation in MCF7 cells. Overall, BZA mediated similar levels of ERα degradation compared

- to FULV (**Figure 1F**). In terms of cell growth inhibition, BZA showed an improved IC_{50}
- 134 compared to 4-OHT and in the same range as fulvestrant (BZA $IC_{50} = 2.4 \times 10^{-10} M$, FULV $IC_{50} =$
- 135 3.1×10^{-10} M and 4-OHT IC₅₀ = 1.19×10^{-9} M (Figure 1G). Together, these data indicate that BZA
- 136 degrades WT ER α in breast cancer cells and is more effective at inhibiting ER transcription and
- 137 cell growth than 4-OHT and FULV.

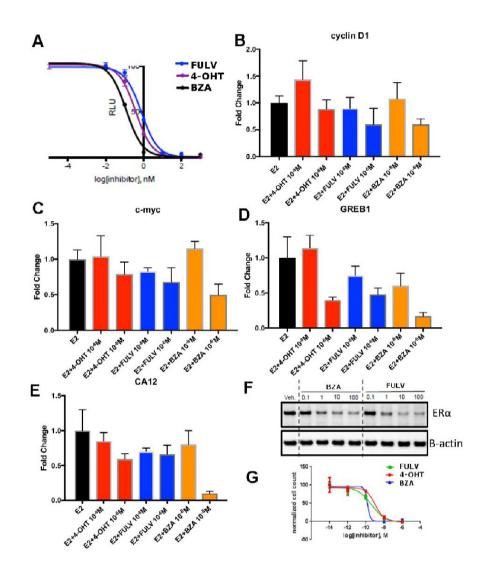


Figure 1: The inhibitory potency of BZA in MCF-7 cells. A) ERα transcriptional reporter gene assay in
 cells treated with BZA, FULV, and 4-OHT. B) Relative cyclin D1 mRNA levels of in MCF-7 cells

- treated with E2 plus 4-OHT, FULV, or BZA vehicle and normalized to E2. C) Relative c-myc mRNA
- 142 levelsMCF-7 cells treated with E2 plus 4-OHT, FULV, or BZA vehicle and normalized to E2. **D**)

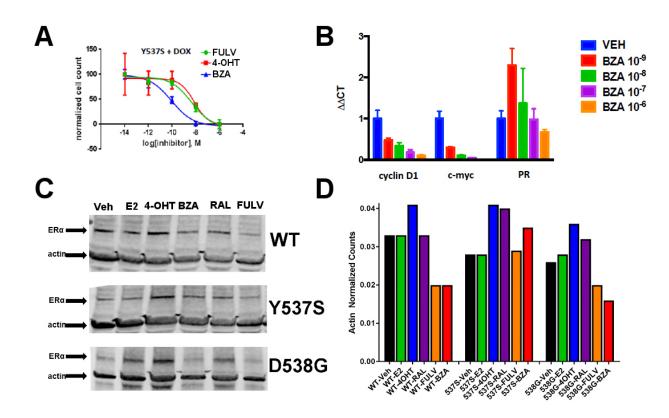
Fanning, S.W.

eLife

Relative GREB1 mRNA levels in MCF-7 cells treated with E2 plus 4-OHT, FULV, or BZA vehicle and
normalized to E2. E) Relative CA12 mRNA levels of MCF-7 cells treated with E2 plus 4-OHT, FULV,
or BZA vehicle and normalized to E2. F) ERα degradation in MCF-7 cells with increasing doses of BZA
or FULV normalized to β-actin. G) Inhibition of cell growth with increasing concentrations of BZA,
FULV, or 4-OHT.

148 BZA is a Potent Inhibitor of Activating Somatic Mutants of ERα in Breast Cancer Cells

We next tested the activity of BZA in MCF7 cells that ectopically expressed the Y537S mutant ER α to determine the inhibition of Y537S mutant cell growth. BZA demonstrated an increased potency compared to FULV and 4-OHT, with an IC₅₀ of 1x10⁻¹⁰ M vs 2x10⁻⁹ M and 7x10⁻⁹ M, respectively (**Figure 2A**). In addition, qPCR data showed that BZA inhibited the transcription of ER α target genes cyclin D1, c-Myc, and PR, in cells expressing the Y537S mutant, in a dose-dependent manner, confirming the on-target effects of BZA in the presence of


the mutation (**Figure 2B**).

To evaluate the ability of BZA to induce WT and mutant ERα degradation in breast 156 cancer cells, we treated MCF-7 cells that ectopically expressed HA-tagged WT, Y537S and 157 D538G ERa with BZA and other ligands for comparison. Levels of WT and mutant ERa were 158 quantified using immunoblots with an anti-HA antibody. Cells were treated with 10 nM E2, or 159 100 nM 4-OHT, 100 nM BZA, 100 nM RAL, 1 µM FULV or vehicle for 24 hours before 160 immunostaining; 1 µM FULV was chosen because it was the minimal concentration necessary to 161 162 achieve maximal ER α degradation. All data were normalized to vehicle-treated cells. In cells expressing HA-WT ERa, BZA and FULV induced degradation of the receptor to similar levels 163 while the amount of the receptor increased upon 4-OHT treatment and was slightly reduced with 164 E2 and RAL (Figure 2C and D). Interestingly, for the Y537S mutant, ERα expression remained 165 unchanged for E2 and FULV, while it increased for 4-OHT and RAL. Y537S ERα also 166 increased with BZA but less so than RAL or 4-OHT. Surprisingly, BZA degraded the D538G 167

Fanning, S.W.

168 ER α mutant to a greater extent than FULV while 4-OHT and RAL both increased its expression 169 after 24 hours. It should be noted that BZA and FULV elicited consistent WT and mutant ER α 170 degradation across all replicates (**Supplemental Figure 1**). However, 4-OHT and RAL elicited 171 slight variations in the actin-normalized quantity of ER α after 24-hours. Overall, these data 172 suggest that BZA degrades WT and D538G ER α in MCF7 cells, but that the Y537S mutant is 173 resistant to degradation. However, the levels of Y537S ER α in the BZA treated cells were still 174 reduced compared to 4-OHT and RAL treatment, consistent with the reduced activities

demonstrated by these compounds in MCF-7 reporter gene assays [2].

176

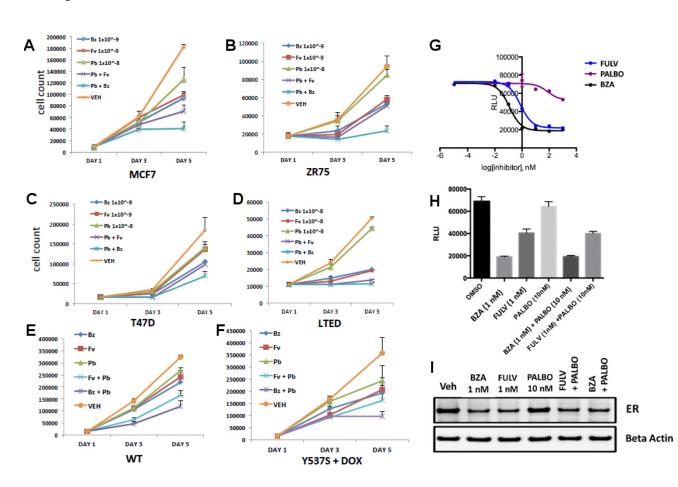
- 180 W 1, 55/5, of D5560 fielded with E2, 4-OH1, BZA, KAL, of FULV for 24 hours. **D**) K 181 counts of HA ER a from the immunoblat normalized to actin
- 181 counts of HA-ER α from the immunoblot normalized to actin.
- 182

Figure 2: The ability of BZA to disrupt Y537S and D538G ER α activity. **A**) Cell growth in MCF-7 cells

with DOX-induced Y537S ERα expression. B) Inhibition of ERα target genes in DOX-induced Y537S
 ERα expressed MCF-7 cells with increasing doses of BZA. C) Representative immunoblot of HA-ERα

ERα expressed MCF-7 cells with increasing doses of BZA. C) Representative immunoblot of HA-ER
 WT, 537S, or D538G treated with E2, 4-OHT, BZA, RAL, or FULV for 24 hours. D) Representative

Fanning, S.W.


183 Dual Treatment with BZA and Palbociclib

eLife

184	CDK4/6 inhibitors have emerged as potent agents in the treatment of metastatic ER+
185	breast cancer in combination with endocrine treatment. Combined endocrine treatment with a
186	CDK4/6 inhibitor is now the standard of care in either first or second line treatment of metastatic
187	ER+ breast cancer [19-21]. Because BZA showed increased activity over FULV and 4-OHT, we
188	explored whether the activity of BZA combined with the CDK4/6 inhibitor, palbociclib (PB), in
189	multiple ER positive cell lines (MCF-7, ZR75, T47D) and long-term, estrogen-deprived (LTED)
190	ER+ MCF7 cells that mimic resistance to aromatase inhibitors. For the first three cell lines, the
191	combination of BZA and PB demonstrated the greatest arrest in cellular proliferation, whereas
192	for the LTED cells it was comparable to PB+FULV (Figure 3A-D). Additionally, reduced
193	proliferation of MCF-7 cells expressing the Y537S mutant was observed for the BZA+PB
194	treatment compared to all other treatments (Figure 3E and F). Transcriptional reporter gene
195	assays in MCF7 cells showed that: 1. BZA had superior activity in the inhibition of ER
196	transcriptional activity compared to fulvestrant. In addition, palbociclib does not affect ER
197	transcriptional activity either as a single agent or in combination with BZA (Figure 3G and 3H)
198	. Similarly, immunoblotting for ER showed that treatment with PB does not affect BZA or
199	FULV induced degradation of ER α (Figure 3I). In sum, these data show that dual inhibition of
200	CDK4/6 with PB and ER α with BZA is an effective combination with significant activity against
201	breast cancer cells expressing WT or constitutively active mutant $ER\alpha$.

Fanning, S.W.

eLife

202

Figure 3: Combination treatment with CDK4/6 inhibitor and BZA. A) Cell growth inhibit with MCF7
 breast cancer cells. B) ZR75 breast cancer cells. C) T47D breast cancer cells. D) LTED breast cancer
 cells. E) Non-induced MCF7 breast cancer cells with a dox-inducible ERα Y537S mutant. F) MCF7 cells
 expressing ERα Y537S. G) Dose-response curves for inhibition of ERα transcriptional activity in the
 presence of BZA, PALBO, and FULV in MCF7 cells. H) ERα transcriptional reporter gene assays for
 combination treatments. I) ERα stability resulting from combination treatments.

209

210 Coregulator Binding Specificity and Affinities of WT and Mutant ERα with BZA, 4-OHT,

211 and FULV

```
Because hormone regulated coactivator recruitment is crucial for ERα genomic action
```

- and inhibition of coactivator recruitment is a key aspect of SERM-mediated ERα antagonism
- [32], we tested the effects of 4-OHT, BZA and FULV on co-regulator binding. We applied the
- 215 Microarray Assay for Real-time Coregulator-Nuclear receptor Interaction (MARCoNI), which

Fanning, S.W.

216	allows the quantification of binding affinity of a nuclear receptor with co-regulator peptides. To
217	determine the effect of 4-OHT, BZA and FULV on co-regulator binding to WT, Y537S and
218	D538G ER α , MCF7 cells that ectopically express HA-tagged WT, Y537S, or D538G ER α were
219	used in conjunction with an HA antibody to detect ER binding to the co-regulator array.
220	Experiments were performed under E2 stimulated conditions for WT ER and under apo
221	conditions for mutant ER α . Overall, dose-dependent inhibition of co-regulator binding was
222	observed for the majority of co-regulator peptides with the three drugs (Supplemental Figure
223	2A). A comparison of EC_{50} levels for inhibition of co-regulator binding of the three ER
224	antagonists showed that EC_{50} levels for FULV in both the WT and mutant cells was higher, as
225	expected given the mechanism of action of FULV, compared to SERMs. The 4-OHT and BZA
226	EC_{50} s were higher in the presence of the Y537S and D538G mutations. Collectively, these
227	results show that differences in antagonistic activity manifested by the three endocrine treatments
228	are reflected by changes in co-regulator binding. There are significant differences among these
229	drugs in their antagonistic activity on WT-ER and mutant ER.
230	SERMs and SERDs Abolish Hormone-Independent ERa-Coactivator Binding In Vitro and
231	Reverse Hormone Recruitment of Coactivators

To further dissect the molecular basis for the reduced BZA, 4-OHT, and RAL
potency/efficacy observed with mutant ERs, biochemical coactivator recruitment and
competitive ligand-binding experiments were performed. As described previously [8], Förster
resonance energy transfer (FRET) assays were used to evaluate the interaction of wild type and
Y537S and D538G mutant ERα with steroid receptor coactivator 3 (SRC3), a key coregulator in
breast cancer cells. The nuclear receptor recognition domain (NRD) of SRC3 and LBD of the
ERs, were used in these experiments.

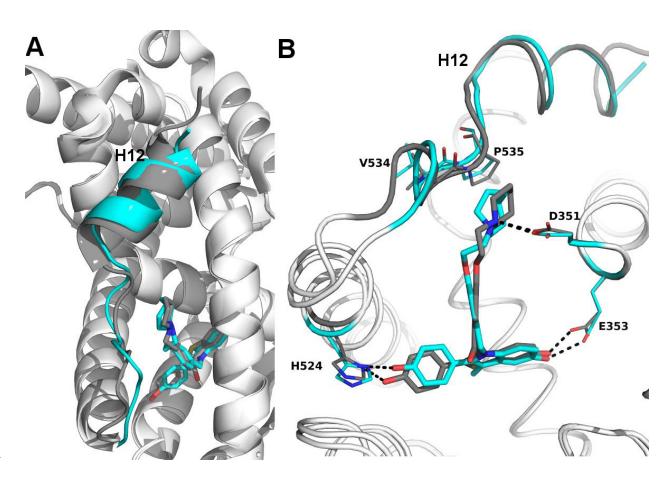
Fanning, S.W.

239	Previously, we showed that in the absence of hormone, SRC3 did not bind to WT ER α
240	LBD, whereas Y537S ER α bound SRC3 markedly in the absence of E2 with a 10-fold reduced
241	affinity, and D538G ER α bound SRC3 with a 100-fold reduced affinity compared to hormone
242	bound WT receptor [8]. To better ascertain the potency of ligands to inhibit coactivator
243	recruitment, we titrated the ligands into fixed concentrations of LBD and SRC3 and monitored
244	LBD-SRC3 interaction by a FRET assay; the three samples were primed with E2 to get a
245	measurable signal from WT and D538G ER. 4-OHT, BZA and RAL reversed the binding of
246	SRC3 NRD to the two mutant ERs and WT-ER α with similar potencies (Supplemental Figure
247	2B). Together, these data show that BZA, 4-OHT, and RAL inhibit both the basal and E2-
248	stimulated recruitment of SRC3 coregulator by the WT and mutant ER α in vitro.

BZA, RAL and FULV Elicit Similar Reduced Binding Affinities for Y537S and D538G Compared to WT ERα LBD

To examine what role alterations in binding affinity may play in this reduced potency, 251 competitive $[^{3}H]$ -E2 ligand binding assays ligand-binding experiments were used to examine the 252 253 effect of Y537S and D538G mutations on BZA, RAL, and FULV ER binding affinities in vitro. We previously showed that the E2 and 4-OHT binding was significantly reduced for both the 254 255 Y537S and D538G mutants [8]. Affinities were reported using K_i values calculated from IC₅₀ values using the Cheng-Prusoff equation (Supplemental Table 2) [33]. The affinities of RAL, 256 257 BZA and FULV for the ER α mutants were reduced 9 to 27-fold relative to WT-ER α . It should be 258 noted that the binding affinity of 4-OHT remained the highest compared to RAL, BZA and FULV against the mutant LBDs. The binding affinities of all tested antiestrogens were somewhat 259 more reduced in D538G than in Y537S. However, FULV and BZA demonstrated the highest 260 potencies in the transcriptional reporter gene assays, even though they exhibited reduced 261

Fanning, S.W.


affinities compared to 4-OHT. Therefore, our data indicate that other factors beyond the reduced
binding affinity of mutant LBDs for SERM or SERD must play a role in their decreased potency.

264 The SERD Properties of BZA Arise from its Disruption of Helix 12

X-ray crystallography was used to reveal the structural details of BZA's antiestrogen
properties. An x-ray crystal structure for the WT ERα LBD, in complex with BZA was solved to
2.4 Å with two dimers in the asymmetric unit (ASU) (PDB: 4XI3). The BZA ligand and H12 are
well resolved in each monomer in the ASU; poorly resolved residues were not included in the
model. Supplemental Figure 3 shows the observed difference map density for the BZA ligand
for chain A. We were unable to obtain diffraction quality crystals with BZA or RAL in complex
with either the Y537S or D538G mutant LBDs.

272 Clear structural differences are apparent compared to the previously published molecular 273 modeling and docking simulations of the ERa LBD-BZA complex [34]. Specifically, the C3 methyl on the indole ring of BZA appears to shift the core of the molecule away from M386, 274 L391 and L428 and towards H12. BZA is most structurally similar to RAL; however, BZA 275 276 displays more SERD-like behavior [9]. Figure 4 shows a superposition of the ERa LBD-BZA or RAL x-ray crystal structures. Interestingly, the distal phenol on BZA appears to form a hydrogen 277 278 bond with improved binding geometry to H524 compared to the distal phenol of RAL. This 279 suggests that the ketone on the RAL linker constrains the phenyl group, sterically precluding the adoption of an ideal hydrogen bonding geometry with H524. The core differences for BZA 280 281 broadcast down the linker arm to alter its vector towards H12 where the azepan ring now pushes against V534 and P535 (Figure 4B). The alterations to V534 and P535 propagate to H12 which 282 283 appears displaced out of the AF-2 cleft into a less stable orientation.

Fanning, S.W.

284

Figure 4: Structural Basis for the SERD properties exhibited by BZA. A) Overlay of BZA (cyan) with
RAL (grey) x-ray crystal structures showing differences in H11-12 loop and H12 orientation. B)
Hydrogen bonds (dashed lines) formed by BZA and RAL in the binding pocket and highlighting
differences in H11-12 loop and H12 conformation. PDBs: 1ERR and 4XI3.

289

290 BZA Binding Conformation is Energetically Favored Compared to RAL

- 291 Quantum mechanical calculations were employed to determine whether inherent
- differences in the BZA and RAL ligands accounted for differences in antagonist potency. A
- significant energetic shift was observed over the time-course of the scans, revealing that the BZA
- arm can adopt a set of torsion angles with significantly reduced energetic penalties compared to
- 295 RAL (Figure 5A). Importantly, the energetic minima well is significantly broader for BZA
- 296 compared to RAL, indicating that the angles adopted by BZA in the ER α ligand-binding site are

Fanning, S.W.

297	more favorable than RAL. Furthermore, an energetic penalty of approximately 1 kcal/mol would
298	be incurred by RAL to adopt the same conformation observed for BZA in the x-ray crystal
299	structure. Together these data show that the BZA ligand itself possesses physical properties that
300	are more favorable to impact ER α H12 compared to RAL.

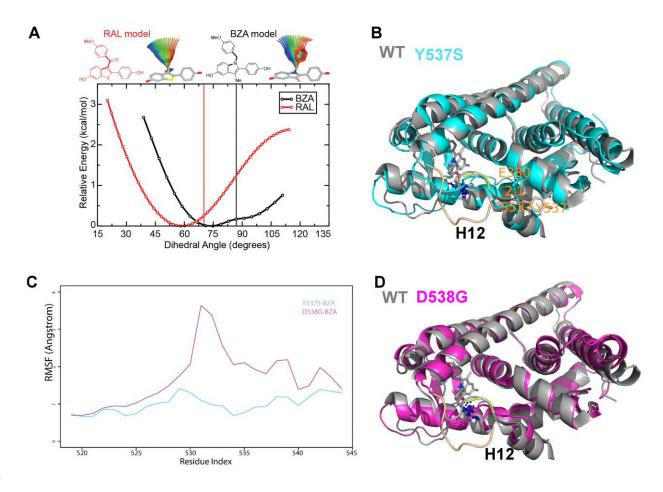
301 BZA

BZA and FULV Reduce the Impact of Y537S and D538G Mutations on Helix 12 Dynamics

302 SERDs competitively bind to the ER α LBD and destabilize helix 12 (H12), leading to 303 proteosomal degradation, while SERMs push the helix into the AF2 cleft to block coregulator binding [8]. Furthermore, AZD9496, a newer orally available SERD pushes H12 into the AF2 304 cleft but destabilizes the helix [13]. Previous work showed that the Y537S and D538G mutants, 305 306 in complex with 4-OHT, adopts an altered antagonist conformation with respect to the WT-4-307 OHT complex [8]. Here, we explored how Y537S and D538G ERa LBD mutations impact H12 mobility in the BZA complex using differential hydrogen-deuterium exchange mass 308 309 spectrometry (HDX-MS). For comparisons we chose E2 as a representative hormone, FULV as a 310 representative SERD, and 4-OHT as a representative SERM. Average time-dependent amidedeuterium uptake kinetics is indicative of conformational flexibility in proteins with highly 311 dynamic regions being more susceptible to solvent deuterium exchange compared to 312 313 conformationally rigid regions. As expected, addition of E2 resulted in an increased protection 314 against exchange in H12 (inferred as increased stability or less dynamic), and this protection was enhanced for the Y537S and D538G mutants (Supplemental Figure 4). Also, FULV treatment 315 led to increased D₂O uptake in H12 (interpreted as destabilization) of regions near H12 in both 316 317 the WT and D538G mutant (**Supplemental Figure 5**), consistent with its SERD-like properties. 318 Unfortunately, we were unable to collect HDX data for the Y537S mutant with FULV because it precipitated out of solution. Similar to previously published data [8], binding of 4-OHT resulted 319

Fanning, S.W.

320	in decreased stability of H12 with the Y537S compared to D538G and WT receptor
321	(Supplemental Figure 6), suggesting that these mutants resist the ability of the SERM to alter
322	their structure. Interestingly, addition of BZA did not increase the stability (lesser protection) of
323	the region near H12 to as great of an extent as 4-OHT in WT and mutant ER α LBDs, suggesting
324	that BZA-bound ER α adopts a less stable antagonist conformation than 4-OHT-bound ER α
325	(Supplemental Figure 7), consistent with the crystal structure. These data suggest that, while
326	their antagonist conformations are altered by Y537S or D538G mutations, the ER α -BZA and
327	FULV complexes maintain potency because they resist the stabilizing impact of the mutations
328	better than 4-OHT.
329	How Y537S and D538G ER α LBD Mutants Alter the BZA Antagonist Structure
329 330	How Y537S and D538G ERα LBD Mutants Alter the BZA Antagonist Structure To understand the structural basis for the reduced BZA degradation of Y537S compared
330	To understand the structural basis for the reduced BZA degradation of Y537S compared
330 331	To understand the structural basis for the reduced BZA degradation of Y537S compared to WT ER α , atom-level explicit-solvent molecular dynamics (MD) simulations for the LBD of
330 331 332	To understand the structural basis for the reduced BZA degradation of Y537S compared to WT ER α , atom-level explicit-solvent molecular dynamics (MD) simulations for the LBD of ER α Y537S-BZA and D538G-BZA were performed using the WT-BZA crystal structure as
330 331 332 333	To understand the structural basis for the reduced BZA degradation of Y537S compared to WT ER α , atom-level explicit-solvent molecular dynamics (MD) simulations for the LBD of ER α Y537S-BZA and D538G-BZA were performed using the WT-BZA crystal structure as template. When compared to the WT-4-OHT structure (PDB: 3ERT), the D538G-4-OHT


antagonist conformation (Figure 5B, D). Furthermore, H12 conformational fluctuations
observed in MD simulations are less pronounced in Y537S-BZA than they are in D538G-BZA
(Figure 5C), which echoes the aforementioned reduced H12 dynamics observed in HDX-MS
data and agrees with our result that Y537S reduces BZA activity more than D538G does. Over
the course of the simulations, the Y537S-BZA structure shows a hydrogen bond formation

Fanning, S.W.

eLife

342	between E380 and S537 (Figure 5B), which could contribute to fewer H12 conformational
343	fluctuations in Y537S ER α . It should be noted that this hydrogen bond is not sterically allowed
344	in the WT-BZA crystal structure. This predicted hydrogen bond may stabilize H12 in the AF-2
345	cleft relative to WT. The simulated H11-12 loop conformations for both Y537S-BZA and
346	D538G-BZA resemble WT-BZA or D538G-4-OHT, being closer to the ligand binding site, than
347	they do to WT-4-OHT. The D538G mutation further increases the conformational variance of
348	the H11-12 loop compared to Y537S (Figure 5C), which can be explained by the lack of a
349	hydrogen bond in Y537S and the greater backbone conformational freedom allowed by the
350	mutant glycine residue. Additionally, the H11-12 loop of both Y537S and D538G appears
351	further away from the protein core and BZA compared to that of WT (Figure 5B, D). We
352	hypothesize that the varied conformations and increased dynamics of the H11-12 loop in both
353	$ER\alpha$ mutants makes it more difficult for BZA to maintain sufficient interactions with the loop to
354	disrupt the ER antagonist conformation. Together, these data show that both mutations produce a
355	stable antagonist conformation, especially at H12, and reduce the SERD-like properties of BZA
356	by lessening its ability to disrupt the H11-12 loop and stabilize H12 in the AF-2 cleft.

Fanning, S.W.

357

Figure 5: A) QM scan of RAL and BZA arm torsion angle energetics. B) Overlaid

representative calculated structure of Y537S-BZA (cyan) closest to the last 50-ns average from

360 molecular dynamics (MD) simulation and the WT-BZA structure, vertical lines represent the

- ligand binding conformation in the x-ray crystal structure. Nitrogen atoms of the azepane part of
 BZA for the last 50-ns MD ensemble are shown in blue spheres near H12. Loop H11-12 is also
- shown for crystal structures of WT-4-OHT (wheat; PDB: 3ERT) and D538G-4-OHT (yellow;

PDB: 4Q50). C) Root mean squared fluctuations of ERα LBD residues, including the C-end of

H11 (resi. 519-527), the loop H11-12 (resi. 528-535), and H12 (resi. 536-544), in the last 50-ns

366 MD simulations for Y537S-BZA (cyan) and D538G-BZA (magenta). **D**) Overlay of a

367 representative structure of D538G-BZA (magenta) from MD simulations and the same WT-BZA

368 structure (gray) as in **B**).

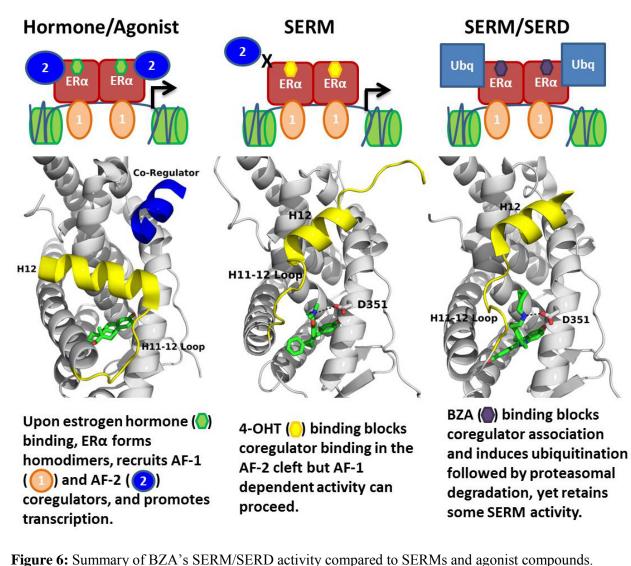
369

Fanning, S.W.

371 **Discussion**

372	Somatic mutation to ESR1 following prolonged estrogen-deprivation therapy represents a
373	newly appreciated mechanism of acquired hormone resistance in metastatic breast cancer. The
374	two most prevalent mutations, Y537S and D538G, give rise to a dysfunctional receptor that
375	escapes hormone regulation and has decreased sensitivity to inhibition by 4-OHT and fulvestrant
376	[8]. Newly characterized orally available pure antiestrogens (e.g., GDC-0927, AZ9496, and
377	RAD1901) are emerging as potentially potent inhibitors of these mutants, but their long-term
378	clinical utility is unknown and their side effect profiles have not been studied in large patient
379	populations [12, 14]. Because BZA is already clinically approved for use in hormone
380	replacement therapy and is a potent $ER\alpha$ antagonist in the breast, an agonist in bone, and neutral
381	in the endometrium with long-term safety data in thousands of patients, we explored its ability to
382	inhibit the Y537S and D538G ER α somatic mutants in breast cancer [9].
383	We first quantified the ability of BZA to disrupt WT and mutant ER α transcription,
383 384	We first quantified the ability of BZA to disrupt WT and mutant ER α transcription, induce degradation, and inhibit cell growth in MCF-7 cells. These data show that BZA has
384	induce degradation, and inhibit cell growth in MCF-7 cells. These data show that BZA has
384 385	induce degradation, and inhibit cell growth in MCF-7 cells. These data show that BZA has increased activity, compared to the SERD FULV and SERM 4-OHT, toward inhibition of cell
384 385 386	induce degradation, and inhibit cell growth in MCF-7 cells. These data show that BZA has increased activity, compared to the SERD FULV and SERM 4-OHT, toward inhibition of cell growth and ER α transcriptional activity. Further, BZA elicited degradation of WT receptor,
384 385 386 387	induce degradation, and inhibit cell growth in MCF-7 cells. These data show that BZA has increased activity, compared to the SERD FULV and SERM 4-OHT, toward inhibition of cell growth and ER α transcriptional activity. Further, BZA elicited degradation of WT receptor, although not as much as FULV. Importantly, BZA reduced the levels of Y537S ER α relative to
384 385 386 387 388	induce degradation, and inhibit cell growth in MCF-7 cells. These data show that BZA has increased activity, compared to the SERD FULV and SERM 4-OHT, toward inhibition of cell growth and ER α transcriptional activity. Further, BZA elicited degradation of WT receptor, although not as much as FULV. Importantly, BZA reduced the levels of Y537S ER α relative to RAL and 4-OHT. Together these data suggest that the ability of BZA to degrade ER α confers an
384 385 386 387 388 389	induce degradation, and inhibit cell growth in MCF-7 cells. These data show that BZA has increased activity, compared to the SERD FULV and SERM 4-OHT, toward inhibition of cell growth and ER α transcriptional activity. Further, BZA elicited degradation of WT receptor, although not as much as FULV. Importantly, BZA reduced the levels of Y537S ER α relative to RAL and 4-OHT. Together these data suggest that the ability of BZA to degrade ER α confers an inhibitory advantage over 4-OHT in the context of the somatic mutants. Additionally, combined
384 385 386 387 388 389 390	induce degradation, and inhibit cell growth in MCF-7 cells. These data show that BZA has increased activity, compared to the SERD FULV and SERM 4-OHT, toward inhibition of cell growth and ER α transcriptional activity. Further, BZA elicited degradation of WT receptor, although not as much as FULV. Importantly, BZA reduced the levels of Y537S ER α relative to RAL and 4-OHT. Together these data suggest that the ability of BZA to degrade ER α confers an inhibitory advantage over 4-OHT in the context of the somatic mutants. Additionally, combined treatment with BZA and the CDK4/6 inhibitor palbociclib resulted in additional inhibitory

Fanning, S.W.


eLife

394	Comprehensive structural-biochemical investigations were undertaken to understand the
395	basis for the SERD-like properties of BZA and its improved potency against the Y537S and
396	D538G ERa LBD mutants compared to 4-OHT. Biochemical coactivator studies using
397	recombinant ER α LBD demonstrated that BZA could inhibit the both basal and E2-induced
398	recruitment of coregulators in vitro, while ligand-binding assays showed that the Y537S and
399	D538G mutants had significantly reduced affinities for BZA, 4-OHT, RAL, and FULV.
400	Interestingly, an HDX MS comparison of BZA, 4-OHT, and FULV suggested that FULV and
401	BZA can both resist the impact of somatic mutation on their antagonist binding conformations
402	compared to 4-OHT. An x-ray crystal structure of the WT-BZA complex revealed that
403	differences in the core of the molecule translated to an altered vector of the linker arm, resulting
404	in contacts with the H11-12 loop and a perturbed H12 antagonist binding mode. This less stable
405	H12 antagonist conformation likely explains the SERM/SERD properties of BZA, wherein it
406	allows H12 to adopt an antagonist conformation (like a SERM) that is somewhat destabilized,
407	although not as destabilized as when FULV is bound.
408	Atomistic MD simulations were used to examine the molecular basis for the observed
409	decrease in degradation of ER α within breast cancer cells expressing the Y537S and D538G
410	mutants. Both mutants stabilized the antagonist conformation of H12 in the AF-2 cleft, while the
411	Y537S appeared to be the more stable of the two by forming a hydrogen bond between S537 and
412	E380. Interestingly, E380Q has also been found to be a recurrent ESR1 mutation able to confer
413	endocrine resistance. MD simulations also suggest that these mutants have varied conformations
414	and increased dynamics of loop H11-12, which potentially reduces BZA's ability to disrupt ER
415	antagonist conformations. Together these results suggest that BZA retains its SERM antagonist
416	properties within breast cancer cells expressing Y537S and D538G mutant ER α to a greater

Fanning, S.W.

417	extent than 4-OHT but its SERD-like properties are diminished. The reduced potency on the
418	mutants likely derives from the stabilization of the apo receptor in the agonist conformation,
419	which reduces the on rate of ligand binding [8], reflecting that the agonist conformer blocks
420	ligand exchange [35].
421	Overall, our findings show the molecular basis for the SERD-like activity of BZA and its
422	potential advantage with and without CDK4/6 inhibitor, versus 4-OHT, to inhibit the Y537S and
423	D538G ER α mutants. Importantly, interrogating the structural details of BZA-ER α LBD binding
424	suggests that molecules with improved pharmacological profiles that specifically disrupt the
425	H11-12 loop at H12 will have clear advantages against breast cancer cells expressing WT,
426	Y537S, and D538G ERa. Figure 6 summarizes how BZA achieves SERM/SERD activity
427	compared to SERM or agonist compounds. In fact, the newer SERM/SERDs and SERDs with
428	improved pharmacologic profiles (e.g., AZ9496) appear to do so using a similar mechanism [13].
429	Therefore, further preclinical evaluation of BZA with and without a CDK4/6 inhibitor should be
430	conducted in context of breast cancer cells expressing the Y537S and D538G somatic mutant
431	ER α . In addition, the ability of other new SERDs to withstand the impact of Y537S and D538G
432	mutations on their antagonist binding modes should be investigated.

Fanning, S.W.

- 434 Figur

Fanning, S.W.

441 Materials Methods

442 Breast Cancer Cellular Reporter Gene Assays

Luciferase reporter assay system (Promega) was used to monitor luciferase activity in MCF7 443 444 cells with stable expression of ERE luciferase per the manufacturer's recommendations, using a single tube luminometer (BD Monolight 2010). MCF7 cells were plated in 6-well plates and 445 treated with increasing doses of BZA, FULV or 4-OHT (0 / 0.01 / 0.1 / 1 / 10 / 100 / 1000nM) in 446 complete medium for 24 hours. All studies were performed in triplicates, and luciferase results 447 are reported as relative light units (RLU) and normalized with β -Galactosidase activity using 448 Mammalian β-gal assay kit (Thermo Scientific). Mycoplasma was tested every 6 weeks in these 449 cells and no mycoplasma was detected in the MCF-7 cell lines using the MycoAlert Mycoplasma 450 Detection Kit (Lonza). MCF-7 cells were purchased directly from ATCC and the studies were 451 452 completed within 1 year of purchase. Cells reached a maximum of 30 passages during these studies. 453

454 ERα Stability Immunoblots

Tet-ON MCF7 cells lines (HA-ERa WT, HA-ERa Y537S, HA-ERa D538G) were cultured in 455 456 DMEM supplemented with 10% fetal bovine serum (FBS), 2 mM L-glutamate, 1% penicillin-457 streptomycin, 100 µg/mL geniticin, and 100 µg/mL hygromycin. Before western blotting experiments, 300,000 cells were plated in each well of a 6-well culture dish and cultured for 48 458 hours in DMEM supplemented with 10% charcoal-stripped FBS (SFBS), 2 mM L-glutamate, 1% 459 penicillin-streptomycin, and 0.2 µg/mL doxycycline. Compounds were diluted in ethanol or 460 DMSO. Cells were treated with either 10 nM estradiol (Sigma), 1 µM FULV (Tocris), 100 nM 461 Ral (Sigma), 100 nM BZA (Pfizer), 100 nM 4-OHT (Tocris), or vehicle (ethanol) for 24 hours. 462

eLife

Fanning, S.W.

eLife

463	Subsequently, cells were washed twice with 1 mL of ice-cold PBS, harvested via scraping, and
464	pelleted at 4 $^{\circ}$ C. Cells were resuspended in 50 μ L lysis buffer [0.1% CHAPS, 50 mM HEPES
465	(pH 8.0), 120 mM NaCl,1mM EDTA, 10 mM Na pyrophosphate, and 10 mM glycerophosphate;
466	supplemented with a protease inhibitor cocktail solution III (CalBiochem)]. Cells were lysed via
467	3 freeze-thaw cycles. Lysates were then pelleted at 4 $^{\rm o}C,$ and 100 μg of protein was mixed with
468	standard 2x Laemmli buffer. Samples were loaded onto a 10% SDS-polyacrylamide
469	electrophoresis gel, transferred after electrophoresis onto nitrocellulose membrane, and
470	immunoblotted using anti-HA-tag (Cell Signaling C29F4) and anti-actin (Santa Cruz
471	Biotechnology AC-15) antibodies. Membranes were probed using anti-rabbit 800 nm
472	(Rockland) and anti-mouse 680 nm (Rockland) and imaged on the Licor Odyssey. Membrane
473	intensities were normalized to actin control and quantified using ImageStudio. Mycoplasma was
474	tested every 6 weeks in these cells and no mycoplasma was detected in any of the Tet-ON MCF-
475	7 cell lines using the MycoAlert Mycoplasma Detection Kit (Lonza).

476

477 **Co-Regulator Interaction Profiling**

This method has been described previously [36]. Cell lysates of MCF7 cells expressing HA-

tagged WT-ER, Y537S mutant ER and D538G mutant ER were quantified by ELISA (Active

480 Motif, USA) to enable equimolar input. An array with a set of immobilized peptides representing

481 coregulator-derived NR-binding motifs was incubated with a reaction mixture of crude lysate,

vehicle (2% DMSO) with or without 1 μ M 17 β -estradiol (E2), increasing concentrations of BZA,

- 483 4-OHT or FULV (0.1, 1, 10, 100, 1000 nM) and anti-HIS-Alexa488 (Qiagen, USA). Incubation
- 484 was performed for 40 minutes at 20 °C, followed by removal of unbound receptor by washing
- 485 and generation of a TIFF image of each array using a PamStation96 (PamGene International).

Fanning, S.W.

eLife

486 Image processing and quantification of ERα binding to each peptide on the array was performed
487 by Bionavigator software (PamGene International).

488 Coactivator Binding Assays

- 489 Protein preparation for TR-FRET. Expression, purification, and site-specific labeling of the
- 490 ER α -LBD was performed as described previously [37]. Generation of the nuclear receptor
- 491 interaction domain (NRD) of human SRC3 coactivator has also been described previously [38].
- 492 ERα LBD and the SRC3 fragment were labeled with Mal-dPEG4-biotin (Quanta BioDesign,
- 493 Powell, OH), and 5-iodoacetamido fluorescein (Molecular Probes, Invitrogen, Eugene, OR),
- 494 respectively.
- 495 Coactivator Recruitment with Ligand Titration. To raise the background level of SRC3 NRD
- 496 binding, the ERα LBD preparation (1 nM ER-LBD, 0.25 nM SaTb, 100 nM SRC3-fluorescein)
- 497 was primed with 20 nM E2, and then increasing ligand concentrations (from 3×10^{-12} to 3×10^{-7}
- 498 M) were added. Diffusion-enhanced FRET was determined by a parallel incubation without
- 499 biotinylated ER-LBD and subtracted as a background signal. The time-resolved Förster
- resonance energy transfer measurements were performed with a Victor X5 plate reader (Perkin
- 501 Elmer, Shelton, CT) with an excitation filter at 340/10 nm and emission filters for terbium and
- fluorescein at 495/20 and 520/25 nm, respectively, with a 100-μs delay [39-41]. The data,
- representing 2–3 replicate experiments, each with duplicate points, was analyzed using
- GraphPad Prism 4, and are expressed as the IC_{50} in nM.

505 Ligand Binding Assays

506 The dissociation constant, (K_d) of estradiol binding to each ER was measured by saturation

binding with $[{}^{3}H]17\beta$ -E₂ and Scatchard plot analysis [42], as described previously [8, 43].

Fanning, S.W.

508	Relative binding affinities (RBA) were determined by a competitive radiometric ligand binding
509	assay with 2 nM [³ H]E2 as tracer [8]. Incubations were at 0 °C for 18–24 hr. Hydroxyapatite was
510	used to adsorb the receptor-ligand complex, and unbound ligand was washed away. The
511	determination of the RBA values is reproducible in independent experiments with a CV of 0.3,
512	and the values shown represent the average \pm range or SD of two or more separate
513	determinations. K_i was determined by the Cheng-Prusoff equation [33] $K_i = IC_{50}/(1 + [tracer$

514 total/ K_d of tracer]).

515 Hydrogen/Deuterium Exchange-Mass Spectrometry (HDX-MS)

516 Solution-phase amide HDX experiments were carried out with a fully automated system (CTC 517 HTS PAL, LEAP Technologies, Carrboro, NC; housed inside a 4°C cabinet) as described 518 previously [8] with slight modifications.

Peptide Identification. Peptides were identified using tandem MS (MS² or MS/MS) experiments 519 performed with a LTQ linear ion trap mass spectrometer (LTQ Orbitrap XL with ETD, 520 ThermoFisher, San Jose, CA) over a 70 min gradient. Product ion spectra were acquired in a 521 522 data-dependent mode and the five most abundant ions were selected for the product ion analysis per scan event. The MS/MS *.raw data files were converted to *.mgf files and then submitted to 523 524 MASCOT ver2.3 (Matrix Science, London, UK) for peptide identification. The maximum number of missed cleavage was set at 4 with the mass tolerance for precursor ions +/-0.6 Da and 525 for fragment ions +/- 8ppm. Oxidation to Methionine was selected for variable modification. 526 Pepsin was used for digestion and no specific enzyme was selected in the MASCOT during the 527 search. Peptides included in the peptide set used for HDX detection had a MASCOT score of 20 528 529 or greater. The MS/MS MASCOT search was also performed against a decoy (reverse) sequence

Fanning, S.W.

and false positives were ruled out. The MS/MS spectra of all the peptide ions from the MASCOT
search were further manually inspected and only the unique charged ions with the highest
MASCOT score were used in estimating the sequence coverage and included in HDX peptide
set.

534 HDX-MS analysis. For differential HDX experiments, 5 μ L of a 10 μ M ER α LBD (Apo or in complex with 10-fold excess compound) was diluted to 25 μ L with D₂O-containing HDX buffer 535 (20 mM Tris-HCl pH 8.0, 150 mM NaCl, 5% glycerol, 1 mM DTT) and incubated at 4 °C for 10 536 s, 30 s, 60 s, 900 s, and 3600 s. Following on-exchange, unwanted forward or backward 537 538 exchange is minimized, and the protein is denatured by dilution to 50 μ L with 0.1% TFA in 5 M urea with 50mM TCEP (held at 4 °C, pH 2.5). Samples are then passed across an immobilized 539 pepsin column (prepared in house) at 50 µL min-1 (0.1% TFA,15 °C), and the resulting peptides 540 are trapped onto a C₈ trap cartridge (Thermo Fisher, Hypersil Gold). Peptides were then gradient 541 542 eluted (5% CH₃CN to 50% CH₃CN, 0.3% formic acid over 6 min, 4 °C) across a 1mm × 50 mm C_{18} analytical column (Hypersil Gold, Thermo Fisher) and electrosprayed directly into a high 543 resolution orbitrap mass spectrometer (LTQ Orbitrap XL with ETD, Thermo Fisher). Percent 544 545 deuterium exchange values for peptide isotopic envelopes at each time point were calculated and processed using HDX Workbench [44]. Each HDX experiment was carried out in triplicate with 546 a single preparation of each protein-ligand complex. The intensity weighted mean m/z547 centroid value of each peptide envelope was calculated and subsequently converted into a 548 percentage of deuterium incorporation. This is accomplished by determining the observed 549 averages of the undeuterated and using the conventional formula described elsewhere 550 [45]. Statistical significance for the differential HDX data is determined by an unpaired t-test for 551 each time point, a procedure that is integrated into the HDX Workbench software 552

Fanning, S.W.

eLife

[44]. Corrections for back-exchange were made on the basis of an estimated 70% deuterium
recovery and accounting for 80% final deuterium concentration in the sample (1:5 dilution in
D₂O HDX buffer).

556 X-ray Crystallographic Analysis of the WT ERa LBD-BZA Complex

557 The 6×His-TEV-tagged ERα-L372S, L536S double mutant LBD was expressed in *E.coli*

- 558 BL21(DE3) and purified as described [46]. LBD (10 mg/mL) and incubated with 1 mM BZA
- overnight at 4 °C. LBD-BZA was crystallized using vapor diffusion by hanging drop in 33%
- 560 PEG 3,350, 100 mM Tris pH 6.6, and 250 mM MgCl₂. Diffraction data were collected at the
- 561 Canadian Light Source at beamline 08ID-1 at a wavelength of 0.97 Å. Indexing, scaling, and
- structure refinement were performed as described [8]. **Supplemental Table 1** shows data
- 563 collection and refinement statistics. Final coordinates were deposited in the Protein Databank

with the accession code 4XI3.

565 **Quantum Mechanical Calculations**

566 Torsion scans were performed on the bond connecting the internal subsituents to the central core 567 for each ligand. The ligand coordinates were extracted from x-ray crystal structures of BZA 568 (PDB code 4XI3) and RAL (PDB code 2QXS) and all hydrogens were added. Relaxed potential energy surface scans in which the remainder of the structure is geometry optimized at each 569 570 torsion step were prepared and analyzed using the torsion scan module of the Force Field Toolkit 571 [47] (ffTK) plugin of VMD [48]. Quantum mechanical calculations were performed using Gaussion G09 [49] at the MP2 level of theory with a 6-31G* basis set. Both ligands were 572 scanned using a bidirection technique originating from the crystal structure conformation and 573 scanning outward in the (+) and (-) directions independently. The BZA ligand was scanned in 4-574

Fanning, S.W.

	575	degree increments	while the RAL	ligand require	d a smaller 2-degree	e step size to avoid
--	-----	-------------------	---------------	----------------	----------------------	----------------------

576 discontinuities due to broader conformational changes when taking larger steps.

577 Molecular Dynamics Simulations

- 578 *Ligand parameterization.* A 3D structure of BZA (without hydrogen atoms) was first built using
- the computer program GaussView (version 4.1.2; part of the computer program Gaussian 03
- 580 [50]. The remaining ligand parameterization was carried out as described [8].
- 581 *Structure preparation, molecular dynamics, data visualization and analysis.* WT-BZA (PDB:
- 4XI3) was used as a template to construct starting structures of Y537S-BZA and D538G-BZA.
- 583 Specifically, chains A and C were chosen among the three dimers in 4XI3 for having the least
- missing residues in the loop H11-12 region, with ions removed and water molecules retained.
- 585 Side chain atoms of mutation sites (residue 537 and 538, respectively) were also replaced with
- the mutant residues. Otherwise, structures were prepared, molecular dynamics were calculated,
- and data were analyzed/visualized as described [8].
- 588
- 589
- 590
- 591
- 592
- 593

Fanning, S.W.

eLife

595 Acknowledgements

596	Special thanks to Dr. Richard Walter and James Gorin for assistance with structure data
597	collection. The Canadian Light Source is supported by the Canada Foundation for Innovation,
598	Natural Sciences and Engineering Research Council of Canada, the University of Saskatchewan,
599	the Government of Saskatchewan, Western Economic Diversification Canada, the National
600	Research Council Canada, and the Canadian Institutes of Health Research. Research reported in
601	this publication was supported by the Susan G. Komen Foundation (S.W.F), Department of
602	Defense Breakthrough Award (G.L.G and S.C.), The Virginia and D.K. Ludwig Fund for Cancer
603	Research (GLG), National Institute of General Medical Sciences of the National Institutes of
604	Health under Award Number R35GM124952 (Y.S.) and by the National Science Foundation
605	under Award Number CCF-1546278 (Y.S.). The content is solely the responsibility of the
606	authors and does not necessarily represent the official views of the National Institutes of Health
607	or the National Science Foundation. Portions of MD simulations were conducted with high
608	performance research computing resources provided by Texas A&M University
609	(http://hprc.tamu.edu/).
610	
611	
612	
613	

- 614
- 615

Fanning, S.W.

eLife

616 **References Cited**

617	1.	Frasor, J., et al., Selective Estrogen Receptor Modulators. Cancer Research, 2004. 64(4): p. 1522.
618	2.	Toy, W., et al., <i>ESR1 ligand-binding domain mutations in hormone-resistant breast cancer</i> . Nat
619	2.	Genet, 2013. 45 (12): p. 1439-45.
620	3.	Shang, Y. and M. Brown, <i>Molecular Determinants for the Tissue Specificity of SERMs</i> . Science,
621	0.	2002. 295 (5564): p. 2465.
622	4.	Jeselsohn, R., et al., ESR1 mutations-a mechanism for acquired endocrine resistance in breast
623		<i>cancer</i> . Nat Rev Clin Oncol, 2015. 12 (10): p. 573-83.
624	5.	Jeselsohn, R., et al., Emergence of constitutively active estrogen receptor-alpha mutations in
625		pretreated advanced estrogen receptor-positive breast cancer. Clin Cancer Res, 2014. 20 (7): p.
626		1757-67.
627	6.	Niu, J., et al., Incidence and clinical significance of ESR1 mutations in heavily pretreated
628		metastatic breast cancer patients. Onco Targets Ther, 2015. 8: p. 3323-8.
629	7.	Nettles, K.W., et al., NFkappaB selectivity of estrogen receptor ligands revealed by comparative
630		crystallographic analyses. Nat Chem Biol, 2008. 4 (4): p. 241-7.
631	8.	Fanning, S.W., Mayne, C.G., Dharmarajan, V., Carlson, K.E., Martin, T.A., Novick, S.J., Toy, W.,
632		Green, B., Panchamukhi, S., Katzenellenbogen, B.S., Tajkhorshid, E., Griffin, P.R., Shen, Y.,
633		Chandarlapaty, S., Katzenellenbogen, J.A., Greene, G.L., Estrogen Receptor Alpha Somatic
634		Mutations Y537S and D538G Confer Breast Cancer Endocrine Resistance by Stabilizing the
635		Activating Function-2 Binding Conformation. eLife, 2016.
636	9.	Wardell, S.E., et al., Bazedoxifene exhibits antiestrogenic activity in animal models of tamoxifen-
637		resistant breast cancer: implications for treatment of advanced disease. Clin Cancer Res, 2013.
638		19 (9): p. 2420-31.
639	10.	Garner, F., et al., RAD1901: a novel, orally bioavailable selective estrogen receptor degrader that
640		demonstrates antitumor activity in breast cancer xenograft models. Anticancer Drugs, 2015.
641		26 (9): p. 948-56.
642	11.	van Kruchten, M., et al., Measuring Residual Estrogen Receptor Availability during Fulvestrant
643		Therapy in Patients with Metastatic Breast Cancer. Cancer Discovery, 2015. 5 (1): p. 72.
644	12.	Lai, A., et al., Identification of GDC-0810 (ARN-810), an Orally Bioavailable Selective Estrogen
645		Receptor Degrader (SERD) that Demonstrates Robust Activity in Tamoxifen-Resistant Breast
646	10	Cancer Xenografts. J Med Chem, 2015. 58 (12): p. 4888-904.
647	13.	De Savi, C., et al., Optimization of a Novel Binding Motif to (E)-3-(3,5-Difluoro-4-((1R,3R)-2-(2-
648		fluoro-2-methylpropyl)-3-methyl-2,3,4,9-tetra hydro-1H-pyrido[3,4-b]indol-1-yl)phenyl)acrylic
649 650		Acid (AZD9496), a Potent and Orally Bioavailable Selective Estrogen Receptor Downregulator and Antagonist. J Med Chem, 2015. 58 (20): p. 8128-40.
650 651	14.	Toy, W., et al., Activating ESR1 Mutations Differentially Affect the Efficacy of ER Antagonists.
652	14.	
653	15.	Cancer Discov, 2016. Tikoo, D. and M. Gupta, Duavee: a tissue-selective estrogen complex for menopausal symptoms
654	15.	and prevention of osteoporosis. International Journal of Basic & Clinical Pharmacology, 2015.
655		4 (2): p. 391.
656	16.	Komm, B.S., et al., Bazedoxifene acetate: a selective estrogen receptor modulator with improved
657	10.	selectivity. Endocrinology, 2005. 146 (9): p. 3999-4008.
658	17.	Lewis-Wambi, J.S., et al., The Selective Estrogen Receptor Modulator Bazedoxifene Inhibits
659	±7.	Hormone-Independent Breast Cancer Cell Growth and Down-Regulates Estrogen Receptor α and
660		<i>Cyclin D1.</i> Molecular Pharmacology, 2011. 80 (4): p. 610-620.
200		

Fanning, S.W.

eLife

661	18.	Biskobing, D.M., Update on bazedoxifene: a novel selective estrogen receptor modulator. Clin
662		Interv Aging, 2007. 2 (3): p. 299-303.
663	19.	Dean, J.L., et al., Therapeutic CDK4/6 inhibition in breast cancer: key mechanisms of response
664	• •	and failure. Oncogene, 2010. 29 (28): p. 4018-4032.
665	20.	Wardell, S.E., et al., Efficacy of SERD/SERM Hybrid-CDK4/6 Inhibitor Combinations in Models of
666		Endocrine Therapy–Resistant Breast Cancer. Clinical Cancer Research, 2015. 21 (22): p. 5121.
667	21.	Yang, C., et al., Acquired CDK6 amplification promotes breast cancer resistance to CDK4/6
668		inhibitors and loss of ER signaling and dependence. Oncogene, 2017. 36 (16): p. 2255-2264.
669	22.	Tamoxifen for early breast cancer: an overview of the randomised trials. Early Breast Cancer
670		Trialists' Collaborative Group. (0140-6736 (Print)).
671	23.	Lipton, A., et al., Randomized Trial of Aminoglutethimide &Item>versus&It/em>
672		Tamoxifen in Metastatic Breast Cancer. Cancer Research, 1982. 42(8 Supplement): p. 3434s.
673	24.	Allred, D.C., et al., Adjuvant tamoxifen reduces subsequent breast cancer in women with
674		estrogen receptor-positive ductal carcinoma in situ: a study based on NSABP protocol B-24.
675		(1527-7755 (Electronic)).
676	25.	Visvanathan, K., et al., American society of clinical oncology clinical practice guideline update on
677		the use of pharmacologic interventions including tamoxifen, raloxifene, and aromatase inhibition
678		for breast cancer risk reduction. (1527-7755 (Electronic)).
679	26.	Messalli, E.M. and C. Scaffa, Long-term safety and efficacy of raloxifene in the prevention and
680		treatment of postmenopausal osteoporosis: an update. International Journal of Women's
681		Health, 2009. 1 : p. 11-20.
682	27.	Cauley, J.A., et al., Continued breast cancer risk reduction in postmenopausal women treated
683		with raloxifene: 4-year results from the MORE trial. Multiple outcomes of raloxifene evaluation.
684		(0167-6806 (Print)).
685	28.	Howell, A., et al., Comparison of Fulvestrant Versus Tamoxifen for the Treatment of Advanced
686		Breast Cancer in Postmenopausal Women Previously Untreated With Endocrine Therapy: A
687		Multinational, Double-Blind, Randomized Trial. Journal of Clinical Oncology, 2004. 22(9): p.
688		1605-1613.
689	29.	Osborne, C.K., et al., Double-blind, randomized trial comparing the efficacy and tolerability of
690		fulvestrant versus anastrozole in postmenopausal women with advanced breast cancer
691		progressing on prior endocrine therapy: results of a North American trial. 2002(0732-183X
692		(Print)).
693	30.	Howell, A., et al., Fulvestrant, formerly ICI 182,780, is as effective as anastrozole in
694		postmenopausal women with advanced breast cancer progressing after prior endocrine
695		<i>treatment.</i> 2002(0732-183X (Print)).
696	31.	Horwitz, K.B., Y. Koseki, and W.L. McGuire, Estrogen Control of Progesterone Receptor in Human
697		Breast Cancer: Role of Estradiol and Antiestrogen*. Endocrinology, 1978. 103 (5): p. 1742-1751.
698	32.	Liao, L., et al., Molecular structure and biological function of the cancer-amplified nuclear
699		receptor coactivator SRC-3/AIB1. The Journal of Steroid Biochemistry and Molecular Biology,
700		2002. 83 (1-5): p. 3-14.
701	33.	Yung-Chi Cheng, W.H.P., <i>Relationship between the inhibition constant (K_i) and the concentration</i>
702		of inhibitor which causes 5- per cent inhibition (I_{50}) of an enzymatic reaction. Biochemical
703		Pharmacology, 1973. 22 : p. 3099-3108.
704	34.	Lewis-Wambi, J.S., et al., The selective estrogen receptor modulator bazedoxifene inhibits
705		hormone-independent breast cancer cell growth and down-regulates estrogen receptor alpha
706		<i>and cyclin D1</i> . Mol Pharmacol, 2011. 80 (4): p. 610-20.

Fanning, S.W.

eLife

707	35.	Sonoda, M.T., et al., Ligand dissociation from estrogen receptor is mediated by receptor
708		dimerization: evidence from molecular dynamics simulations. Molecular endocrinology
709		(Baltimore, Md.), 2008. 22 (7): p. 1565-1578.
710	36.	Koppen, A., et al., Nuclear receptor-coregulator interaction profiling identifies TRIP3 as a novel
711		peroxisome proliferator-activated receptor gamma cofactor. Mol Cell Proteomics, 2009. 8 (10): p.
712		2212-26.
713	37.	Tamrazi, A., et al., Estrogen Receptor Dimerization: Ligand Binding Regulates Dimer Affinity and
714		DimerDissociation Rate. Molecular Endocrinology, 2002. 16(12): p. 2706-2719.
715	38.	Kim, S.H., et al., A Proteomic Microarray Approach for Exploring Ligand-initiated Nuclear
716		Hormone Receptor Pharmacology, Receptor Selectivity, and Heterodimer Functionality.
717		Molecular & Cellular Proteomics, 2005. 4 (3): p. 267-277.
718	39.	Tamrazi, A., et al., <i>Coactivator Proteins as Determinants of Estrogen Receptor Structure and</i>
719	001	Function: Spectroscopic Evidence for a Novel Coactivator-Stabilized Receptor Conformation.
720		Molecular Endocrinology, 2005. 19 (6): p. 1516-1528.
721	40.	Moore, T.W., J.R. Gunther, and J.A. Katzenellenbogen, <i>Estrogen receptor alpha/co-activator</i>
722	40.	<i>interaction assay - TR-FRET.</i> Methods in molecular biology (Clifton, N.J.), 2015. 1278 : p. 545-553.
723	41.	Jeyakumar, M., et al., Exploration of Dimensions of Estrogen Potency: PARSING LIGAND BINDING
724	41.	AND COACTIVATOR BINDING AFFINITIES. The Journal of Biological Chemistry, 2011. 286 (15): p.
725		12971-12982.
726	42.	Scatchard, G., THE ATTRACTIONS OF PROTEINS FOR SMALL MOLECULES AND IONS. Annals of the
720	42.	New York Academy of Sciences, 1949. 51 (4): p. 660-672.
	40	
728	43.	Hurth, K.M., et al., Ligand-Induced Changes in Estrogen Receptor Conformation As Measured by
729		Site-Directed Spin Labeling. Biochemistry, 2004. 43 (7): p. 1891-1907.
730	44.	Pascal, B.D., et al., HDX Workbench: Software for the Analysis of H/D Exchange MS Data. Journal
731		of the American Society for Mass Spectrometry, 2012. 23 (9): p. 10.1007/s13361-012-0419-6.
732	45.	Zhang, Z. and D.L. Smith, Determination of amide hydrogen exchange by mass spectrometry: a
733		new tool for protein structure elucidation. Protein Science : A Publication of the Protein Society,
734		1993. 2 (4): p. 522-531.
735	46.	Sharma, N., et al., Exploring the Structural Compliancy versus Specificity of the Estrogen Receptor
736		Using Isomeric Three-Dimensional Ligands. ACS Chemical Biology, 2017. 12 (2): p. 494-503.
737	47.	Mayne, C.G., et al., Rapid parameterization of small molecules using the Force Field Toolkit.
738		Journal of computational chemistry, 2013. 34 (32): p. 10.1002/jcc.23422.
739	48.	Humphrey, W., A. Dalke, and K. Schulten, VMD: Visual molecular dynamics. Journal of Molecular
740		Graphics, 1996. 14 (1): p. 33-38.
741	49.	Frisch, M.J., et al., Gaussian 09, Revision E.01. 2009: Wallingford CT.
742	50.	Frisch, M.J., et al., Gaussian 03, Revision C.02.
743	51.	Zhao, Y., et al., Structurally Novel Antiestrogens Elicit Differential Responses from Constitutively
744		Active Mutant Estrogen Receptors in Breast Cancer Cells and Tumors. Cancer Research, 2017.
745		77 (20): p. 5602.
_		
746		

747

Fanning, S.W.

eLife

749

751		
752		
753		
754		

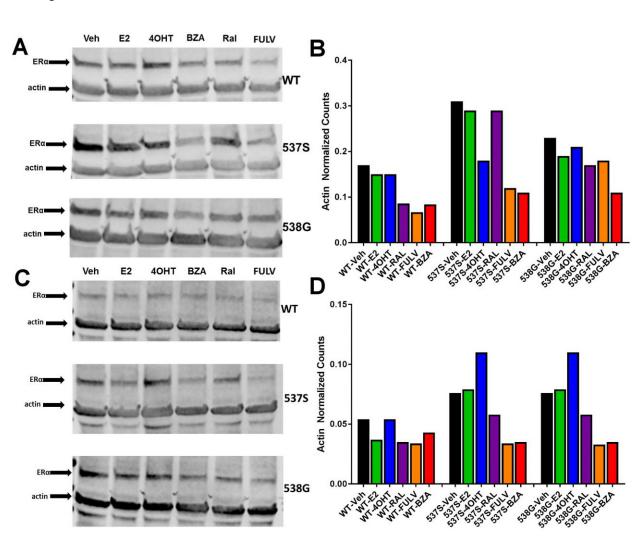
Fanning, S.W.

756			
757			
758			
759			
760			
761			
762			
763			
764			
765			
766			
767			
768			
769			

770 Supplementary Figures

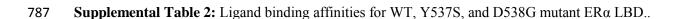
	ERα LBD- BZA
Data Collection	
Space Group	P1
a, b, c (Å)	53.57, 59.17,
	94.14
α, β, γ (°)	86.76, 75.36,
	63.03
Resolution Range	50-2.49
Number of	

eLife


Fanning, S.W.

eLife

63,978/29,080
1.35
8.0
97.6
2.2
21.1/29.3
241
0
5
1
0.010
1.575
0.1016
837 (97.44%)
18 (2.10%)
4 (0.47%)


Supplemental Table 1: Crystallographic data collection and refinement statistics.

Fanning, S.W.

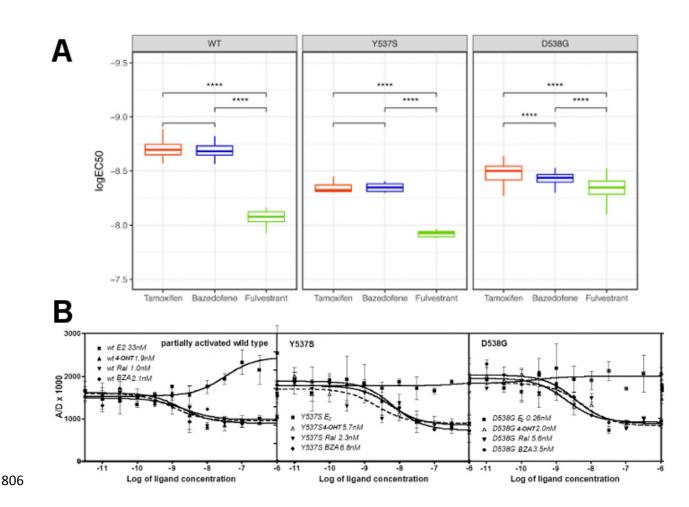
777

- **Supplemental Figure 1:** Replicate experiments of HA-ERα levels in MCF-7 cells upon treatment with
 E2, 4-OHT, RAL, fulvestrant (FULV), or BZA for 24 hours. A) Replicate immunoblot to that shown in **Figure 1** probing for HA-ERα and actin in MCF-7 cells upon treatment. B) Counts from immunoblot A
 normalized to actin. C) Third replicate immunoblot to that shown in **Figure 1** probing for HA-ERα and
 actin in MCF-7 cells upon treatment. D) Counts from immunoblot C normalized to actin.
- 783
- 784
- 785
- 786

eLife

Fanning, S.W.

eLife


Ligand/Mutant	$K_d (nM)^a$						
	WT	Y537S	D538G				
\mathbf{E}_{2}^{*}	0.22 ± 0.11	1.40 ± 0.54	1.77 ± 0.66				
		$K_{i} (nM)^{b}$					
4-OHT*	0.12 ± 0.003	2.64 ± 0.4	3.28 ± 0.7				
RAL	0.30 ± 0.05	3.59 ± 1.0	3.77 ± 1.0				
BZA	0.37 ± 0.01	3.50 ± 0.6	5.53 ± 0.7				
Fulvestrant*	0.13 ± 0.03	3.68 ± 0.8	5.06 ± 1.2				

^a Measured directly by Scatchard Analysis using [³H]E2. ^b Calculated using the Cheng-Prusoff equation from the IC₅₀ values determined in a competitive radiometric binding analysis using [³H]E2 as a tracer.

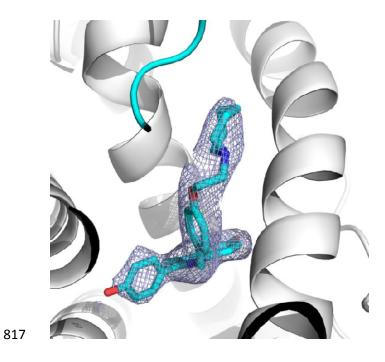
*Indicates previously published data [8, 51].

Fanning, S.W.

eLife

A) EC₅₀ quartiles for cells treated with 4-OHT (red), BZA (blue), or FULV (green). **B**) *In vitro*

quantification of the effect of ligands on promoting (E2) or inhibiting (4-OHT, RAL, BZA) the binding of SRC3-NRD to recombinant expressed WT, Y537S, or D538G ER α LBD. To be able to measure a signal from all three receptors, they were first primed with 20 nME2 before adding ligand. IC₅₀ values (nM) are


- shown next to the legend for each protein.
- 813

814

815

Fanning, S.W.

eLife

- **Supplemental Figure 3:** 2 | Fo-Fc | difference map of BZA in the ERα ligand binding pocket contoured
- 819 to 1.5σ.

Fanning, S.W.

Sequence —	Charge	Start	End –	WT+E2	Y537S+E2	D538G+E2
SLTADQ	1	308	314	2 (7)*	3 (9)*	-4 (8)*
ADQMVSAL	2	311	319	-19 (2)	-11 (6)	-14 (7)
AVSALL.	1	315	320	-26 (3)	-21 (8)	-20 (10)
DAEPPIL	1	320	327	-29 (3)	-21 (8)	-25 (8)
JAEPPIL	1	321	327	-27 (3)	-22 (9)	-24 (8)
SEYDPTRPESE	2	328	339	1 (7)*	2 (4)*	.3 (6)*
SEYDPTRPFSEASM	2	328	342	2 (7)*	1 (6)*	-4 (6)*
SEYDPTRPFSEASMM	2	328	343	1 (7)*	-1 (6)*	-4 (6)*
EYDPTRPFSEASM	2 2	343	342	1 (8)*	1 (6)*	-3 (6)*
AGLLTNL	2	345	349	-55 (3) -65 (4)	-30 (5) -30 (6)	-30(7)
3LLTNL	2	346	353			-28 (8)
TNLADRE IDRELVHM	2	350	357	-55 (3) -31 (3)	-25 (6) -12 (7)	-29 (10) -15 (6)
ADRELVHMINWAKRVPGF	4	350	367	-11 (1)	-12(7)	-15 (0) -7 (4)
ORELVHMINWAKRVPGF	5	350	367	-11(1)	-0 (*) -5 (3)*	-7 (4) -6 (3)
ADRELVHMINWAKRVPGFVD	2	350	360	-9 (2)	-0 (3)* -4 (3)*	-6 (J) -6 (4)
ADRELVHMINWAKRVPGFVDL	3	350	370	-9(2) -9(1)	-= (3)- -5 (4)*	-5 (4)
VHMIN	2	354	359	-9(2)	-5 (4)- -6 (8)*	-6 (4)
VHMINW	2	154	360	-7(2)	-0 (0)*	-0 (*) -4 (3)*
NWAKR/PCF	2	358	367	-7 (4)	-3 (3)* -2 (4)*	-1 (2)*
DLTLHD	2	368	374	2 (4)*	4 (6)*	0 (5)*
DLTLHDQVHL	3	368	372	3 (2)*	~ (0)" 5 (6)*	2 (6)*
DLTLHDQVHLLE	2	300	376	2 (2)	0 (0)* 4 (5)*	1 (5)*
TINDOVNUE	3	370	380	2 (2)*	4 (0)* 3 (4)*	1 (5)*
IDQVHUE	2	373	380	2 (2)*	3 (4)* 2 (4)*	1 (3)*
ZVHLLE	2	375	30.	2 (0)*	2 (a)* 3 (6)*	1 (2)*
2VHLLEC	2	375	381	1(1)*	2 (4)*	0 (4)*
ELM	1	384	388	0(1)*	-5 (6)*	0 (1)*
ELMI	1	385	389	0(1)*	-5 (6)*	0 (1)*
VWRSMEMPGKL	3	391	402	-9(2)	-6 (5)	-6 (4)
VWRSMEHPGKLEAPNL	3	391	408	-16 (2)	-9 (6)	-3(5)
WRSMEHPGKLLFAPNLL	3	391	400	-17 (2)	-9 (\$)	-9 (5)
WRSMEHPGKL	3	392	402	-10 (2)	-6 (5)	-6 (4)
WRSMEHPGKLL/APNLLL	3	392	410	-17 (2)	-9 (6)	-9 (5)
FAPNL	2	403	408	-25 (2)	-0 (0) -14 (7)	-10 (5)
FAPNUL	2	403	409	-21 (3)	-10 (6)	-10 (4)
FAPNULL	2	403	410	-23 (3)	-10 (6)	-12 (6)
LDRNQGKCVEG	3	409	420	-7 (6)	-10 (6) -8 (7)	-16(7)
LDRNQGKCVEGM	3	409	421	-9(6)	-• (7) -\$ (6)	-15(7)
LDRNQGKCVEGMVE	3	409	423	-8(6)	-++ (9) -\$ (\$)	-16 (7)
DRNQGKCVEGM	3	410	421	-9(6)	-11 (7)	-17 (8)
DRNQGKCVEGM	2	411	421	-9(6) -11(6)	-11 (7) -12 (8)	-17 (0) -18 (7)
RNOGKCVEGMVE	2	411	423	-11 (6)	-12 (0) -10 (6)	-16(8)
AVEIF	1	421	425	-15 (2)	-7 (3)	-6 (2)
aveip aveipDML	1	421	423	-15 (2) -23 (2)	-7 (3) -10 (5)	-6 (Z) -3 (5)
/EFDML	1	422	428	-23 (2)	-12 (3)	-0 (5)
ATSSRF	2	429	435	-20 (2)	-12 (3)	-6 (5)
ATSSRFRM	2	429	437	-2 (2)*	-0 (8)* -4 (7)*	-6 (5)
ATSSRFRMMNLQGEE	3	429	457	-2 (2)*	-4 (/)* -3 (6)*	-4 (0)" -3 (4)"
ATSSRFRMMNLQGEE ATSSRFRMMNLQGEEF	3	429	445	-1 (1)'	-3 (6)* -3 (5)*	-3 (4)* -2 (4)*
	3	430	444			
ATSSRFRMMNLQGEE ATSSRFRMMNLQGEEF	3	430	445	-1 (2)'	-3 (6)* -3 (6)*	-2 (3)* -2 (6)*
	3	430	445			
RMMNLQGEEF	2	136	445	-1 (2)*	-3 (6)*	-2 (9)*
SIL	1	449	453	0 (0)*	-1 (2)*	-1 (2)*
LLNSGV NSGVYTFL	1	451 454	458	-1 (2)* 0 (5)*	-2 (4)*	-1 (5)* -3 (6)*
	1	463	404		2 (6)*	
STLKSLEEKDHIHRVLDKITDTL	3	-463 -467	496	0 (3)*	1 (3)*	-2 (3)*
SLEEKDHIHR/LDKITDTL HI MAKAGI TI OOOHORI	3	467 487	496	1 (2)*	1 (4)*	-1 (5)*
				1 (2)*	2 (4)*	-1 (5)*
HLMAKAGLTLQQQHQRLAQL	3	48.7	507 508	1 (2)*	2 (4)*	0 (4)*
AKAGLTLQQQHQRLAQU	3	490	525	2 (2)*	1 (4)*	.1 (4)*
				-14 (2)	-10 (4)	-6 (3)
IL SHIRHMSNKGMEHL	3	509	525	-15 (1)	-11 (4)	-7 (3)
ILSHIRHMSNKGMEHL	1	509	525	-15 (1)	-11 (4)	-7 (3)
SHIRHMSNKGMEHL	3	510	525	-16 (1)	+12 (4)	«7 (3)
SMKCKNV/PLYG	2	526	538	0 (6)*	-8 (7)	-10 (8)
SMKCKNVVPLSDLL	2	526	540	1 (6)*	-7 (7)	-14 (8)
SMKCKNV/PLYDLL	3	526	540	1 (6)*	-7 (7)	-14 (9)
EMLDA	1	541	546	-7 (4)	-21 (10)	-23(7)
MLDAHRLHAPTS	2	542	\$54	0 (6)*	-4 (6)*	-8 (6)
DAHRLHAPTS	2	544	\$54	2 (7)*	0 (6)*	-5 (5)*
DAHRLHAPTS	1	545	\$54	3 (7)*	1 (6)*	-3 (5)*
	2	545	\$54	2 (6)*	1 (4)*	-3 (5)*
JAHRLHAPTS						
DAHRLHAPTS HRLHAPTS	2	547	554	2 (7)*	2 (4)*	-2 (5)*

821

Supplemental Figure 4: HDX MS for WT, Y537S, and D538G ERa LBD in complex with E2. 822 823 Deuterium uptake for each peptide is calculated as the average of % D for the 6 time points (10s, 30s, 60s, 300s, 900s and 3600s), and the difference in average % D values between the Apo-ER α 824 825 and ERa-E2 bound samples is shown as a heat map with a color code given at the bottom of the 826 figure (warm colors for deprotection and cool colors for protection). Peptides are colored only if they show a >5% difference (less or more protection) in average deuterium uptake between the 827 828 two states, and the software employs a paired two-tailed student's t-test-based coloring scheme 829 (p-value < 0.05 for two consecutive time points or a p-value < 0.01 for a single time point) to 830 distinguish real protection differences from inherent variation in the data. Grey color represents 831 no significant change (0-5%) between the two states.

832

eLife

Fanning, S.W.

eLife

equence	Charge	Start	End	WT+FULV	D538G+FULV
SLTADQ	1	308	314	0 (6)*	-2 (9)*
SLTADOM	2	308	315	-2 (fi)*	-6 (7)
SLTADOMVS	1	308	317	-11 (6)	-10 (6)
SLTADQMVEAL	2	309	319	-17 (4)	-11 (6)
SLTADQMVSALL ADQMVSAL	1	311	320	-19 (3)	-12 (7)
ADQMV3AL VSAL	2	311	319	+26 (3) +36 (3)	-21 (6) -30 (6)
IVDAL IVDALL		315	329	-36 (3) -32 (3)	
LOAPPE		319	327	-32 (3) -24 (4)	-30 (6) -17 (10)
DAEPPIL	1	320	327	-27 (3)	-17 (10) -24 (6)
DAEPPIL		321	327	-27 (3)	-24 (4)
YSEYDPTRPFSE		328	329	-1 (5)*	-1 (7)*
YSEYOPTRPESEASM		328	342	-2 (0)*	-1 (7)
YSEYOPTRPESEASMM	-	328	343	-3 (0)*	-2 (7)* -4 (9)*
IGUTNL	-	343	340	-3 (8)*	
ILL TNL		144	349	-55 (4) -86 (4)	-20 (4) -29 (4)
UTNLADRELVHMINWAKRVPGF		140	367	-69 (4)	-16 (5)
ADRELVHM		350	357	-27 (2)	-16 (6)
ADRELVHMINWAKRVPGF		350	367	-14 (1)	-9 (2)
ADRELVHMINWARRVPGP		350	370	-14 (1) -12 (1)	-9 (G) -9 (6)
COMMIN		354	359	-12 (1) -12 (3)	-8 (3)
COMMINAN .	-	354	360	-12 (3) -11 (2)	-6 (3)
LVHMINWAKRVPGP		354	367	-3 (1)*	-6 (2)
NWARNER		358	367	-1 (1)*	-1 (3)*
VDLTL		368	372	-1 (1)*	-1 (0)*
VOLTLHD		168	374	-1 (0)*	-2 (7)* -3 (6)*
VOLTLHDQVHL	2	368	378	-1 (3)* +1 (2)*	-3 (6)* +3 (4)*
DLTLHDQVHL	3	360	340	-1 (2)*	-2 (3)*
/DLTLHDQVHLLEC		300	300	-1 (1)*	-2 (3)*
TLHDQVHLLEC	3	368	300	-1 (1)*	-2 (3)*
TLHDQVHLLE TLHDQVHL	3	370	300	-1 (1)*	-2 (2)* -3 (2)*
4DQVHLLE		373	370	-1 (1)*	-0 GD*
ADQVHLLE SVHLLE	-	375	380	Q (Q)*	-1 (1)*
2VHULE EILM	2	375	300	0 (0)*	-1 (1)* 0 (2)*
ELMI ELMI		305	300	0 (1)* 0 (1)*	0 (2)*
GLVWRSMEHPGKL		389	402	-9 (2)	-0 (3)
WRSMEHPGRL		391	402	-9 (2)	-7 (4)
VWRSMEHPGKLF		391	404	-14 (2)	-8 (4)
VWRSMEHPGKLLFAPNL		391	408	-19 (2)	-12 (6)
WIRSMEHPGKLEFAPNLL		791	409	-17 (3)	-12 (6)
/WRSMEMPGKL		192	902	-13 (2)	-8 (4)
WRSMEHPGKLFAPNLLL		192	410	-19 (2)	-12 (6)
PAPNL		403	408	-10 (2)	-12(6)
FAPILL		403	409	-26 (2)	-14 (4)
FARMULL		403	410	-40 (4) -27 (3)	-19 (4) -16 (6)
LDRNQGKCVEG		409	420	+13 (6)	-17:00
LDRNQGKCVEGM		409	421	-16 (5)	-18 (7)
LDRNQGKCVEGMVE		409	423	-16 (5)	-10 (7) -18 (8)
LORNQGRCVEGM		410	421	-10 (0) -16 (6)	-10.00) -21.(0)
DRNQGKCVE		+11	419	-18 (6)	-24.00
RNQGKCYEGM		411	421	-10 (5)	-24 (8)
DRIVQGKCVEGMVE		411	423	-19 (6)	-22 (6)
AVER .		421	425	-10(0)	-6 (3)
EVER DNL		421	423	-10 (1) -26 (3)	-0 (3) -11 (4)
/EFOML		422	428	-04 (2)	-13.(2)
FDMLL		424	429	.40 (4)	.4 (2)*
ATSSOF		429	435	-1 (2)*	-9.60
ATSSREAM		429	437	0 (2)*	-6 (80)*
ATSORFRMMNLQGEE		429	444	0(1)*	-5 (7)
ATSSRFRMMNLQGEE		129	115	0(1)*	-9 (7) -6 (7)
ATSERFRIMMINLOGE		430	444	0 (2)*	-3 (6)*
MMNLQGEEF		436	445	0 (2)*	-2 (6)*
MMNLQGEEP		449	453	0 (2)	+1 (4)*
CSIIL CSIILLNSGV	1	440	453	0 (0)* 1 (1)*	+1 (4)* 0 (6)*
LUNSGY		451	450	2 (2)*	0 (6).
ILLNSGVY	2	451	459	2 (2)*	0 (6)*
	-	454	450	4 (3)*	3 (7)*
NSGV NEGVYTEL	1	101	462	4 (3)*	2 (8)* 2 (7)*
NEGVYTPL FLSSTL	-	494	40.2 etc.	2 (6)*	3 (6)*
PLSSTL LSSTL	1	461	400	0.067	3 (8)*
USSTL STLKSLEEKDHIHRVLDKITDTL	1	463	486	0 (8)*	3 (8)*
SLEEKDHINRYLDKITDTL		467	405	0 (3)* -1 (3)*	-1 (0)*
GLEEKDHIHHVLDRITDTL HLMA		487	491	-1 GD* 0 (26)*	-2 (6)* -4 (90)*
HLMAKAGI.	1	487	495	0 (20)* 1 (3)*	-4 (12)* -2 (6)*
HLMAKAGI, HLMAKAGI, TLQQQHQRI,	3	487	495	1 (3)* 0 (3)*	-2 (6)*
HLMAKAGLTLQQQHQRLAQL	1	487	504	2 (6)*	-3 (6)* -1 (6)*
TURNING TURGETURELAGE	4	187	508	E (0)*	-1 (0)*
HUMAKAGUTUQQQHQRUAQUU	3	487	508	0(1)*	-2 (6)*
MAKAGI, TLQQQMQRL	*	490 490	504	0 (3)*	-2 (6)*
AKAGLTLOQGHQRLAGL	4	490	507	0 (2)*	
ANKAGLTLQQQHQRLAQLL	1			0 (2)*	-2 (4)*
AAKAGLTLQQQHQRLAQLU	3	490	509	0 (2)*	-3 (4)*
GAGETLOQQHQRLAQL	3	492	507	1 (2)*	-2 (6)*
GAGETLOGGHORLAGEL	3	492	508	0 (14)*	-2 (4)*
LILSHIRHMSNKGMEHL	3	508	\$25	-16 (1) -17 (1)	-8 (3)
ILSHIRHMSNKGMEHL	+	509	\$25	-17 (1)	-9 (3)
SHIRHMSNIKGMEHL	3	\$10	\$25	-18 (1)	-11.(4)
YSMIKCKN/V/PLYDLL	3	526	540	4 (6)*	3 (8)*
KORNAVPLYGLL	2	529	540	6 (5)	5 (9)
LEMLDA	1	541	546	6 (4)	10 (8)
EMLDAHRLHAPTS	3	541	\$54	2 (6)*	3 (6)*
EMLDAHRLHAPTS	2	542	554	1 (6)*	1(7)*
ALDAHRLHAPTS	ĵ	543	554	0 (6)*	0 (8)*
LOAMREMAPTS	2	544	554	0 (6)*	0 (6)*
	3	545	554	0.063*	1 (6)*
JAMRI MAPTS					
	2	547	554	0 (6)*	1 (0)*
DAMRLHAPTS HRUHAPTS 50 -40	2 -30 -20	-10		0 16)* 10 20	1 (0)* 30 40

833

834 Supplemental Figure 5: HDX MS for WT and D538G ERa LBD in complex with FULV. Deuterium 835 uptake for each peptide is calculated as the average of % D for the 6 time points (10s, 30s, 60s, 300s, 900s and 3600s) and the difference in average % D values between the Apo-ER α and ER α -FULV bound 836 samples is shown as a heat map with a color code given at the bottom of the figure (warm colors for 837 838 deprotection and cool colors for protection). Peptides are colored only if they show a >5% difference (less or more protection) in average deuterium uptake between the two states and the software employs a 839 840 paired two-tailed student's t-test-based coloring scheme (p-value < 0.05 for two consecutive time points 841 or a p-value < 0.01 for a single time point) to distinguish real protection differences from inherent

variation in the data. Grey color represents no significant change (0-5%) between the two states.

Fanning, S.W.

	•	c
el	_11	te

Sequence	Charge	Start	End		WT+4-OHT	Y537S+4-OHT	D538G+4-OHT
TADQMVSAL		1	311	319	-28 (4)	-21 (9)	-20 (10)
VSAL		1	315	319	-42 (4)	-31 (7)	-22 (11)
DAEPPIL		1	320	327	-35 (5)	-21 (6)	-27 (12)
AEPPIL		1	321	327	-33 (5)	-22 (7)	-28 (9)
SEYDPTRPFSE		2	328	339	0 (3)*	2 (9)*	2 (7)*
SEYDPTRPFSEASM		2	328	342	0 (3)*	3 (9)*	2 (7)*
SEYDPTRPFSEASMM		2	328	343	0 (4)*	5 (9)*	2 (7)*
IGLLTNL		2	343	349	-65 (5)	-26 (9)	-20 (8)
LLTNL		1	344	349	-80 (6)	-31 (6)	-23 (11)
DRELVHMINWAKRVPGF		5	350	367	-15 (3)	-9 (3)	-4 (3)*
DRELVHMINWAKRVPGFVD		3	350	369	-14 (2)	-8 (4)	-5 (5)*
DRELVHMINWAKRVPGFVDL		3	350	370	-15 (2)	-8 (4)	-4 (5)*
DLTLHDQVHL		2	368	378	0 (3)*	-6 (4)	-2 (4)*
DLTLHDQVHLLE		3	368	380	-1 (1)*	-6 (4)	-3 (5)*
GLVWRSMEHPGKL		3	389	402	-13 (3)	-6 (4)	-4 (4)*
/WRSMEHPGKL		3	391	402	-15 (2)	-7 (4)	-4 (6)*
/WRSMEHPGKLLF		3	391	404	-19 (1)	-8 (4)	-5 (4)*
FAPNL		1	403	408	-41 (2)	-17 (5)	-16 (11)
FAPNILL		2	403	410	-29 (4)	-14 (7)	-13 (9)
DRNQGKCVEGM		3	410	421	-1 (2)*	0 (8)*	0 (8)*
RNQGKCVEGM		2	411	421	-3 (3)*	0 (8)*	0 (8)*
RNQGKCVEGMVE		2	411	423	-1 (5)*	2 (9)*	-2 (11)*
EIFDML		1	422	428	3 (4)*	9 (5)	7 (5)
ATSSRF		2	429	435	-11 (5)	-9 (9)	-2 (5)*
ATSSRFRM		2	429	437	-10 (5)	-8 (7)	-2 (3)*
MMNLQGEEF		2	436	445	-4 (3)*	-7 (8)	-5 (8)*
SIIL		1	449	453	-1 (2)*	-3 (4)*	-4 (8)*
SIILLNSGV		2	449	458	-2 (3)*	-3 (3)*	-3 (6)*
NSGVYTFL		1	454	462	-2 (4)*	3 (7)*	2 (5)*
STLKSLEEKDHIHRVLDKITDTL		3	463	486	-1 (2)*	0 (4)*	-2 (6)*
SLEEKDHIHRVLDKITDTL		3	467	486	-4 (4)*	-2 (3)*	-1 (6)*
ILMAKAGLTLQQQHQRL		3	487	504	-1 (3)*	-2 (5)*	-2 (7)*
LMAKAGLTLQQQHQRLAQL		3	487	507	-1 (2)*	-1 (3)*	-2 (5)*
LMAKAGLTLQQQHQRLAQLL		3	487	508	-1 (4)*	-1 (5)*	-2 (5)*
AKAGLTLQQQHQRLAQLL		3	490	508	-1 (2)*	-2 (4)*	-2 (6)*
LILSHIRHMSNKGMEHL		3	508	525	-20 (2)	-9 (9)	-8 (7)
LSHIRHMSNKGMEHL		4	509	525	-21 (2)	-9 (9)	-9 (7)
SHIRHMSNKGMEHL		3	510	525	-22 (2)	-10 (10)	-9 (8)
SMKCKNVVPLSDLL		2	526	540	1 (4)*	8(7)	-1 (9)*
CKNV/VPLYDLL		3	529	540	2 (4)*	11 (9)	0 (7)*
EML		1	540	544	-2 (1)*	3 (9)*	0 (2)*
EMLDAHRLHAPTS		3	541	554	1 (5)*	5 (7)*	0 (5)*
MLDAHRLHAPTS		2	542	554	0 (3)*	3 (8)*	0 (5)*
AHRIHAPTS		2	545	554	0 (4)*	3 (7)*	3 (4)*
50	40 .	30 - 3	-10	0	10	20 30 40	50

843

Supplemental Figure 6: HDX MS for WT, Y537S, and D538G ERα LBD in complex with 4-OHT.

B45 Deuterium uptake for each peptide is calculated as the average of % D for the 6 time points (10s, 30s, 60s,

846 300s, 900s and 3600s) and the difference in average % D values between the Apo-ERα and ERα-FULV

bound samples is shown as a heat map with a color code given at the bottom of the figure (warm colors

848 for deprotection and cool colors for protection). Peptides are colored only if they show a >5% difference

849 (less or more protection) in average deuterium uptake between the two states and the software employs a

paired two-tailed student's t-test-based coloring scheme (p-value < 0.05 for two consecutive time points

or a p-value < 0.01 for a single time point) to distinguish real protection differences from inherent

variation in the data. Grey color represents no significant change (0-5%) between the two states.

853

- 855
- 856
- 857
- 858

Fanning, S.W.

	• •	
ρI	1te	
UL.	nic	

Sequence	Charge	Start	End		WT+BZA	Y537S+BZA	D538G+BZA
DAEPPIL	1	320		327	-37 (5)	-32 (3)	-26 (5)
DAEPPIL	1	321		327	-34 (6)	-31 (4)	-24 (5)
YSEYDPTRPFSE	2	328		339	-2 (3)*	0 (2)*	-2 (5)*
SEYDPTRPFSEASM	2	328	E	342	-1 (3)*	0 (2)*	-2 (5)*
MGLLTNL	1	343		349	-48 (5)	-38 (2)	-21 (5)
ADRELVHMINWAKRVPGF	4	H 350		367	-13 (3)	-14 (2)	-9 (4)
ADRELVHMINWAKRVPGFVD	3	350	1	369	-17 (6)	-13 (2)	-8 (3)
DLTLHDQVHL	2	368		378	-1 (2)*	-5 (2)*	-6 (3)
DLTLHDQVHLLE	2	2 368		380	-2 (2)*	-4 (1)*	-5 (3)
GLVWRSMEHPGKL	3	389		402	-12 (3)	-8 (1)	-7 (4)
WRSMEHPGKL	3	391		402	-15 (4)	-10 (2)	-9 (4)
LVWRSMEHPGKLLF	3	391		404	-18 (5)	-15 (7)	-10 (5)
LVWRSMEHPGKLLFAPNL	3	391	L	408	-20 (5)	-14 (2)	-11 (7)
WRSMEHPGKLLFAPNLL	3	391		409	-21 (7)	-14 (3)	-11 (5)
WRSMEHPGKL	3	392	2	402	-14 (7)	-11 (2)	-9 (4)
WRSMEHPGKLLFAPNLLL	3	392	2	410	-21 (7)	-14 (2)	-12 (6)
FAPNLLL	1	403		410	-35 (7)	-24 (2)	-19 (6)
LDRNQGKCVEGM	2	2 409		421	-12 (3)	-10 (3)	-9 (7)
RNQGKCVEGM	2	411		421	-14 (3)	-12 (3)	-10 (5)
/EIFDML	1	422		428	-14 (3)	-6 (2)	-4 (3)*
ATSSRFRMMNLQGEEF	3	429		445	-3 (2)*	-5 (4)	-6 (7)
BMMNLQGEEF	2	436	i .	445	-1 (10)*	-4 (2)*	-9(7)
STLKSLEEKDHIHRVLDKITDTL	3	463		486	-2 (2)*	-1 (1)*	-3 (4)*
SLEEKDHIHRVLDKITDTL	3	467	, .	486	-4 (4)*	-3 (4)*	-2 (5)*
HLMAKAGLTLQQQHQRLAQL	3	487	,	507	-3 (4)*	-2 (1)*	-1 (4)*
HLMAKAGLTLQQQHQRLAQLL	3	487		508	-4 (2)*	-2 (2)*	-3 (4)*
MAKAGLTLQQQHQRLAQL	3	490		507	-4 (3)*	-2 (2)*	-4 (4)*
AKAGLTLQQQHQRLAQLL	3	490	1	508	-4 (3)*	-2 (2)*	-4 (4)*
MAKAGLTLQQQHQRLAQLLL	3	490		509	5 (4)*	-2 (1)*	-4 (4)*
LILSHIRHMSNKIGMEHL	2	2 508	5	525	-12 (7)	-7 (2)	-5 (6)
ILSHIRHMSNKGMEHL	3	509		525	-14 (5)	-7 (2)	-5 (6)
LSHIRHMSNKGMEHL	3	510		525	-15 (5)	-7 (2)	-7 (6)
SMKCKNVVPLSDLL	2	2 526		540	-6 (3)	-1 (3)*	-1 (6)*
CKNWVPLYGLL	2	529		540	-8 (3)	1 (3)*	-1 (6)*
EMLDAHRLHAPTS	2	541		554	-3 (3)*	0 (2)*	2 (5)*
EMLDAHRLHAPTS	3	541	L	554	-4 (3)*	1 (3)*	2 (5)*
EMLDAHRLHAPTS	2	542	2	554	0 (3)*	2 (3)*	1 (8)*
DAHRLHAPTS	2	544		554	0 (3)*	1 (3)*	1 (6)*
		545		554	1 (3)*	1 (3)*	0 (6)*

Supplemental Figure 7: HDX MS for WT, Y537S, and D538G ERα LBD in complex with BZA.

B61 Deuterium uptake for each peptide is calculated as the average of % D for the 6 time points (10s, 30s, 60s,

300s, 900s and 3600s) and the difference in average % D values between the Apo-ERα and ERα-FULV

bound samples is shown as a heat map with a color code given at the bottom of the figure (warm colors

for deprotection and cool colors for protection). Peptides are colored only if they show a >5% difference

865 (less or more protection) in average deuterium uptake between the two states and the software employs a

paired two-tailed student's t-test-based coloring scheme (p-value < 0.05 for two consecutive time points

867 or a p-value < 0.01 for a single time point) to distinguish real protection differences from inherent

variation in the data. Grey color represents no significant change (0-5%) between the two states.

869