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Abstract 1 

Genotype-stratified variance of a quantitative trait could differ in the presence of gene-gene or 2 

gene-environment interactions. Genetic markers associated with phenotypic variance are thus 3 

considered promising candidates for follow-up interaction or joint location-scale analyses.  4 

However, as in studies of main effects, the X-chromosome is routinely excluded from ‘whole-5 

genome’ scans due to analytical challenges.  Specifically, as males carry only one copy of the X-6 

chromosome, the inherent sex-genotype dependency could bias the trait-genotype association, 7 

through sexual dimorphism in quantitative traits with sex-specific means or variances.  Here we 8 

investigate phenotypic variance heterogeneity associated with X-chromosome SNPs and propose 9 

valid and powerful strategies.  Among those, a generalized Levene’s test has adequate power and 10 

remains robust to sexual dimorphism.  An alternative approach is sex-stratified analysis but at 11 

the cost of slightly reduced power and modeling flexibility.  We applied both methods to an 12 

Estonian study of gene expression quantitative trait loci (eQTL; n=841), and two complex trait 13 

studies of height, hip and waist circumferences, and body mass index from multi-ethnic study of 14 

atherosclerosis (MESA; n=2,073) and UK Biobank (UKB; n=327,393).  Consistent with 15 

previous eQTL findings on mean, we found some but no conclusive evidence for cis regulators 16 

being enriched for variance association.  SNP rs2681646 is associated with variance of waist 17 

circumference (p=9.5E-07) at X-chromosome-wide significance in UKB, with a suggestive 18 

female-specific effect in MESA (p=0.048).  Collectively, an enrichment analysis using 19 

permutated UKB (p<1/10) and MESA (p<1/100) datasets, suggests a possible polygenic 20 

structure for the variance of human height.  21 

Key words: complex traits; eQTL; gene-environment interaction; variance heterogeneity; X-22 

chromosome association. 23 
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Introduction 1 

Several recent reports have examined autosomal genetic loci contributing to phenotypic variance  2 

(as opposed to mean) for a wide range of complex traits (Pare, Cook, Ridker, & Chasman, 2010; 3 

Shungin et al., 2017; Yang et al., 2012), and corresponding methodology development remains 4 

an active area of research (Aschard, Zaitlen, Tamimi, Lindstrom, & Kraft, 2013; Cao, Wei, 5 

Bailey, Kauwe, & Maxwell, 2014; Deng, Asma, & Pare, 2014; Deng & Pare, 2011; Hulse & Cai, 6 

2013; Soave et al., 2015; Soave & Sun, 2017; Struchalin, Dehghan, Witteman, van Duijn, & 7 

Aulchenko, 2010; Sun, Elston, Morris, & Zhu, 2013).  One possible reason for such phenotypic 8 

variance and SNP genotype association, or variance heterogeneity, is that genotype-stratified 9 

variances of a trait differ in the presence of gene-gene (GxG) or gene-environment (GxE) 10 

interactions; both referred to as GxE hereinafter.  For example, rs1358030 (SORCS1) was shown 11 

to interact with treatment type affecting HbA1c levels in Type 1 Diabetes subjects (Paterson et 12 

al., 2010).  And indeed, in a proof-of-principle study where the treatment information was 13 

intentionally masked, the SNP was then demonstrated to be associated with variance of HbA1c 14 

(Soave et al., 2015).  Conversely, because direct GxE modeling may not be feasible in an initial 15 

whole-genome scan, the question was then raised as to whether SNPs having effects on the 16 

variance of a trait make good candidates for follow-up interaction testing (Shungin et al., 2017).  17 

For instance, rs7202116 (FTO as the nearest gene) was significantly associated with variance of 18 

body mass index (BMI) (Yang et al., 2012), and at the same locus, rs1121980 (FTO) showed 19 

evidence for a statistical interaction with physical activity influencing the mean of BMI (Ahmad 20 

et al., 2013; Kilpelainen et al., 2011); it is worth noting that un-modeled interaction induces 21 

variance heterogeneity, but the causes of variance heterogeneity are multifaceted (Cao et al., 22 

2014; Dudbridge & Fletcher, 2014; Pare et al., 2010; Soave et al., 2015; Struchalin et al., 2010; 23 
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Sun et al., 2013; Wood et al., 2014).  In practice, although it is possible that an interacting SNP 1 

has a stronger effect on variance than on mean, as in the case of rs12753193 (LEPR) interacting 2 

with BMI in the prediction of CRP levels in the absence of detectable main effect (Pare et al., 3 

2010), a more powerful approach to selecting association candidates is to jointly evaluate their 4 

mean and variance effects (Aschard, Hancock, London, & Kraft, 2010; Cao et al., 2014; Soave et 5 

al., 2015).  6 

Despite enthusiasm to discover SNPs with variance effects and the availability of 7 

statistical tests, variance heterogeneity has not been formally explored for SNPs on the X-8 

chromosome (XCHR).  As in the conventional ‘genome-wide’ (mean) association studies (Wise, 9 

Gyi, & Manolio, 2013), the reluctance to include XCHR is due to analytical challenges (Konig, 10 

Loley, Erdmann, & Ziegler, 2014; Wise et al., 2013).  They range from technical difficulties in 11 

genotype calling to statistical complexities in imputation and association (e.g. model uncertainty 12 

involving random or skewed X-inactivation (Carrel & Willard, 2005; Ross et al., 2005; 13 

Tukiainen et al., 2017; Wang, Yu, & Shete, 2014) and sex as a potential confounder).  Solutions 14 

to overcome some of these challenges had been provided, but all in the context of genetic 15 

association analysis of main effects (Chen, Craiu, Strug, & Sun, 2019; Chen, Craiu, & Sun, 16 

2018; D. Clayton, 2008; D. G. Clayton, 2009; Hickey & Bahlo, 2011; Wang et al., 2014; Özbek 17 

et al., 2018).  18 

Here we focus on understanding the impact of the inherent sex-genotype dependency on 19 

variance heterogeneity association analysis, and when the trait of interest has sex-specific mean 20 

or variance values for males and females.  In practice, sexual dimorphism is consistently 21 

observed.  For example, based on the UK Biobank (UKB) (Sudlow et al., 2015) and Multi-22 

Ethnic Study of Atherosclerosis (Bild et al., 2002) (MESA) data, height displays a sex-specific 23 
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difference in mean, hip circumference differs in variance, while body mass index (BMI) and 1 

waist circumference contrast in both mean and variance between males and females (Fig 1).  2 

These empirical patterns of sexual dimorphism vary according to the underlying physiology of 3 

the trait, which might or might not be related to genes.  Thus, association analyses of phenotypic 4 

mean or variance with XCHR SNPs could be biased if these potential sex-specific main or 5 

variance effects were not appropriately accounted for.  6 

For an autosomal SNP, evaluating differences in phenotypic variance across the three 7 

genotype groups can be readily achieved by the classical Levene’s test for variance heterogeneity 8 

(Levene, 1960).  SNPs with significant variance association p-values are then selected as likely 9 

candidates for follow-up interaction studies.  However, the same strategy to prioritize SNPs on 10 

XCHR can be problematic, because sex-specific mean and variance differences could create 11 

spurious variance heterogeneity unrelated to the putative GxE interactions of interest.  Thus, the 12 

correct formulation of variance test is dependent on a proper formulation of sex effect with 13 

respect to both mean and variance.  14 

In this paper, we explicitly model the possible sources of confounding related to sex, and 15 

propose two general testing strategies that strike a balance between power and robustness against 16 

various model uncertainties.  Using extensive simulations, we demonstrate the danger of directly 17 

applying autosomal methods to the XCHR that would otherwise be suitable for testing variance 18 

heterogeneity, and we conclude that special consideration for sex-genotype dependence must be 19 

made for the XCHR to maintain correct type I error rates.  Application studies include 20 

identifying SNPs associated with variances of height, BMI, hip and waist circumference using 21 

the UK Biobank (UKB) and multi-ethnic study of atherosclerosis (MESA) data, as well as 22 

detecting loci associated with variance of expression quantitative traits using data from the 23 
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Estonian Genome Center at the University of Tartu (EGCUT) cohort (Leitsalu et al., 2015; 1 

Metspalu, 2002; Westra et al., 2013). 2 

 3 

 4 

Methods  5 

 6 

Variance of a quantitative trait by genotype in the presence of genetic interactions  7 

Of interest is a quantitative trait Y, assumed to be (approximately) normally distributed or had 8 

been inversely transformed to resemble a normal distribution.  Without loss of generality, first 9 

consider the following linear model for the ‘true’ association relationship between Y and an 10 

autosomal SNP,  11 

� �  �� � ��� � ��� � ����� � ��� � ����� � ����� � ������� � 	,  (1) 12 

where G denotes the SNP genotype coded additively (Hill, Goddard, & Visscher, 2008) with 13 

respect to the number of the minor allele 0, 1 and 2 for bb, Bb and BB as in convention, S is the 14 

male sex indicator variable (e.g. S = 0 for females and S = 1 for males), E ~ N(0, 1) is a 15 

standardized continuous covariate following the classical G-E independence assumption 16 

(Lindstrom, Yen, Spiegelman, & Kraft, 2009), and the error term ε ∼ N(0, 1) is independent of G, 17 

S and E.  The minor allele frequency (MAF) of G is assumed to be the same for male and 18 

females; sex-specific MAF affects the naïve methods and we will return to this point in the 19 

Discussion section.     20 

Under these assumptions, it is possible to identify autosomal SNPs potentially involved 21 

in GxE or high-order interactions, without having to measure E directly, through detecting 22 

phenotypic variance associated with G via the working model of Y ~ G.  Note that the analytical 23 
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context here is that direct GxE (or GxG) modeling may not be possible (e.g. E may not be known 1 

or measured precisely) or desirable (e.g. due to computational or multiple hypothesis testing 2 

concerns for whole-genome GxG scans).  To see the rationale behind the working model, with 3 

the additional assumption of conditional independence between E and S conditional on G, one 4 

can show that the conditional variance of Y on G is, 5 

Var
�|� �  � � 
�� � ����� � 
�� � �����Var
�|� � � � �
��� � ������ �6 

                                          2
�� � ����
��� � �������
�|� � � �  1.                               (2) 7 

Since S is independent of G for an autosomal SNP, Pr(S|G = g) is constant across g = 0, 1 and 2, 8 

so are E(S|G=g) and Var(S|G=g).  Thus, if βGS = βGE= βGSE = 0, expression (2) can be reduced to 9 

a constant with respect to G: 10 

Var
�|� �  � � ��
� � ��

�
Var
�|� �  � � ����

� �  2�������
�|� �  � �  1      (3) 11 

    � ��
� � ��

�
Var
� � ����

� �  2�������
� �  1 .                     (4) 12 

Conversely, variation in Var(Y|G=g) across G suggests that at least some of the (un-modeled) 13 

interaction terms involving G (i.e. βGS , βGE and βGSE) are non-zero.  This was precisely the 14 

motivation behind the original idea of using Levene’s test to identify variance heterogeneity 15 

induced by the underlying but un-modeled GxE interaction (Pare et al., 2010).  16 

 17 

X-chromosome (XCHR) specific challenges for variance tests 18 

The same approach to draw similar conclusions for XCHR SNPs, however, is questionable, 19 

because Pr(S|G = g) is no longer constant in G and expression (3) cannot be further reduced to 20 

(4).  For example, Clayton’s approach (Clayton, 2008) suggests coding the bb, Bb and BB 21 

genotypes in females as 0, 1 and 2 and the b and B genotypes as 0 and 2 in males, the G=1 group 22 
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contains only females.  Similarly, without considerations for the X-chromosome, using the usual 1 

autosomal coding of 0, 1 and 2 in females and 0 and 1 in males, the G=2 group then contains 2 

only females.  Thus, omitting the sex indicator S from the covariates can bias the conclusion 3 

through sexual dimorphism as seen in Fig 1.   4 

Consider the simplest case of no interaction effects at all (βGS = βGE = βSE = βGSE = 0) nor 5 

environmental main effect (βE = 0), but there is a sex main effect (βS ≠ 0, i.e. the sex-stratified 6 

phenotypic means differ between males and females), then expression (3) is reduced to 7 

                         Var
�|� �  � � ��
�
Var
�|� � � �  1.                                            (5)  8 

Thus, in the absence of any interactions that involve G, there is a spurious phenotypic variance 9 

heterogeneity across levels of G through a non-zero sex main effect (βS), or through a sex-10 

environment interaction effect (βSE) if present as in equation (3).  Severity of the confounding 11 

depends on the discrepancy between the two sex-stratified trait distributions (real data in Fig 1 12 

and conceptual data in Fig 2A-D), as well as on the strength of correlation between sex and the 13 

observed genotype, which in turn depends on the MAF and proportions of males and females in 14 

a sample (details in S1 Text).  15 

To avoid spurious variance heterogeneity signals, alternative approaches are needed to 16 

quantify variance differences induced by GxE or higher order interactions involving G.  To this 17 

end, it is important to appropriately define the null hypothesis of variance homogeneity that 18 

corresponds to an absence of phenotypic variance associated with genotype while allowing for 19 

variance (and mean) to differ between males and females (Fig 2A-D).  20 
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We also note that the different coding schemes (i.e. 0-1 or 0-2 in males) are not meant to 1 

equate or model the biological effect of X-inactivation (or the absence of it), as the relationship 2 

between allele dosage in tissues and phenotypic mean at an organism level depends on a number 3 

of biological factors (Deng, Berletch, Nguyen, & Disteche, 2014).  Rather, they are used to build 4 

association tests that are analytical appropriate for different biological scenarios.  Further, it has 5 

been noted that, for association analysis of phenotypic mean, the use of an additively coded 6 

genotype alone might not be sufficient for the XCHR (Chen et al., 2019; Özbek et al., 2018). 7 

Thus, we will be considering models that account for both sex main and genotype-sex interaction 8 

effects. 9 

 10 

X-chromosome (XCHR) variance heterogeneity tests  11 

Here we consider various analytical strategies to assess phenotypic variance associated with 12 

genotypes of XCHR SNPs, including naïve methods that directly apply the original Levene’s test 13 

to different genotype groups, and an alternative approach that utilizes a generalized Levene’s test 14 

derived from a two-stage regression framework (Gastwirth, Gel, & Miao, 2009; Levene, 1960; 15 

Soave & Sun, 2017).  The recommend methods have been implemented as an open-source R 16 

program (Web resources). 17 

 18 

Naïve methods: apply Levene’s test to three or five genotype groups  19 

The original Levene’s test for variance heterogeneity treats an autosomal genotype G as a 20 

categorical variable (Gastwirth et al., 2009; Levene, 1960) and examines any variance difference 21 

in trait Y amongst the three possible genotype groups.  A direct application to XCHR, however, 22 

is problematic.  Because sex S is inherently correlated with G of a XCHR SNP, so any potential 23 
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correlation between S and Y (e.g. as observed in human height) would create the classic case of 1 

confounding.  Consider the null situation where G is not associated with the variance of Y as in 2 

the top panel of Fig 2.  Assume the 0-2 coding of G in males was used (same conclusion for the 3 

0-1 coding in males), the Bb group contains only females and its variance would be the same as 4 

σf
2, reflected by variance of the orange curve in the figure.  In contrast, the other two groups 5 

(bb+b and BB+B) contain both males and females, and their respective variance values, 6 

involving both the orange and blue curves, depend on sex-specific means (µm and µf) and 7 

variances (σm
2 and σf

2), as well the proportion of males in each group.  Thus, in the presence of 8 

sexual dimorphism, either in mean (Fig 2B), variance (Fig 2C), or both (Fig 2D), there would be 9 

spurious variance heterogeneity resulting in increased false positive rates. 10 

As an alternative, one may be tempted to treat each genotype and sex combination as one 11 

group, resulting in a total of 5 groups.  Indeed, this five-group strategy does not induce spurious 12 

association in the presence of sex-specific mean effect (µm ≠ µf as in Fig 2B).  However, it is not 13 

difficult to see that the problem remains when there is a sex-specific variance effect (σm
2 ≠ σf

2 as 14 

in Fig 2C or 2D).   15 

 16 

Fisher’s method: combine sex-stratified Levene’s test  17 

Sex-stratified analysis provides a practical strategy whereby variance heterogeneity is assessed 18 

separately in males (Levene’s test for two groups) and females (Levene’s test for three groups).  19 

Fisher’s method can then be used to combine the two independent p-values (Derkach, Lawless, 20 

& Sun, 2013). Though a sex-stratified analysis does not allow direct GxS modeling, it is robust 21 

to various forms of sexual dimorphism as seen in Fig 2B-D, and it does not require 22 

considerations for dosage compensation related to random X-inactivation.  23 
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Model-based generalized Levene’s test: account for sex-specific mean and variance effects via 1 

two-stage regression models.  2 

Since we defined the null hypothesis in terms of phenotypic variance heterogeneity induced by 3 

(un-modeled) GxE interactions while allowing for sexual dimorphism (Fig 2B-D), a preferred 4 

method should explicitly account for the effect of sex on the phenotype of interest.  We consider 5 

the generalized Levene’s test in a flexible two-stage regression framework.   In essence, stage 6 

one regresses Y on G and obtains the absolute residual d (i.e. the absolute value of residuals 7 

given by the difference between the observed and fitted Y values).  Stage two regresses d on G 8 

again and tests the slope using the ANOVA F-test.  This approach has been shown to be 9 

equivalent to testing variance heterogeneity in Y associated with G, because the expectation of d 10 

linearly depends on variance of Y (Gastwirth et al., 2009; Soave & Sun, 2017).  It is possible to 11 

regress d2 or other function forms of the absolute residual, however, d approximately follows a 12 

folded-normal distribution and is more robust to model assumptions (Gastwirth et al., 2009; 13 

Levene, 1960). 14 

The generalized Levene’s test has been used to study autosomal SNPs with more 15 

complex data structures including genotype group uncertainty (e.g. imputed SNPs) or sample 16 

dependency (e.g. correlated family members) (Soave & Sun, 2017).  For XCHR analysis, the 17 

implementation requires additional care because it is not immediately clear whether S (or GxS) 18 

should be included in both stages.  For a comprehensive evaluation, we consider all 19 

combinations of the following two-stage models:  20 

Stage One: Mean models,        21 

    �~�� � ��� (M1), 22 

     �~�� � ��� � ���   (M2), 23 
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     �~�� � ��� � ��� � ����� (M3). 1 

Stage Two: Variance models,       2 

    �~�� � ��� (V1), 3 

    �~�� � ��� � ��� (V2), 4 

    �~�� � ��� � ��� � ����� (V3). 5 

Note that a non-additive variance model (VNA) in stage two may be considered:  6 

   �~�� � ����1 � ����2 (NAV1), 7 

   �~�� � ����1 � ����2 � ��� (NAV2), 8 

   �~�� � ����1 � ����2 � ��� � �����1� (NAV3), 9 

where �1 and �2 are indicator variables, respectively, for the Bb and BB+B groups under the 0-2 10 

coding scheme in males, or alternatively for the Bb+B and BB groups assuming a 0-1 coding in 11 

males.   12 

The models in stage one are only used to calculate residuals, using either the traditional 13 

ordinary least squares (OLS) or the recommended least absolute deviations (LAD); LAD is more 14 

robust to data with asymmetric distributions or low genotype counts in a specific group (Chen et 15 

al., 2019; Hines & Hines, 2000; Soave & Sun, 2017).  The goal of this stage is to remove any 16 

Mean effects associated with the covariates included in the model (i.e. G, S or GxS); thus models 17 

in stage 1 are denoted as M1, M2 or M3.   18 

Test for Variance heterogeneity is achieved in stage two (V1, V2 or V3), by testing Ho: 19 

γG = 0 or Ho: γG = γGS = 0 via the standard regression F-test, where the model is fitted using OLS 20 

for independent samples or generalized least squares for dependent samples.  21 

Note that in both stage one and two, the homoscedasticity assumption is violated 22 

whenever the residual variance is not constant across the stratified predictors (i.e. whenever βSE ≠ 23 
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0, see S1 Text).  In this case, the estimated regression coefficients are still unbiased, but the 1 

inference will be inflated due to underestimated variance of the estimates.  Since our main 2 

objective in the first stage is not inference, but rather estimating an accurate location shift for 3 

each subgroup, the violation does not invalidate our procedure to remove any mean effect. 4 

However, in stage two, the inference on γG and γGS would be affected if the homoscedastic 5 

residuals from stage one were not properly adjusted.  A simple fix to this problem is to use a 6 

weighted response dw = 1(S=0) d/sf + 1(S=1) d/sm, where sf and sm denote the sample standard 7 

deviations of Y in females and males, respectively (S1 Text).  8 

The model-based regression approach includes a total of 24 strategies, with 18 M+V two-9 

stage models, V3 and VNA3 also allow a two and three degrees of freedom (d.f.) test for each 10 

stage one model, respectively (summarized in S1 Table).  Based on the earlier discussion, it is 11 

expected that mean modeling strategies omitting S (i.e. M1) would be sensitive to sex-specific 12 

mean effect (e.g. Fig 2B or 2D).  Meanwhile, variance testing strategies omitting S (i.e. response 13 

without weights) are anticipated to be sensitive to sex-specific variance effect (e.g. Fig 2C or 2D).  14 

For completeness of our empirical validation, we first examined the three genotype group-based 15 

naïve strategies and all 24 model-based strategies in simulation studies, as well as Fisher’s 16 

method, and then focused on the more robust ones in applications. 17 

 18 
Simulation studies 19 

Note that although G could be coded 0-2 or 0-1 in males, these two strategies are generally 20 

highly correlated leading to similar association results (Chen et al., 2018).  Further, it has been 21 

shown recently that when GxS interaction is included in the mean model the two coding schemes 22 

are equivalent in terms of association analysis of phenotypic mean (Chen et al., 2019).  Thus, for 23 
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a more focused study here the genotype for males was coded 0-1 and simulated with the same 1 

minor allele frequency as in females.  2 

  A joint mean and variance test can be more powerful than testing for variance 3 

heterogeneity alone, but the power of the joint test depends on the individual components (Soave 4 

et al., 2015).  Therefore, here we focus on comparing the different variance-testing strategies as 5 

outlined above, recommending the most robust yet powerful method that is also suitable for the 6 

joint location-scale test.  7 

 8 

Simulations for evaluating type I error control - design I based on model (1)  9 

A sample of 5,000 females and 5,000 males were simulated, and the MAF was fixed at 0.2; other 10 

sample sizes and MAFs led to qualitatively similar results.  The genotype-phenotype relationship 11 

was generated according to model (1), where the environmental variable E ~ N(0, 1) was used in 12 

generating observed phenotypic values but assumed not being available for the actual association 13 

analysis.   14 

The null scenarios were defined by the absence of interaction effects for GxE and GxExS, 15 

so the quantitative trait for each null scenario was generated assuming βGE  = βGES = 0 in model 16 

(1).  A SNP could have a G main effect, but it does not affect the phenotypic variance of interest, 17 

which is induced by un-modeled βGE and βGES in the working model, so βG = 0 without loss of 18 

generality.  Note that the naïve variance methods could also pick up a non-zero GxS interaction 19 

effect if βGS ≠ 0, but βGS itself in fact can be directly tested as gender information is routinely 20 

collected (or reliably inferred from the available genotype data).  Thus, βGS is not related to the 21 

variance heterogeneity of interest here and was set to be zero, βGS= 0.  For the remaining 22 
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parameters, β0 = 0, βE = 0 or 0.5, βS = 0 or 0.5, and βSE = 0, -0.25 or 0.25, giving a total of 12 1 

scenarios.   2 

The different scenarios roughly fall into four categories, corresponding to the four 3 

conceptual sex-stratified distributions as shown in Fig 2A-D.  For example, sexual dimorphism 4 

was introduced via βS  and βSE, where a none-zero βS allows for sex-specific mean effect (Fig 2B 5 

and 2D) while a non-zero βSE allows for sex-specific variance effect (Fig 2C and 2D).  Note that 6 

both βS and βSE are independent of the genotype-specific variance effect to be identified, which is 7 

absent in the null cases.  The number of simulated replicates was 10,000 so that estimates of the 8 

empirical type I error rates within ±0.5% of the nominal rate of 5% were considered satisfactory.  9 

 10 

Simulations for evaluating type I error control – design II based on sex-stratified mean and 11 

variance 12 

The null scenarios based on model (1) may not fully capture the extremes of sexual dimorphism, 13 

thus we further simulated trait values directly according to sex-specific distributions using means 14 

µm and µf) and variances (σm
2 and σf

2) that mimic the values observed in inverse-normally 15 

transformed BMI, height, hip and waist circumference from MESA (S2 Table). The simulated 16 

traits, generated independent of any genotypes, were then tested for variance association with 17 

genotypes XCHR SNPs from the MESA dataset after LD pruning based on a window size of 50, 18 

a step size of 10 and a variance inflation factor of 3 among females using PLINK (Purcell et al., 19 

2007) and filtering by a minimum count of 30 observations in the five sex-genotype stratified 20 

groups, resulting in a sample of 2,073 individuals and 2,100 SNPs.  21 

 22 

Simulations for evaluating power  23 
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Only strategies with satisfactory type I error control were considered for power evaluation.  We 1 

focused on model-based design I where the power directly depends on the size of GxE and 2 

GxExS interaction effects and has a clearer genetic interpretation than design II.   3 

A sample of 60,000 females and 50,000 males were simulated to mimic the typical sizes 4 

observed in large genome-wide studies, and the MAF was fixed at 0.2.  Under model (1), βGE 5 

was varied from 0 to 0.05 with a 0.005 incremental increase, and combined with a possible three-6 

way interaction βGES of 0, 0.005, or 0.01.  Other parameter values were β0 = βG = βGS = 0, βG = 7 

0.2, βE = 0.5, and βSE = 0, -0.1 or 0.1. 8 

 9 

Applications  10 

Robust variance testing strategies for X-chromosome SNPs that also had reasonable power 11 

performance were then applied to real data.  Only reportedly unrelated and ethnically Caucasian 12 

individuals were included, and diabetic individuals were excluded based on electronic medical 13 

records in the UK Biobank (Sudlow et al., 2015), and based on blood glucose level greater than 7 14 

mmol/L in MESA (Bild et al., 2002).  All quantitative traits were quantile-normally transformed 15 

(Pare et al., 2010; Shungin et al., 2017); see the Discussion section for a discussion on applying 16 

quantile transformation to the original data.  The significance level for discovery was set at a 17 

nominal level of 5% with Bonferroni correction for the total number of XCHR SNPs examined.  18 

 19 

The UK Biobank (UKB) data  20 

The available genotyped XCHR SNPs were filtered based on whether they were in pseudo 21 

autosomal region, a minimal sample count of 30 across the five sex-genotype groups, and 22 

genotype missing rate lower than 0.01.  In total, 13,621 XCHR SNPs on the Caucasian samples 23 
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(178,743 females and 148,620 males) were analyzed, and the XCHR-wide significance level was 1 

3.7E-06. 2 

 3 

The Multi-Ethnic Study of Atherosclerosis (MESA) data   4 

The genotype data in MESA, available from dbGap (Study accession: phs000209.v10.p2), were 5 

filtered similarly as the UKB data.  In total, 12,205 XCHR SNPs on the Caucasian sample (1,003 6 

females and 1,070 males) were analyzed. We did not perform a multi-ethnic analysis with all 7 

ethnicities combined.  Instead, we focused on the Caucasian subset and used it to corroborate 8 

findings from the UKB data.  9 

 10 

Estonian Genome Center at the University of Tartu (EGCUT) cohort  11 

We sought to discover XCHR SNPs influencing the variance of expression traits, as variability 12 

of gene expression has been suggested to be associated with genetic variants on autosomes 13 

(Hulse & Cai, 2013).  The recommended strategies were applied to a sample of 413 male and 14 

421 female Estonians across 648 gene expression traits that had gone through standard quality 15 

control procedures and further inversely normal transformed.  After filtering using the same 16 

criteria as the UKB data, 4,034 XCHR SNPs were analyzed for variance association with each of 17 

the 648 gene expression traits, resulting in a total number of 2,614,032 tests and a global 18 

significance level of 1.9E-08. 19 

 20 

 21 

RESULTS  22 

 23 
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Simulation studies  1 

As expected, the naïve Levene’s test, with either a three-level genotype factor G or a five-level 2 

genotype and sex factor G-S, resulted in grossly inflated empirical type I error rates in almost all 3 

scenarios except for when βS, and βSE were all set to zero, or equivalently, in the absence of any 4 

sexual dimorphism (Table 1).  5 

For generalized two-stage Levene’s tests, appropriate choices of the mean model in stage 6 

one and variance test in stage two should explicitly account for any effects of sex to avoid 7 

inflating the phenotype-genotype association test statistics.  Thus, as expected, any strategies 8 

involving M1 had inflated type I error rates, where the degrees of departure from the nominal α-9 

level varied according to sizes of the unadjusted sex mean or variance effects (S3 Table).  The 10 

remaining strategies also have reasonably controlled type I error rates when considering design II 11 

where sexual dimorphism was more extreme (S4 Table).  The sex-stratified approach, as 12 

expected, gave correct empirical type I error rates in females and males separately, and 13 

subsequently in the combined sample via Fisher’s methods, under both design I (Table 1) and 14 

design II (S4 Table).  15 

The reason for performance similarity between M2 and M3 is because the model was 16 

generated (and correctly modeled) under the 0-1 coding and �� = 0.  Interestingly, when there is 17 

a strong genotypic main effect (�� ≠ 0), an increased variance in the female heterozygote Bb 18 

group could be observed as a result of unknown X-inactivation (Ma, Hoffman, & Keinan, 2015).  19 

Indeed, additional simulation studies confirmed that variance heterogeneity p-values given by 20 

models based on M2 were influenced by increased variance due to inconsistent coding choices 21 

used when simulating and analyzing the data.  Though the model-based wM3V2 and wM3V3 22 

still maintained corrected type I error rates, the only strategies remained consistent irrespective 23 
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of coding choices are wM3V3.2, wM3VNA3.3, and Fisher’s method (S5 Table).  This is 1 

consistent with the recent results that including the GxS interaction in models studying 2 

phenotypic mean difference between genotype groups can analytically overcome the X-3 

inactivation uncertainty (Chen et al , 2019).  4 

In terms of statistical power among testing strategies with reasonable control of type I 5 

error rate and invariant to coding choices, wM3V3.2 and wM3VNA3.3 have better power than 6 

Fisher’s method in all scenarios (Figure 3 and S1 Figure).  Unsurprisingly, wM3V3.2 has the 7 

best performance when the underlying variance effect is additive, most notably when the effect is 8 

small (Figure 3).  When only non-additive variance effect is present, wM3VNA3.3 has the best 9 

performance, but wM3V3.2 quickly becomes competitive as the additive effects start to deviate 10 

from zero (S1 Figure).  Thus, we recommend the model-based wM3V3.2 and wM3VNA3.3, 11 

which were then applied to the three application datasets along with the complementary sex-12 

stratified Fisher’s method. 13 

 14 

Applications 15 

As expected, for traits with sexual dimorphism, the Lev3 and Lev5 strategies produced p-values 16 

of varying levels of departure from the reference uniform distribution (S2-5 Figures).  Using the 17 

proposed wM3V3.2, rs2681646 (TBLIX) was X-chromosome-wide significant (p < 3.7E-06) for 18 

waist circumference (p = 9.45E-07; Figure 4 and S6 Table) in UKB.  The same SNP is 19 

marginally significant in females (Levene’s test p = 0.048) using the MESA data.  We searched 20 

for SNPs within ±5Kb of rs2681646 at a minimal linkage disequilibrium (LD) of r2 > 0.7, and 21 

found 3 out of the 5 SNPs with wM3V3.2 test p < 0.05 in the MESA data (S6 Figure).  In 22 

addition, one of the SNPs with the lowest p-value of testing variance heterogeneity in height, 23 
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rs1474563, though not X-chromosome wide significant (wM3V3.2 p = 5.87E-06; S6 Table), has 1 

been shown to have a strong marginal effect on human height with a reported marginal 2 

association p = 3.0E-06 (Gudbjartsson et al., 2008).  A joint location-scale approach (p = 4.54E-3 

10) would have selected it as a good candidate for direct gene-environment interaction testing, if 4 

data on the environmental variable had been collected.  5 

 It is established in the literature that SNPs associated with phenotypic means are more 6 

likely to interact with environmental factors (Shungin et al., 2017), thus we performed a 7 

literature search of all X-chromosome SNPs associated with height, waist and hip circumference, 8 

waist-hip-ratio, BMI, and type 2 diabetes, at a suggestive significance of p < 1E-03.  We found 9 

32 out of 40 SNPs to be available or in LD (r2>0.8) in the UK Biobank data (S7 Table).  Among 10 

the 32 SNPs, 8 and 4 with significant variance heterogeneity p-values (< 0.05/32 = 1.6E-03), 11 

respectively, based on wM3V3.2 and wM3VNA3.3, and 5 based on Fisher’s method; the 4 and 5 12 

SNPs are all part of the 8 SNPs identified by the wM3V3.2 test (S7 Table).  These results 13 

strengthen the motivation of using variance heterogeneity to prioritize SNPs likely to be involved 14 

in GxE interactions. 15 

Although there were no additional X-chromosome-wide significant SNPs in UKB (S7-9 16 

Figures; S6 Tables), the overall distributions of the p-values suggest enrichment of variance-17 

associated variants for some of the traits.  For example, the estimated genomic lambda λGC based 18 

on the wM3V3.2 variance test for height was 1.12 and it was 1.10 based on Fisher’s method (S8 19 

Table).  For waist circumference, the estimated λGC based on wM3VNA3.3 was 1.08 and 1.07 20 

based on Fisher’s method.  Strikingly, λGC for hip circumference was sex-specific with a clearly 21 

more prominent λGC = 1.05 in females than λGC = 1.01 in males.  The proportion of truly 22 
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associated SNPs, π1 (estimated using methods described in (Storey & Tibshirani, 2003)), also 1 

suggested enrichment in height and waist circumference (S8 Table).  2 

To benchmark the observation of λGC =1.12 and π1=12.4% for height in UKB, and λGC 3 

=1.19 and π1=10.9% in MESA, we performed a permutation-based analysis (Figure 5).  For the 4 

UKB data, we permutated the individual phenotypic data, within the two sex strata, 5 

independently, 10 times, out of consideration for the heavy computation involved (139 hours on 6 

an Intel(R) Xeon(R) E5-2697 v3 @ 2.60GHz machine with >500Gb memory running 5 cores 7 

simultaneously).  For each permutated null dataset, we applied the wM3V3.2 test (and 8 

wM3VNA3.3 and Fisher’s method) and calculated the corresponding λGC and π1 values (Figures 9 

5-A and 5-B).  We then applied the same analysis to the MESA data but increased the 10 

permutation replicates to 100 because of the smaller sample size (Figures 5-C and 5-D).   11 

The permutation-based null λGC values based on the wM3V3.2 test, as expected, centered 12 

around 1 in both the UKB and MESA permuted datasets (Figure 5).  For the UKB sample, none 13 

of the 10 permuted values under the null of no variance heterogeneity was bigger than the 14 

observed λGC =1.12, while for the MESA sample, only one out of the 100 replicates was bigger 15 

than the observed λGC =1.19; results are similar for π1 estimates and for the wM3VNA3.3 and 16 

Fisher’s methods (Figure 5).  Collectively, these results suggest a potential polygenic variance 17 

structure for human height. 18 

For the eQTL analysis, we observed various forms of sexual dimorphism in expression 19 

traits.  In total, 182 out of the 648 expression traits had p < 0.05 based on either a t-test of 20 

equality of means or an F-test for equality of variance between the two sexes (S10 Figure).  21 

Among the eQTLs, the top five variance-associated SNPs belonged to three genes, NGFRAP1, 22 

TSC22D3, and ZMYM3 (S11-13 Figures), but no SNPs passed the strict Bonferroni correction at 23 
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p < 1.9E-08.  There was no apparent enrichment of association globally over all SNP-expression 1 

2,614,032 (= 648 x 4,034) p-values (S14 Figure).  However, upon further investigation based on 2 

stratifying SNPs and gene expression pairs according to whether they were cis or trans acting 3 

(using a physical distance of 5Mbps from the start and the end of the gene for each expression 4 

trait), we found that the estimated proportion of truly associated SNP-expression pairs appear to 5 

be slightly higher for SNPs in cis, as compared to those in trans (S15 Figure); this result is 6 

consistent with earlier results in testing mean differences in gene expression (Huang, Rangrej, 7 

Paterson, & Sun, 2007).  The estimated λGC were 1.013, 1.000, and 0.998 for cis-acting pairs 8 

using, respectively, wM3V3.2, wM3VNA3.3, and Fisher’s methods, while for SNP-expression 9 

pairs in trans the estimates were 0.993, 0.993, and 0.983.  Meanwhile, the estimated π1 were 10 

0.020, 0.017, and 0.010 for cis-acting pairs using, respectively, wM3V3.2, wM3VNA3.3, and 11 

Fisher’s methods, while for SNP-expression pairs in trans the estimates were 0, 0, and 0.002, 12 

suggesting some enrichment, but additional studies are needed to establish convincing evidence 13 

for enrichment of variance-associated eQTLs.    14 

 15 

 16 

DISCUSSION  17 

This work was motivated by the recent call to include X-chromosome (XCHR) in ‘whole-18 

genome’ scans (Wise et al., 2013), as well as the recent development of identifying autosomal 19 

SNPs associated with phenotypic variance (Deng et al., 2014; Shungin et al., 2017; Soave & Sun, 20 

2017; Struchalin et al., 2010; Yang et al., 2012).  To pave the way for future XCHR-wide study 21 

of variance heterogeneity and subsequent joint location-scale test (Aschard et al., 2013; Cao et 22 

al., 2014; Soave et al., 2015), we examined a catalogue of analytical strategies and recommended 23 
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two robust and powerful approaches.  We emphasize the importance of recognizing sex as an 1 

inherent confounder in analyzing XCHR variants that contribute to phenotypic variance 2 

heterogeneity, particularly for traits displaying sexual dimorphism with either sex-specific means 3 

or variances, or both; this also holds for the traditional association analysis of XCHR variants 4 

studying their effects on phenotypic mean (Konig et al., 2014). 5 

 Between the three strategies that are robust to sexual dimorphism, Fisher’s method to 6 

combine sex-specific Levene’s p-values is intuitive, but it comes at the cost of power, as well as 7 

modeling flexibility.  For example, adjusting for effects of other covariates that may differ 8 

between males and females.  Through exploiting the recently proposed generalized Levene’s test 9 

based on a two-stage regression approach, the model-based wM3V3.2 and wM3VNA3.3 test 10 

have better power and can directly account for sex main effect as well as an unobserved SxE 11 

interaction effect.  The model-based regression testing strategy can also adjust for other 12 

covariates such as principal components (Price et al., 2006).  In conclusion, we recommend in 13 

practice to apply both wM3V3.2 and wM3VNA3.3 to identify additive and non-additive signals, 14 

which could be leveraged to prioritize SNPs for subsequent interaction or joint location-scale 15 

analyses.    16 

The naïve strategies that directly test for variance heterogeneity across either the classical 17 

three genotype groups or the sex-stratified five groups are inadequate with grossed inflated type I 18 

error rates in the presence of any sexual dimorphism (Table 1).  Under the non-additive coding 19 

scheme, Lev3 is equivalent to M1VNA1 in which the main effect of sex is not account for in 20 

stage one; while the setup of Lev5 is equivalent to the model-based M3VNA3, but erroneously 21 

testing ��� � ��� � �� � ���� � 0 capturing the variance heterogeneity due to sex ��. These 22 

observations clearly revealed the source of bias inherent in the naïve methods.  Indeed, the naïve 23 
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approach would not be suitable for complex traits with any sexual dimorphism, which was the 1 

case for all the four complex traits studied here (S2-5 Figures).  For example, the Levene’s test 2 

three-group p-value for variance of waist circumference is less than 1.0E-100 for all SNPs 3 

studied in UKB, while the same test produces p-values less than 1.0E-10 in MESA.  This 4 

provides strong evidence that the naïve Levene’s method cannot be reliably applied, and post-5 

hoc adjustment is difficult.  Further, any false positive findings in the discovery data would be 6 

also falsely replicated in the replication data as long as the pattern of sexual dimorphism is 7 

consistent.  8 

The additive coding for G in stage one is believed to sufficiently capture the genetic main 9 

effect (Hill et al., 2008), while it may not be the case for analysis of variance.  The ambiguous 10 

genotype grouping under unknown X-inactivation status adds another layer of complexity for 11 

non-additive variance models.  In fact, the choice of reference allele coding matters for the 12 

XCHR when the mean association model does not include the sex main effect as shown recently 13 

(Chen et al., 2019).  Further, a variance difference in the female homozygote group could be 14 

observed as a result of a strong marginal effect coupled with unknown X-inactivation (Ma et al., 15 

2015).   16 

Additional simulation results under model (1) with a non-zero genetic main effect 17 

suggested inflated type I error rate derived from M2 when the underlying X-inactivation status 18 

was not accounted for (S5 Table).  Though in applications, the genetic main effect would have to 19 

be extremely large for the M2 model-based variance test resulting in different conclusions from 20 

M3.  Interesting, it has been shown that the 0-2 and 0-1 codings lead to identical (mean) 21 

association results if the GxS interaction term is included in the model and being tested (Chen et 22 

al., 2019), which explains the consistent performance of wM3V3.2 and wM3VNA3.3 23 
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irrespective of coding choices.  Further, skewed X-inactivation can be analytically represented 1 

by an over-dominant term (Chen et al., 2019), thus we also considered a non-additive variance 2 

model. It is of future interest to study the effects when considering a genotypic model for the 3 

stage 1 mean models as well. 4 

In practice, inverse-normal quantitle-based transformation is often applied to the original 5 

phenotypic data to ensure normality but at the cost of statistical power.  Although Levene’s test 6 

itself is robust to certain types of non-normal distribution, particularly when data are non-normal 7 

but symmetric (Soave & Sun, 2017), there are arguments both for and against the transformation 8 

with respect to the interpretation of variance heterogeneity (Struchalin et al., 2010; Sun et al., 9 

2013).  For example, a significant variance heterogeneity could be the result of “a mean-variance 10 

relationship induced by an inappropriate measurement scale for the phenotype” (Soave et al., 11 

2015).  This was empirically observed and cautioned by Pare et al. (Pare et al., 2010) and Yang 12 

et al. (Yang et al., 2012) in the analyses of C-reactive protein level and body mass index, 13 

respectively, where both traits had been inverse-normally transformed.  On the same note, the 14 

dependence between mean and variance created by an inappropriately chosen scale could also 15 

induce false positives in a subsequent joint location-scale test if the correlation between the 16 

individual tests were not accounted for appropriately (Soave et al., 2015). 17 

Analyses of imputed SNPs warrant some considerations.  For example, real data show 18 

that “two‐thirds of the imputed SNPs were lost on chromosome X because of being 19 

monomorphic” and “16% of the imputed SNPs were available after QC on chromosome X” 20 

(Konig et al., 2014).  For SNPs passing standard quality control, three approaches can be used.  21 

One is the ‘hard call’ approach using discrete values for genotypes with the highest posterior 22 

genotype probabilities.  Another would be the ‘dosage’ approach assuming an additive model.  23 
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And the third is to incorporate the genotype probabilities into the model.  The proposed method 1 

uses the generalized Levene’s variance testing framework and is amenable to all three 2 

approaches, because the method relies on regression where the genotype predictor(s) can be 3 

discrete, dosage or probabilities.  However, similar to mean association tests (Acar & Sun, 2013), 4 

genotype uncertainty decreases power regardless of the specific variance testing approaches.  5 

Since variance testing requires larger sample size than mean testing, detecting individual 6 

variance signals that are significant at the XCHR-wide or genome-wide level requires studies of 7 

very large size that might only be viable through meta-analysis.  Meta-analyses of variance 8 

heterogeneity (Deng et al., 2014) for XCHR variants can be conducted in parallel to that of a 9 

single study incorporating the analytical strategies proposed for autosomal variants (Deng et al., 10 

2014).  Note that Levene’s test statistic is asymptotically χ 
2 (with degrees of freedom equal to 11 

the number of groups subtracted by 1) distributed without an apparent ‘direction of effect’, so the 12 

traditional meta-analysis that combines the weighted (directional) Z-values for testing mean 13 

effect is not immediately applicable here.  A non-directional meta-analysis of Levene’s test has 14 

been proposed in the context of autosomal SNPs (Deng, Asma, & Pare, 2014), but the model-15 

based approach proposed here is more applicable for meta-analysis of XCHR variants to 16 

combine the regression coefficients from stage two jointly (Manning et al., 2011). 17 

Similar to a polygenic model proposed for association studies of main effects, it is 18 

possible that a large proportion of genetic variants, though not individually detectable, could 19 

collectively contribute to variance heterogeneity in certain complex traits (International 20 

Schizophrenia et al., 2009; Yang et al., 2011).  Though a polygenic structure for the mean of 21 

human height is well-known, the observed λGC and π1 values as compared to those computed 22 

from permutations suggest enrichment and point to a possible XCHR polygenic inheritance 23 
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model for the variance of human height, which means that height could be potentially enriched 1 

for gene-environment interactions.  Some have suggested that X-linked genes contribute to the 2 

sex-specific architecture of complex traits (Weiss, Pan, Abney, & Ober, 2006), yet the amount of 3 

contribution from XCHR SNPs involved in possible GxE or higher-order interactions is unclear.  4 

Results from this study call for new developments of the broad-sense heritability estimation 5 

methods that can incorporate variance loci, as well as quantify their contributions to sex-specific 6 

heritability.   7 

 8 

 9 
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Table: 1 

 2 

 Condition  

1 

Condition  

2 

Condition  

3A 

Condition  

3B 

Condition  

4A 

Condition 

4B 

βE 0 0.5 0 0.5 0 0 0.5 0.5 0 0 0.5 0.5 

βS 0 0 0.5 0.5 0 0 0 0 0.5 0.5 0.5 0.5 

βSE 0 0 0 0 0.5 -0.5 0.5 -0.5 0.5 -0.5 0.5 -0.5 

Lev3 0.0453 0.0445 0.0621 0.0905 0.7747 0.8271 0.8184 0.2584 0.8092 0.7868 0.7489 0.1494 

Lev5 0.0240 0.0235 0.0230 0.1033 1 1 1 1 1 1 1 1 

Female 0.0484 0.0512 0.0534 0.0508 0.0505 0.0524 0.0495 0.0515 0.0521 0.0464 0.0489 0.0497 

Male 0.0495 0.0494 0.0514 0.0481 0.0506 0.0471 0.0503 0.0509 0.0507 0.0513 0.0524 0.0485 

Fisher 0.0501 0.0492 0.0521 0.0543 0.0504 0.0503 0.0518 0.0509 0.0501 0.0498 0.0491 0.0483 

wM3V3.2 0.048 0.0486 0.0508 0.051 0.0506 0.0487 0.0505 0.0519 0.0481 0.0509 0.0478 0.050 

wM3VNA3.3 0.050 0.0499 0.0502 0.0528 0.0516 0.0515 0.0516 0.0499 0.0487 0.0505 0.0488 0.0493 

 3 

Table 1. Empirical type I error rates of variance heterogeneity tests under simulation 4 

design I.   5 

A quantitative trait was simulated according to simulation design I based on linear regression 6 

model (1) with coefficient values specified above such that Condition 1 captures the null 7 

scenario of no sexual dimorphism, i.e. no sex-specific mean nor variance differences as depicted 8 

in Fig 2A; Condition 2 corresponds to the conceptual null scenario in Fig 2B with the presence 9 

of sex-specific means via a non-zero βS; Conditions 3A and 3B correspond to Fig 2C, 10 

representing a sex-specific variance difference through a non-zero βSE, the SxE interaction effect, 11 

where the environmental effect βE takes a value of either 0 (Condition 3A) or 0.5 (Condition 3B).  12 
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Similarly, Conditions 4A and 4B correspond to Fig 2D with sexual dimorphism in both means 1 

and variances, with the absence and presence of environmental effect βE, respectively.  The total 2 

sample size was 10,000 with 5,000 females and 5,000 males, and the MAF was 0.2.  The 3 

nominal α-level was set to 0.05 and the empirical type I error rates were calculated based on 4 

10,000 simulated replicates.  Those empirical type I error rates exceeding 5%±0.5% were in bold. 5 

Testing strategies that showed satisfactory type I error controls were underlined, and details of 6 

the testing strategies are provided in the text and summarized in S1 Table. 7 

 8 

Figure legends: 9 

Figure 1. Empirical examples of sexual dimorphism: quantitative trait distribution 10 

stratified by sex.   11 

Phenotype data from UK Biobank (top row) and the Multi-Ethnic Study of Atherosclerosis 12 

(bottom row) were used to illustrate the possible types of sexual dimorphism as characterized by 13 

a location shift in mean of height, a scale difference in the variance of hip circumference, and 14 

changes in both mean and variance of waist circumference and BMI.  Each trait (Y) was 15 

inversely transformed so the overall distribution (solid curve) is normal with mean 0 and 16 

variance 1.  Areas under the sex-stratified distributions (dashed curves) are colored by blue for 17 

male and orange for female, respectively.  18 

 19 

Figure 2.  Defining null and alternative hypotheses for X-chromosome variance 20 

heterogeneity test allowing for sexual dimorphism.   21 
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Upper panel: Figures A-D showcase the different types of conceptually null distributions, where 1 

the variance of a quantitative trait does not vary across the different genotype groups, but is 2 

subjected to a possible sex-specific difference in either mean (B), variance (C) or both (D).  The 3 

black curve is for the overall distribution, and without loss of generality, the orange curve is for 4 

female and the blue curve is for male the same as in Fig 1.  Lower panel: Figures E-H represent 5 

the respective alternative distributions. The different genotype groups are marked by different 6 

line types and visible only under the alternative conditions when there is phenotypic variance 7 

heterogeneity among the genotype groups.  8 

 9 

Figure 3. Statistical power to detect variance heterogeneity induced by gene-environment 10 

interactions using generalized Levene’s tests and Fisher’s method. 11 

The total sample size was 110,000 with 60,000 females and 50,000 males, and the MAF was 0.2 12 

in both females and males.  The type I error rate was set to 0.05 and the power were calculated 13 

based on 10,000 simulated replicates.  The genotype-phenotype relationship was generated 14 

according to model (1), where the null parameter values are set to β0  = βG =  βGS, βS = 0.2, βE = 15 

0.5, and βSE  = 0, -0.1 or 0.1.  A total of 9 scenarios were considered to assess the power of 16 

variance heterogeneity tests induced by either the gene-environment interaction with ��� from 0 17 

to 0.05 with 0.005 incremental increases, combined with a three-way interaction between 18 

genotype, (unobserved) environmental covariate, and sex with βGES = 0, 0.005 or 0.01. The 19 

maximum difference between wM3V3.2 and Fisher’s method is shown in the plots below 20 

indicated by the lengths of blue arrows under each scenario. 21 

 22 
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Figure 4. XCHR-wide variance heterogeneity test results for waist circumference using the 1 

UK Biobank (upper panel) and MESA (lower panel) data.   2 

For each XCHR SNP passing quality controls, the variance heterogeneity p-value was calculated 3 

using the sex-stratified Fisher’s method (grey color), the model-based strategies wM3V3.2 4 

(orange color) and wM3VNA3.3 (blue color).  Manhattan plots (A and D), quantile-quantile 5 

plots (B and E), and histograms (C and F) of the p-values using data from the UK Biobank are 6 

shown on the top row, and on the bottom row for the Multi-Ethnic Study of Atherosclerosis.  In 7 

Fig 3A, SNP rs2661646 (wM3V3.2 test p = 9.5E-07) was annotated for passing the XCHR-wide 8 

significance at 3.7E-06 in the UK Biobank data.  9 

 10 

Figure 5.  Enrichment analyses of polygenic variance structure for human height using the 11 

UKB and MESA data.   12 

The permutation study was done using the UK Biobank genetic data released in May 2017 13 

(Figures A and B) and the Multi-Ethnic Study of Atherosclerosis (Figures C and D).  The sample 14 

size used in the current analysis is n = 327,393 for UKB and n = 2,073 for MESA.  The permuted 15 

dataset was obtained by sampling each quantitative trait without replacement within each sex, 16 

independently, 10 times for UKB and 100 times for MESA.  The genomic control lambda λGC 17 

(Figures A and C) and proportion of truly associated SNPs π1 (Figures B and D) were computed 18 

in each of the permuted datasets and shown as a black dot under each test.  The red line 19 

represents the estimate for the originally observed data, and the black horizontal line represents 20 

the reference line at λGC = 1 or π1 = 0. 21 

 22 

 23 
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Web Resources 1 

The proposed method has been implemented and is currently hosted on github as an open-source 2 

and user-friendly R package (https://github.com/WeiAkaneDeng/Xvarhet).  Note that as the 3 

proposed tests are regression-based, they could be easily implemented in any other standard 4 

statistical software language preferred by the readers.  5 

 6 

Supporting Information 7 

Supporting information includes 15 figures, 8 tables, and theoretical derivations for the proposed 8 

method.   9 
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