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Abstract	
Transient,	regulated	binding	of	globular	protein	domains	to	Short	Linear	Motifs	(SLiMs)	in	disordered	regions	of	
other	proteins	drives	cellular	signaling.	Mapping	the	energy	landscapes	of	these	interactions	is	essential	for	
deciphering	and	therapeutically	perturbing	signaling	networks,	but	is	challenging	due	to	their	weak	affinities.	We	
present	a	powerful	technology,	MRBLE-pep,	that	simultaneously	quantifies	protein	binding	to	a	library	of	peptides	
directly	synthesized	on	beads	containing	unique	spectral	codes.	Using	computational	modeling	and	MRBLE-pep,	we	
systematically	probe	binding	of	calcineurin	(CN),	a	conserved	protein	phosphatase	essential	for	the	immune	
response	and	target	of	immunosuppressants,	to	the	PxIxIT	SLiM.	We	establish	that	flanking	residues	and	post-
translational	modifications	critically	contribute	to	PxIxIT-CN	affinity,	and	discover	CN-inhibitory	peptides	with	
unprecedented	affinity	and	therapeutic	potential.	The	quantitative	measurements	provided	by	this	approach	will	
improve	computational	modeling	efforts,	elucidate	a	broad	range	of	weak	protein-SLiM	interactions,	and	
revolutionize	our	understanding	of	signaling	networks.		
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Introduction	
In	vivo,	rapid	regulation	of	weak,	transient	protein-protein	interactions	is	essential	for	dynamically	shaping	cellular	
responses.	Nearly	40%	of	these	interactions	are	mediated	by	3-10	amino	acid	Short	Linear	Motifs	(SLiMs)	
interacting	with	protein	globular	domains	(e.g.	SH3,	SH2,	and	PDZ	domains)	or	enzymes	(e.g.	kinases	and	
phosphatases)1–3.	The	human	proteome	is	estimated	to	contain	more	than	100,000	of	these	SLiMs,	many	of	which	
are	highly	regulated	by	post-translational	modifications	(PTMs)	such	as	phosphorylation3.	Measuring	and	predicting	
binding	affinities	for	known	and	as-yet-undiscovered	SLiM-binding	interactions	is	essential	for	predicting	signal	
strengths	within	signaling	networks,	understanding	how	these	networks	are	perturbed	by	human	disease,	and	
identifying	new	therapeutic	inhibitors4.	

Unfortunately,	the	low	affinities	of	SLiM-mediated	interactions	(Kd	values	of	~1	to	250	µM)	and	the	widespread	
prevalence	of	PTMs	within	them	render	SLiMs	difficult	to	characterize	experimentally.	High-throughput	approaches	
such	as	affinity	purification	coupled	to	mass	spectrometry	(AP-MS)	and	yeast	two-hybrid	(Y2H)	assays	fail	to	
capture	these	weak	interactions,	with	only	~1%	of	Y2H	associations	relying	on	SLiMs2.	Proteome	peptide	phage	
display	(Pro-PD),	which	presents	peptides	from	all	disordered	proteome	regions,	is	sensitive	enough	to	detect	low	
affinity	interactions	but	does	not	provide	binding	affinities.	In	addition,	identified	peptides	do	not	include	PTMs,	are	
biased	towards	the	strongest	binders,	and	include	many	false	positives,	requiring	downstream	validation	of	
hundreds	to	thousands	of	candidate	peptide	‘hits’5.	Finally,	a	failure	to	observe	a	given	peptide	sequence	in	the	
bound	population	could	result	from	a	true	lack	of	binding	or	simply	poor	expression	or	display.	Parallel	chemical	
synthesis	approaches	(e.g.	SPOT	arrays)	allow	testing	of	peptides	including	PTMs,	but	cannot	provide	quantitative	
information	about	affinities,	require	large	amounts	of	purified	protein,	and	lack	in-line	quality	controls	to	ensure	
that	the	correct	peptides	were	synthesized	at	each	spot6.	
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We	present	a	powerful	technology	for	quantitatively	profiling	many	SLiM-mediated	protein-peptide	interactions	
using	very	small	amounts	of	material.	Peptides	are	synthesized	directly	on	spectrally	encoded	beads	(MRBLEs,	for	
Microspheres	with	Ratiometric	Barcode	Lanthanide	Encoding)7,8	with	a	unique	linkage	between	each	peptide	
sequence	and	a	given	spectral	code.	MRBLE-pep	libraries	can	then	be	pooled	and	assayed	for	protein	binding	in	a	
single	small	volume	before	being	imaged	to	identify	the	peptide	sequence	associated	with	each	bead	and	quantify	
the	amount	of	protein	bound.	On-MRBLE	chemical	synthesis	allows	for	precise	control	of	peptide	density,	
incorporation	of	PTMs	at	known	locations,	and	in-line	assessment	of	peptide	quality	via	mass	spectrometry	to	
identify	amino	acids	that	ablate	and	promote	protein	binding	with	equal	confidence.	In	addition,	MRBLEs	have	
been	engineered	to	have	slow	on-	and	off-rates,	thereby	allowing	quantitative	measurement	of	weak	interactions	
difficult	to	detect	via	other	techniques.	

Here,	we	apply	MRBLE-pep	towards	the	study	of	calcineurin	(CN),	a	conserved	Ca2+/calmodulin-dependent	
phosphatase	that	relies	on	SLiMs	for	substrate	recognition.	Although	CN	plays	critical	roles	in	the	human	immune,	
nervous,	and	cardiovascular	systems	and	likely	dephosphorylates	hundreds	of	downstream	targets,	only	~50	are	
known	to	date9.	These	include	the	NFAT	family	of	transcription	factors,	whose	dephosphorylation	by	CN	is	required	
for	T-cell	activation	and	adaptive	immunity.	Consequently,	CN	is	the	target	of	the	widely	used	immunosuppressants	
cyclosporin	A	(CysA)	and	FK506.	However,	these	drugs	cause	many	adverse	effects,	including	kidney	failure,	
diabetes,	pain,	or	seizures10,	by	inhibiting	the	ubiquitously	expressed	CN	in	non-immune	tissues.		

CN	dephosphorylates	sites	with	little	sequence	similarity,	instead	recognizing	substrates	by	binding	to	two	
characterized	SLiMs	(PxIxIT	and	LxVP)	located	at	variable	distances	from	the	phosphosite11.	Blocking	SLiM	binding	to	
CN	prevents	dephosphorylation	without	altering	its	catalytic	center:	FK506	and	CysA	prevent	LxVP	docking,	the	viral	
inhibitor	A238L	blocks	PxIxIT	and	LxVP	binding,	and	the	high-affinity	peptide	inhibitor	PVIVIT	blocks	PxIxIT	binding.	
PxIxIT	motifs	vary	in	affinity	(Kds	of	~1-250	µM),	and	determine	biological	output	by	specifying	the	Ca2+	
concentration-dependence	of	substrate	dephosphorylation	in	vivo12,13.	However,	the	relationship	between	PxIxIT	
sequence	and	CN	binding	affinity	has	never	been	mapped	systematically	or	probed	outside	of	the	core	motif.	A	
comprehensive	understanding	of	PxIxIT-CN	binding	would	allow	discovery	of	novel	CN	substrates	and	aid	efforts	to	
rationally	design	CN	inhibitors	with	enhanced	selectivity	and	fewer	side	effects.		

Here,	we	use	MRBLE-pep	in	combination	with	structure-based	computational	modeling	to	systematically	mutate	
residues	at	each	position	within	and	flanking	three	previously-characterized	PxIxIT	sequences	and	quantify	their	
effects	on	affinity.	We	find	that	flanking	amino	acids	and	post-translational	modifications	play	surprisingly	critical	
and	previously	unappreciated	roles	in	determining	interaction	strengths.	Through	iterative	cycles	of	mutagenesis,	in	
vitro	analysis,	and	in	vivo	validation,	we	identify	several	PxIxIT	peptides	of	unprecedented	binding	affinity,	providing	
novel	candidate	scaffolds	for	the	development	of	potent	CN	inhibitors.	In	the	future,	this	approach	can	be	applied	
to	a	broad	range	of	protein-SLiM	interaction	to	map	binding	energy	landscapes,	model	signaling	networks,	and	
identify	novel	therapeutic	inhibitors.	
	
Results	

MRBLE-pep	experimental	assay	overview	
We	developed	a	new	high-throughput	protein-peptide	interaction	assay	based	on	spectrally	encoded	
hydrogel	beads	containing	unique	ratios	of	lanthanide	nanophosphors	(MRBLEs)7,8.	MRBLEs	containing	a	
given	code	are	output	to	a	particular	filtered-tip	in	a	96-well	format	or	two	48-2mL	reaction	tubes	(Fig.	
1A),	which	is	then	transferred	to	a	peptide	synthesizer	for	functionalization	and	solid	phase	peptide	
synthesis	(SPPS),	thereby	uniquely	linking	peptide	sequences	with	spectral	codes	(Fig.	1A)14–18.	Following	
SPPS,	MRBLE-bound	peptide	libraries	are	pooled,	incubated	with	an	epitope-tagged	protein	of	interest	
and	a	fluorescently-labeled	antibody,	washed,	and	imaged	to	reveal	the	peptide	sequence	associated	with	
each	bead	(by	quantifying	lanthanide	emissions)	and	the	amount	of	protein	bound	(by	quantifying	
fluorescence)	(Figs.	1B,C).	Unlike	commercially	available	spectrally	encoded	beads	(e.g.	Luminex),	spectral	
codes	can	be	‘read’	using	a	single	UV	excitation	source,	preserving	the	ability	to	multiplex	binding	
measurements	using	up	to	3	detection	antibodies19.	
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Integrated	synthesis	quality	control	ensures	production	of	full-length,	correct	peptide	sequences	
Computational	prediction	of	novel	substrates	in	vivo	can	be	improved	by	including	information	about	residues	that	
ablate	binding.	However,	experimentally	identifying	disfavored	residues	requires	confidence	that	observed	non-
binding	results	from	a	true	absence	of	interaction	and	not	a	failure	to	synthesize	the	correct	peptide.	To	facilitate	
in-line	quality	assessment,	MRBLEs	were	first	functionalized	with	an	acid-labile	rink	amide	linker	within	the	bead	
core	and	a	non-labile	glycine	linker	on	the	outer	bead	shell	(Fig.	S1)20;	varying	the	ratio	of	extendible	to	non-
extendible	glycine	linkers	in	the	bead	shell	allows	tuning	of	displayed	peptide	density15,21.	Next,	peptides	were	
synthesized	on	both	linkers	via	standard	Fmoc	SPPS.	Peptides	coupled	to	the	MRBLE	core	via	the	acid-labile	linker	
were	eluted	during	the	final	acid	global	deprotection	step	and	can	be	verified	via	MALDI	mass	spectrometry	(Figs.	
S1,	S2a-d).	As	peptides	within	the	core	are	inaccessible	to	large	proteins,	elution	allows	sequence	verification	
without	reducing	binding	signal	in	downstream	binding	assays.	Measured	MRBLE	lanthanide	ratios	before,	during,	
and	after	SPPS	remained	constant,	(Fig.	S3),	establishing	that	embedded	codes	are	unchanged	by	chemical	
exposures.	

Measuring	binding	affinities	from	a	single	pooled	assay	requires	reliable	estimates	of	the	effective	
concentration	of	each	peptide,	which	could	be	skewed	by	sequence-dependent	differences	in	SPPS	
efficiency.	To	detect	any	large	differences,	a	portion	of	each	MRBLE-pep	library	was	biotinylated,	
incubated	with	labeled	streptavidin	(DyLight650-SA),	washed,	and	imaged	to	quantify	bound	streptavidin.	
Bound	DyLight650-SA	intensities	were	relatively	consistent	between	sequences	(Fig.	S4)	and	saturated	at	
~20	nM	DyLight650-SA	for	~7100	beads	in	a	100	µL	reaction	volume	(Fig.	S5),	establishing	a	surface	
density	of	~2	x	108	peptide	molecules	per	MRBLE.	

MRBLE-pep	yields	quantitative	measurements	of	calcineurin	binding	affinities	
Measuring	CN-PxIxIT	binding	affinities	represents	a	demanding	test	for	a	new	protein-peptide	interaction	
assay,	as	CN	binds	PxIxIT	peptide	with	weak	affinities	(Fig.	2A)	via	surface	interactions	(Fig.	2B).	To	
determine	MRBLE-pep	assay	sensitivity,	we	performed	a	pooled	assay	in	which	MRBLEs	bearing	10	
peptides	(each	synthesized	on	3	spectral	codes)	were	incubated	with	varying	concentrations	of	His-tagged	
CN	complexed	with	fluorescently-labeled	anti-His	antibody.	These	10	peptides	(‘triplicate	low’)	included	
the	known	NFATc1,	NFATc2,	AKAP79,	and	RCAN1	natural	CN-interacting	PxIxIT	binding	sites	(Fig.	2A,	Table	
S2)22–25,	a	set	of	5	PVIVIT	peptide	mutants	previously	characterized	via	competitive	fluorescence	
polarization	assays24,26,	and	a	scrambled	negative	control	sequence.	Consistent	with	previous	
observations,	the	high-affinity	PVIVIT	and	PVIVVT	variants	showed	strong	binding,	a	scrambled	peptide	
showed	no	binding,	and	the	PVIAVT	and	PVIVIN	variants	showed	low	to	intermediate	binding	(Fig	2C),	
with	consistent	results	for	the	same	peptide	sequence	synthesized	on	MRBLEs	with	different	codes.	
NFATc2	and	AKAP79	showed	measurable	binding	and	were	therefore	selected	for	further	systematic	
mutagenesis.	Although	MALDI	mass	spectrometry	confirmed	successful	synthesis	of	both	RCAN1	and	
NFATc1	full-length	peptides,	binding	was	near	the	limit	of	detection	in	this	assay	(Fig	2C).	

Examination	of	known	CN	PxIxIT	motifs	(NFATc1,	NFATc2)	and	a	viral	inhibitor	(A238L)	suggested	a	
potential	preference	for	positively	charged	(R,	K)	or	hydroxyl	(S)	residues	in	the	degenerate	PxIxIT	position	
2	(Fig.	2A).	To	evaluate	assay	reproducibility	and	whether	these	substitutions	enhance	binding,	we	
performed	an	additional	experiment	measuring	binding	to	these	same	10	peptides	plus	an	additional	3	
PVIVIT	variants	(PSIVIT,	PRIVIT,	PKIVIT)	(‘triplicate	high’)	(Figs.	2E,	Table	S3).		These	data	reproduce	
previously	observed	trends	and	additionally	suggest	that	the	PKIVIT	peptide	binds	slightly	more	strongly	
than	PVIVIT;	therefore,	we	also	selected	PKIVIT	for	additional	systematic	mutagenesis.		

To	determine	binding	affinities	for	each	peptide,	we	globally	fit	all	data	from	a	given	assay	to	a	single-site	
binding	model	with	the	assumption	that	while	individual	Kd	values	may	differ	between	peptides,	the	
stoichiometry	of	binding	remains	constant	(see	Methods).	Although	these	measurements	take	place	out	
of	equilibrium	due	to	the	need	to	wash	beads	prior	to	imaging,	measured	on-	and	off-rates	for	CN-MRBLE	
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interactions	are	slow	(Figs.	S6,	S7),	suggesting	that	measured	intensities	approximate	equilibrium	values	
to	yield	apparent	dissociation	constants	(Figs.	S8).	Slow	on-	and	off-rates	have	previously	been	observed	
for	hydrogel	particles	and	are	known	to	scale	with	particle	radius,	as	proteins	initially	encounter	and	bind	
bead-bound	ligands	and	then	slowly	diffuse	into	the	particle	via	iterative	dissociation	and	rebinding	
events27.	Resultant	apparent	Kds	largely	agree	with	previously	published	values	(Fig.	2D;	Tables	S1-3)	and	
establish	that	MRBLE-pep	can	resolve	differences	in	weak	affinities	spanning	from	~0.20	to	~50	µM	(a	
dynamic	range	>	2	orders	of	magnitude,	comparable	to	SPR	and	FP28).	However,	MRBLE-pep	apparent	Kds	
slightly	underestimate	affinities	relative	to	published	values	while	preserving	rank	order	and	relative	
differences;	therefore,	we	provide	relative	affinity	differences	(ΔΔG)	in	all	subsequent	analyses,	which	are	
unaffected	by	this	shift.	

Using	structure-based	modeling	to	predict	energetic	effects	of	potential	substitutions	
To	identify	and	prioritize	substitutions	most	likely	to	return	useful	information	about	CN	specificity,	we	
leveraged	high-resolution	co-crystal	structures	and	recently-developed	computational	modeling	
techniques29,30	to	estimate	the	effects	of	each	mutation.	Co-crystal	structures	of	CN	bound	to	PVIVIT24	
(PDB:	2P6B)	and	AKAP7931	(PDB:	3LL8)	reveal	that	the	conserved	P1,	I3,	and	I5	residues	are	buried	in	
hydrophobic	pockets	on	the	CN	surface	in	all	three	structures;	for	AKAP79,	an	I1	residue	occupies	the	
pocket	typically	occupied	by	a	P1	residue.	In	both	structures,	the	less-conserved	solvent-exposed	
(positions	2	and	4)	and	flanking	(positions	-1	and	7-9)	residues	adopt	variable	side	chain	orientations.	

We	used	two	computational	methods	implemented	in	the	protein	structure	prediction	and	design	
program	Rosetta,	the	Backrub	“Sequence	Tolerance”	protocol29	and	a	more	recent	“flex_ddG”	method30.	
The	Sequence	Tolerance	protocol	samples	rotamers	of	different	amino	acid	residues	at	each	position	and	
returns	the	frequencies	of	amino	acid	residue	types	observed	at	each	position	in	low	energy	sequences,	
thereby	providing	a	qualitative	estimate	of	effects	of	substitutions	on	binding.	As	expected,	known	
invariant	residues	(P1	and	I3)	appeared	most	frequently	at	their	respective	positions;	the	I5	and	T6	
positions	also	tolerated	I5V	and	T6E	substitutions,	respectively	(Fig.	3B.	These	calculations	additionally	
suggested	that	mutations	at	the	variable	position	2	should	have	little	effect,	but	that	substitution	of	a	
charged	residue	(E)	at	positions	8	and	9	could	improve	binding.		

While	the	Sequence	Tolerance	protocol	returns	ranked	preferences	for	amino	acids,	it	does	not	
quantitatively	predict	the	energetic	effect	of	individual	substitutions.	To	address	this	issue,	we	used	the	
Rosetta	“flex_ddG”	protocol30	that	uses	protein	conformational	ensembles	to	estimate	effects	of	
mutations	on	binding	free	energies	(ΔΔG	 = ΔG%&' 	−	ΔG)').	We	predicted	these	effects	for	CN-PxIxIT	
complexes	containing	systematic	mutations	at	each	position	(Figs.	3D,	Supplementary	Files).	Consistent	
with	the	results	of	the	Sequence	Tolerance	protocol	and	initial	experimental	results,	substitutions	at	
positions	P1,	I3,	and	I5	were	generally	predicted	to	be	destabilizing	(Figs.	3C,D),	while	changes	to	the	
solvent-exposed,	degenerate	x2	and	x4	positions	were	predicted	to	have	minimal	effects	(Figs.	3C,D).	
Intriguingly,	mutations	within	upstream	and	downstream	flanking	residues	were	frequently	predicted	to	
enhance	binding.	Mutations	to	more	hydrophobic	or	aromatic	residues	(W,F,Y,I,V)	in	the	-1	position	for	
the	PVIVIT	motif	(Fig.	3C,	left;	Fig.	3D	top)	or	to	most	residues	other	than	the	native	P-1	for	the	AKAP79	
motif	(Fig.	3C,	right;	Fig.	3D	bottom)	improved	binding	in	silico,	as	did	mutations	at	Position	8	to	aromatic	
(F,Y),	aliphatic	(I,	V,	L),	or	acidic	(D,	E)	residues	(Figs.	3C,D).		

High-throughput	MRBLE-pep	mapping	of	the	CN-PxIxIT	binding	energy	landscape	
Using	these	computational	predictions	as	a	guide,	we	experimentally	mapped	the	CN-PxIxIT	binding	
energy	landscape	by	measuring	CN	binding	to	two	MRBLE-pep	libraries	for	each	of	the	PVIVIT,	PKIVIT,	
NFATc2,	and	AKAP79	sequences	containing	systematic	mutations	in	either	the	“core”	(positions	1-6)	or	
“flanking”	PxIxIT	residues	(positions	-1	and	7-9)	(~368	peptides	total)	(Figs.	4A,	S9-S16,	Tables	S12-19).	
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The	optimal	number	of	peptides	to	screen	per	assay	depends	on	the	competing	effects	of	ligand	
depletion	and	competition,	the	fraction	of	peptides	expected	to	bind,	the	range	of	interaction	strengths,	
and	the	statistical	robustness	of	each	measurement32.	To	reduce	error	and	maximize	the	ability	to	resolve	
subtle	differences,	we	profiled	48	peptides	per	reaction,	with	~100	beads	per	sequence	in	each	assay.	To	
ensure	that	measured	binding	resulted	from	a	true	CN-PxIxIT	interaction	and	not	nonspecific	binding,	we	
repeated	all	experiments	at	a	single,	high	concentration	(250	nM)	using	a	CN	N330A/I1331A/R332A	
mutant	defective	in	PxIxIT	binding	(CN	NIR)33	and	labeled	antibody	alone	(Figs.	S17-20,	Tables	S20-27).	
Several	peptides	were	strongly	bound	by	anti-His	antibody	but	did	not	show	binding	when	the	antibody	
was	pre-incubated	with	His-tagged	CN;	peptides	strongly	bound	by	the	CN	NIR	mutant	(e.g.	PRIRIT)	were	
removed	from	downstream	analysis.	All	PVIVIT,	PKIVIT,	and	NFATc2	libraries	and	the	AKAP79	“core”	
mutation	library	were	fit	by	a	single-site	binding	model,	permitting	direct	measurement	of	ΔΔG	for	each	
substitution.	As	measured	intensities	for	the	AKAP79	“flank”	mutation	library	never	reached	saturation,	
MRBLE-pep	measurements	provide	only	qualitative	estimates	of	effects	on	affinity.		

To	visualize	the	binding	affinity	landscape	of	CN-PxIxIT	interactions,	we	generated	graphs	showing	the	
relative	change	in	affinity	upon	substitution	to	each	mutant	amino	acid	at	each	position	(Figs.	4B,	S21-29);	
information	at	all	positions	can	be	combined	to	produce	a	heat	map	of	relative	changes	in	binding	
energies	(ΔΔG)	(Fig.	4C)	or	scaled	logos	(Fig.	S30).	Consistent	with	computational	predictions,	the	
conserved	P1,	I3,	and	I5	residues	in	the	core	tolerate	few	substitutions,	with	nearly	all	mutations	leading	
to	a	dramatic	loss	in	affinity.	The	sole	exception	to	this	rule	is	the	previously	identified	I5V	mutation	in	
both	the	PVIVIT	and	PKIVIT	libraries	that	bound	with	an	affinity	similar	to	WT	(Figs.	4C,	S21-24)24.	In	
contrast	with	computational	predictions,	substitutions	at	the	variable	x2	and	x4	solvent-exposed	positions	
strongly	influenced	affinity	in	a	context-dependent	manner.	In	particular,	V2R	and	V2K	mutations	in	the	
PVIVIT	scaffold	significantly	enhanced	binding,	consistent	with	previous	observations	of	high-affinity	CN	
binding	to	the	viral	inhibitor	containing	a	positively-charged	residue	at	this	position	(PKIIIT)22.	

Flanking	residues	play	a	major	role	in	defining	binding	affinity	and	specificity	
Although	Rosetta	modeling	predicted	that	changes	to	PxIxIT	‘flanking’	residues	(positions	-1	and	7-9)	
would	affect	interaction	affinities,	the	experimental	impact	of	sequences	flanking	the	core	‘PxIxIT’	
residues	on	CN	binding	has	never	been	probed	systematically.	At	the	-1	position,	MRBLE-pep	data	
revealed	a	clear	CN	preference	for	hydrophobic	residues	(V,L,I)	and	a	weak	preference	for	polar	residues	
(T,	Y,	H,	N,	and	R)	for	all	three	of	the	PVIVIT,	PKIVIT,	and	NFATc2	scaffolds.	By	contrast,	substitution	to	
acidic	(D,	E)	residues	at	this	position	strongly	reduced	binding	(Figs.	4C,	S9-16,	S21-29).	At	position	9,	the	
majority	of	mutations	in	the	PVIVIT	scaffold	increased	affinity.	Substitution	of	phosphomimetic	residues	
(D,	E)	or	unphosphorylated	serine	increased	affinity	slightly	and	not	at	all,	respectively,	but	substitution	of	
phosphoserine	and	phosphothreonine	residues	(X,	Z)	increased	affinity	nearly	50-fold	(from	Kd	=	170	+/-	
40	nM	to	Kd	=	3.4	+/-	0.2	nM)	(Figs.	4C-D,	S10).	This	effect	was	specific	to	the	PVIVIT	sequence,	with	
significantly	less	drastic	increases	and	decreases	in	affinity	observed	for	the	same	substitutions	in	the	
NFATc2	and	AKAP79	scaffolds,	respectively	(Fig.	S14,	S16,	S31).	These	MRBLE-pep	data	establish	that	
flanking	residues	make	major	contributions	to	affinity	and	the	PxIxIT	SLiM	is	significantly	longer	than	
previously	thought. 
Effects	of	individual	substitutions	show	evidence	of	non-additivity	
Understanding	the	degree	to	which	CN-SLiM	binding	specificity	can	be	explained	by	a	linear	additive	
model	is	critical	for	estimating	the	likely	accuracy	of	downstream	efforts	to	identify	substrates	or	design	
therapeutics.	Deviations	from	additivity	can	be	quantified	via	double-mutant	cycle	(DMC)	analysis,	in	
which	the	effects	of	individual	mutations	are	measured	alone	and	in	combination	and	then	compared.	
DMC	analysis	between	the	PVIVIT	and	PKIVIT	scaffolds	revealed	that	the	I3Y	substitution	resulted	in	a	
significant	loss	of	affinity	within	the	PVIVIT	context	but	had	only	minor	effects	on	PKIVIT	binding;	by	
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contrast,	V4F	and	V4I	mutations	of	this	solvent-exposed	position	significantly	increased	binding	only	
within	the	PKIVIT	sequence	(Fig.	4E).	This	last	substitution	suggests	that	the	high	affinity	of	the	PKIIIT	
sequence	in	the	A238L	inhibitor	in	particular	relies	on	cooperativity	between	the	position	2	and	3	
residues.	

Computational	methods	have	limited	predictive	power	for	solvent-exposed	and	flexible	residues	
To	determine	the	degree	to	which	Rosetta	modeling	successfully	predicts	observed	binding,	we	
generated	scatter	plots	showing	relationships	between	measured	affinities	and	predicted	frequencies	or	
changes	in	free	energy	of	binding	(ΔΔG),	respectively,	for	each	residue	at	each	position	(Figs.	5A,	S32-33).	
Both	the	Sequence	Tolerance	and	the	flex_ddG	methods	correctly	predicted	that	I3	and	I5	mutations	
decrease	affinity,	and	Rosetta	correctly	predicted	that	substitution	to	a	hydrophobic	I	or	aromatic	Y	
residue	at	the	-1	position	would	improve	binding	while	substitution	to	the	acidic	residue	E	would	reduce	
binding.	However,	computational	modeling	predicted	that	variations	at	solvent-exposed	positions	(V2	and	
V4)	would	have	little	effect	on	affinity,	in	direct	contrast	to	experimental	observations	(Figs.	5A,	right	
panels,	S32-33).	These	results	highlight	the	difficulties	associated	with	modeling	binding	contributions	for	
substitutions	at	solvent-exposed	as	well	as	flanking	positions	(shown	in	S32-S33),	where	effects	on	
conformations	in	the	bound	and	unbound	state	ensembles	are	unlikely	to	be	correctly	modeled.	

To	derive	a	quantitative	metric	for	the	overall	predictive	power	of	Rosetta	modeling,	we	employed	
receiver-operator	characteristic	(ROC)	curve	analysis.		For	the	predictions	of	the	Sequence	Tolerance	
protocol,	PVIVIT	variants	were	classified	as	‘bound’	or	‘unbound’	according	to	whether	experimentally	
measured	Kds	were	4-fold	lower	than	the	Kd	measured	for	a	‘scrambled’	peptide	sequence;	for	the	
flex_ddG	predictions,	mutations	were	classified	according	to	whether	they	enhanced	or	decreased	
binding	relative	to	wild-type,	yielding	negative	or	positive	ΔΔG	values	(Fig.	5B,	C).	In	both	cases,	in	silico	
predictions	based	on	actual	paired	measurements	modestly	outperformed	predictions	based	on	shuffled	
data,	with	area	under	the	curve	(AUC)	values	between	0.6	and	0.7.	

Absolute	binding	affinities	confirm	that	mutations	to	flanking	residues	dramatically	change	affinities		
To	determine	absolute	affinities	for	peptides	spanning	a	range	of	binding	behaviors,	we	performed	2	
experiments	measuring	concentration-dependent	CN	binding	to	an	additional	‘calibration’	library	
containing	~6	peptides	from	each	core	and	flank	library	(Figs.	S34-S35,	Tables	S4-S5).	These	experiments	
represented	full	technical	replicates	in	which	peptides	were	synthesized	de	novo	on	MRBLEs	produced	at	
different	times	and	assayed	for	binding	using	different	batches	of	purified	calcineurin.		Measured	ΔΔG	
values	relative	to	the	PVIVIT	variant	between	experiments	showed	strong	agreement	(Pearson	r2	=	0.72	
(Fig.	S36)),	demonstrating	the	robustness	of	the	assay	(Fig.	S37).	Averaged	absolute	affinities	estimated	
for	all	variants	using	these	ΔΔG	values	and	the	known	literature	Kd	for	PVIVIT	confirm	that	hydrophobic	
residues	at	position	-1	and	phosphorylated	residues	at	position	9	significantly	increase	affinity	by	10-fold	
and	100-fold,	respectively	(Fig.	S37-S39).		

Validation	of	in	vitro	results	using	in	vivo	calcineurin	activity	assays	
The	ultimate	goal	of	mapping	CN-SLiM	binding	energy	landscapes	is	to	improve	understanding	of	CN	
target	substrate	recognition	and	enable	rational	design	of	in	vivo	inhibitors.	To	test	the	degree	to	which	in	
vitro	MRBLE-pep	affinities	predict	in	vivo	inhibition,	we	used	a	previously	developed	dual	luciferase	
reporter	assay	to	assess	the	activity	of	the	NFAT2	transcription	factor	in	HEK293T	cells	(Fig.	6A)22.	NFAT2	
must	be	dephosphorylated	by	CN	to	accumulate	in	the	nucleus,	where	it	activates	transcription	of	its	
target	genes,	and	this	interaction	can	be	inhibited	by	peptides	or	small	molecules	that	binds	to	CN.	
Reduction	of	NFAT2-dependent	transcriptional	activity	upon	expression	of	a	competing	PxIxIT	peptide	
therefore	reflects,	quantitatively,	the	affinity	of	the	inhibitor	peptide	for	CN.	Candidate	PxIxIT	inhibitors	
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were	co-expressed	as	GFP-fusion	proteins	within	cells	to	enhance	their	stability	and	facilitate	direct	
measurement	of	inhibitor	concentrations.	

We	compared	levels	of	NFAT-driven	luciferase	activity	in	the	presence	of	empty	vector,	vectors	driving	
expression	of	the	4	PxIxIT	peptide	scaffolds	probed	extensively	in	vitro	(PVIVIT,	PKIVIT,	NFATc2,	and	
AKAP79),	or	FK506,	a	small-molecule	inhibitor	of	CN	with	a	previously	measured	IC50	of	~0.5	nM	(Fig.	
6B)34.	All	4	PxIxIT	peptides	substantially	inhibited	NFAT-driven	luciferase	activity,	confirming	competitive	
inhibition	of	CN-NFAT-(PxIxIT)	binding	in	vivo.	Consistent	with	MRBLE-pep	measurements,	PKIVIT	was	the	
most	effective	inhibitor,	followed	closely	by	PVIVIT.	NFATc2	and	AKAP79	showed	weaker	in	vivo	inhibition,	
consistent	with	MRBLE-pep	results	and	in	contrast	with	prior	work	suggesting	that	AKAP79	binds	with	
equal	affinity	to	PVIVIT	(Kd	~500	nM)31.	Co-expression	of	the	PKIVIT	peptide	resulted	in	greater	inhibition	
than	FK506,	which	interferes	with	CN-substrate	interactions	by	occluding	the	LxVP-SLiM	binding	site35	and	
is	a	potent	CN	inhibitor.	

We	next	examined	the	importance	of	PxIxIT	flanking	residues	by	creating	substitutions	in	the	-1	and	9	
positions	(Fig.	6C,D).	Consistent	with	in	silico	predictions	and	MRBLE-pep	affinities,	substitution	of	a	
hydrophobic	residue	(IPKIVIT	or	LPRIEIT)	at	the	-1	position	significantly	increased	inhibition,	whereas	
incorporating	an	acidic	residue	(EPKIVIT	or	DPRIEIT)	greatly	diminished	inhibition.	As	predicted	
computationally	and	observed	in	the	MRBLE-pep	assays,	introduction	of	the	phosphomimetic	mutation	
H9D	resulted	in	slightly	increased	inhibition;	it	was	not	possible	to	directly	test	the	extremely	high	affinity	
phosphoserine	or	phosphothreonine	in	vivo.	Taken	together,	in	silico	modeling,	the	MRBLE-pep	affinities,	
and	in	vivo	results	suggest	that	phosphorylation	at	position	9	may	be	a	key	determinant	of	modulating	
PxIxIT-CN	affinity.	

Finally,	we	sought	to	test	whether	MRBLE-pep	in	vitro	affinity	measurements	could	identify	initial	peptide	
scaffolds	exhibiting	strong	inhibition	in	vivo	for	future	optimization	as	peptide	or	small-molecule	
inhibitors.	PKIVIT	was	a	significantly	stronger	in	vivo	inhibitor	than	the	previously	patented	PVIVIT	
peptide36,	with	activity	comparable	to	the	PKIIIT	site	within	the	known	A238L	inhibitor.	As	predicted,	both	
the	IPKIVITGPH	and	HPKIVITGPD	variants	exhibited	even	stronger	binding	and	inhibition	(Fig.	6D);	
similarly,	mutating	the	I1	and	A2	residues	in	the	AKAP79	PIAIIIT	motif	to	create	a	novel	PxIxIT	sites	with	
adjacent	prolines	and	a	positively	charged	residue	in	the	second	position	(PPKIIIT)	greatly	enhanced	
inhibition.	Overall,	MRBLE-pep	in	vitro	measurements	were	strongly	predictive	of	in	vivo	inhibition	(Fig.	
6E)		

Identification	of	high-affinity	scaffolds	with	therapeutic	potential	
Although	cyclosporin	A	and	FK506	are	routinely	prescribed	to	transplant	patients	to	inhibit	CN-dependent	
immune	response	activation,	both	drugs	are	associated	with	adverse	effects	that	likely	result	from	
inhibition	of	CN-substrate	dephosphorylation	in	non-immune	tissues.		High-affinity	peptides	that	inhibit	a	
particular	subset	of	CN-SLiM	interactions	could	therefore	serve	as	initial	scaffolds	for	medicinal	chemistry	
efforts	to	identify	inhibitors	with	improved	specificity.	To	identify	candidate	with	high-affinity	variants,	we	
measured	CN	binding	to	a	final	MRBLE-pep	library	containing	the	set	of	36	‘calibration’	peptides	along	
with	11	peptides	containing	combinations	of	mutations	previously	shown	to	increase	affinity	(Figs.	S38-
S39).	Measured	ΔΔGs	for	these	full	technical	replicates	again	showed	remarkable	agreement	(r2	=	0.83)	
(Fig.	S40).		PVIVIT	variants	combining	a	phosphothreonine	(Z)	at	position	9	with	hydrophobic	residues	(I,	
V)	at	position	-1	showed	the	strongest	binding,	with	measured	Kd	values	of	~	10	nM	(50x	stronger	than	
the	measured	PVIVIT	affinity),	and	multiple	PVIVIT,	PKIVIT,	and	AKAP79	variants	also	showed	enhanced	
binding	(Figs.	6E,	S39).	Together,	these	in	vitro	and	in	vivo	measurements	demonstrate	that	systematic	
determination	of	CN-SliM	binding	yields	peptides	with	a	continuous	range	of	affinities	for	testing	in	
therapeutic	applications.	
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Discussion	
Here,	we	demonstrate	a	novel	strategy	to	quantitatively	profile	the	binding	specificity	landscape	for	a	
peptide-protein	interaction,	thereby	generating	key	insights	required	to	map,	model	and	therapeutically	
perturb	essential	signaling	networks	in	healthy	and	diseased	cells.	Compared	to	existing	technologies,	our	
approach	has	several	advantages.		Although	yeast	and	phage	display	can	powerfully	discriminate	between	
‘bound’	and	‘unbound’	peptide	populations37,38	for	>	108	protein-peptide	interactions,	these	high-
throughput	screening	methods	cannot	quantitatively	measure	affinities	and	are	unable	to	probe	the	
effects	of	PTMs	or	unnatural	amino	acids	with	therapeutic	potential.	The	MRBLE-pep	assay	is	also	faster	
and	requires	less	in	material	than	alternative	methods:	measuring	interaction	affinities	for	384	peptides	
using	MRBLE-pep	requires	~400x,	~700x,	and	~9600x	less	purified	protein	than	surface	plasmon	
resonance,	fluorescence	polarization,	and	isothermal	calorimetry,	respectively,	with	savings	increasing	
with	library	size	(Table	S6).	This	reduction	in	material	should	allow	future	profiling	of	a	wide	range	of	
biologically	important	SLiM-binding	domains,	including	those	that	are	unstable	and/or	difficult	to	express	
recombinantly.	MRBLE-pep	libraries	can	be	synthesized	and	imaged	over	the	course	of	days,	facilitating	
iterative	rounds	of	synthesis	and	measurement	for	efficient	landscape	mapping.	Finally,	the	results	
presented	here	highlight	the	limitations	of	existing	in	silico	modeling	methods	for	accurately	predicting	
peptide-protein	interactions,	particularly	for	solvent-exposed	and	flexible	residues.	By	iteratively	
generating	and	experimentally	testing	quantitative	computational	predictions	of	how	amino	acid	
sequence	affects	SLiM	affinity,	analyses	such	as	these	can	simultaneously	map	a	specific	protein-SLiM	
interaction	landscape	and	provide	critical	experimental	data	for	use	in	revising	computational	algorithms.	
Furthermore,	this	approach	can	be	extended	to	discover	binding	specificities	of	as-yet-uncharacterized	
protein	domains.	

Our	findings	reveal	biologically	significant	insights	into	CN-PxIxIT	specificity	and	illustrate	the	power	of	
systematic	analyses	to	shed	light	on	elusive	SLiM-protein	interactions.	The	in	silico	modeling,	MRBLE-pep	
data,	and	in	vivo	validation	presented	here	are	the	first	to	systematically	capture	the	impact	of	PxIxIT	
flanking	residues	on	affinity,	allowing	identification	of	several	peptides	whose	affinity	for	CN	is	two	orders	
of	magnitude	higher	than	that	of	PVIVIT	that	are	more	potent	inhibitors	of	CN-NFAT	signaling	in	vivo.		
Furthermore,	we	identify	a	collection	of	peptides	with	a	continuous	spectrum	of	affinities	for	CN,	which	
may	allow	inhibition	to	be	fine-tuned	in	vivo.	Currently,	doctors	monitor	the	dosage	of	CN	inhibitors	to	
minimize	adverse	consequences	of	these	drugs.	Instead,	a	peptide	that	selectively	perturbs	CN	binding	to	
a	subset	of	its	targets	could	maximize	therapeutic	effects,	while	minimizing	the	disruption	of	CN	signaling	
events	that	promote	health.		

In	addition	to	identifying	candidates	for	therapeutic	manipulation	of	CN	signaling,	the	demonstration	that	
residues	both	upstream	and	downstream	contribute	to	PxIxIT-CN	affinity	expands	the	definition	of	this	
motif.		Current	computational	strategies	attempt	to	identify	novel	CN	substrates	by	searching	for	
sequences	within	the	proteome	that	match	a	consensus	expression	for	the	six	core	residues	alone.		The	
expanded	10-residue	definition	of	the	PxIxIT	motif	derived	here	will	enhance	future	computational	efforts	
to	comprehensively	map	the	calcineurin	signaling	network,	reducing	the	number	of	both	false	positive	
and	false	negative	substrates.		In	particular,	MRBLE-pep	provides	critical	Information	about	residues	that	
reduce	affinity	(e.g.	acidic	residues	at	the	-1	position	reduces	affinity)	that	is	never	revealed	by	positive	
screening	methods	and	is	rarely	collected	due	to	the	resource-intensive	nature	of	such	analyses	using	
established	techniques.	Finally,	the	ability	to	predict	affinity	based	on	SLiM	sequence	is	an	essential	step	
toward	accurate	modeling	of	signaling	dynamics	in	vivo,	as	the	extent	of	in	vivo	dephosphorylation	has	
previously	been	shown	to	depend	on	primary	PxIxIT	amino	acid	sequence	(and	the	associated	interaction	
affinity)12.	Even	subtle	(~2-fold)	differences	in	binding	could	have	profound	effects	on	downstream	
signaling	under	physiologic	conditions	given	the	low	affinities	of	CN-PxIxIT	interaction.	
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Establishing	the	impact	of	post	translational	modifications	on	SLiM-protein	affinity	is	critical	for	
understanding	cross	talk	between	signaling	networks	in	vivo.	Consistent	with	our	findings	that	acidic	
residues	at	the	-1	position	decrease	affinity,	JNK	kinase	regulates	CN	signaling	by	phosphorylating	a	serine	
that	immediately	precedes	the	PxIxIT	of	NFAT439.	Similarly,	our	demonstration	that	phosphorylated	
residues	downstream	of	the	core	PxIxIT	sequence	at	position	9	enhance	PVIVIT	affinity	echoes	
observations	that	phosphorylation	of	at	threonine	in	this	position	is	required	for	binding	of	CN	to	a	PxIxIT	
site	in	C16ORF74,	and	for	its	ability	to	promote	invasiveness	of	pancreatic	ductal	adenocarcinoma	
(PDAC)40.	This	positive	effect	on	binding	is	context-dependent,	increasing	PVIVIT	binding	50-fold	but	
having	little	or	no	effect	on	other	PxIxIT	sequences,	reinforcing	the	importance	of	systematic	analyses	for	
generating	predictive	information.	

Beyond	improving	the	ability	to	reconstruct	downstream	CN	signaling	networks	in	vivo	and	identifying	
candidate	therapeutic	inhibitors,	these	results	also	have	direct	relevance	to	precision	medicine.	Current	
annotations	of	2RQ,	7PA,	and	7PL	missense	mutations	within	the	NFATc2	PxIxIT	site	recovered	from	
sequenced	lung	and	breast	adenocarcinomas	describe	them	as	unlikely	to	have	functional	effects	in	
vivo41.	While	the	experiments	presented	here	did	not	directly	test	the	functional	consequences	of	a	R2Q	
mutation,	all	mutations	away	from	the	native	residue	at	this	position	resulted	in	a	dramatic	loss	of	binding	
(Fig.	S25),	and	the	P7A	substitution	led	to	a	nearly	complete	loss	of	binding	(Figs.	S13,	S25-26).	Thus,	
binding	specificity	maps	like	those	obtained	here	could	both	help	clinicians	identify	functionally	significant	
missense	mutations,	and	refine	the	computational	algorithms	that	predict	the	impact	of	such	alleles.	
Overall,	the	approaches	outlined	here	will	help	decipher	the	language	of	SLiM-domain	binding	events,	
and	of	the	cellular	signaling	networks	they	define	in	both	healthy	and	diseased	cells.	
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Methods	
Reagents	for	peptide	synthesis	were	purchased	and	used	without	further	purification	from	NovaBiochem,	
AnaSpec	(Fremont,	CA),	and	Sigma-Aldrich	(St.	Louis,	MO).	All	other	solvents	and	chemical	reagents	were	
purchased	from	Sigma-Aldrich.	 
MRBLE	synthesis	and	collection	
MRBLEs	were	synthesized	using	a	previously	published	microfluidic	device7,8,19	with	each	code	collected	into	wells	
of	a	96-well	plate	using	an	open-source	in-house	fraction	collector.	Briefly,	all	lanthanide	input	mixtures	contained	
double-distilled	water	(ddH2O),	42.8%	v/v	700	MW	PEG-diacrylate	(PEG-DA)	(Sigma-Aldrich),	19.6	mg	mL-1	lithium	
phenyl-2,4,6-trimethylbenzoylphosphinate	(LAP),	and	5.0%	v/v	YVO4:Eu	(at	25	mg	mL-1	).	Individual	input	mixtures	
contained	16.3%	v/v	of	either	YVO4:Sm	(25	mg	mL-1	),	YVO4:Dy	(25	mg	mL-1	),	or	YVO4:Tm	(12.5	mg	mL-1).	
Lanthanide	solutions	were	mixed	using	a	herringbone	mixer	channel	and	forced	into	droplets	using	a	T-junction	
with	a	continuous	stream	of	HFE7500	(3M	Novec)	containing	2%	w/w	modified	ionic	Krytox™	157FSH	(Miller	
Stephenson,	Danbury,	CT)42.	Droplets	were	then	photopolymerized	with	UV	light	from	a	full-spectrum	200W	Xenon	
arc	lamp	(Dymax,	Torrington,	CT,	USA).	With	this	setup,	~3,000	beads	containing	each	spectral	code	were	
synthesized	in	70	seconds	(as	described	previously7,8);	for	the	48-plex	MRBLE	library	used	here,	each	code	was	
produced	10	times	to	yield	~30,000	beads	per	code.	

Bead	functionalization	(PAP	protocol):	
MRBLE	hydrogel	beads	were	functionalized	with	terminal	amine	handles	via	Michael	addition	by	reacting	available	
acrylates	in	the	MRBLEs	with	a	solution	of	cysteamine	(50	eq)	containing	pyridine	(50	eq)	in	H2O:DMF	(1:3)	for	18	
hours	at	ambient	temperature.	Next,	to	selectively	functionalize	and	segregate	MRBLE	to	distinct	shell	regions,	
MRBLEs	were	swelled	in	water	overnight	and	drained	using	a	manifold	before	the	addition	of	a	solution	containing	
Fmoc-N-hydroxysuccinimide	(0.2	eq)	and	diisopropylethylamine	(DIPEA)	(0.8	eq)	in	dichloromethane:diethyl	ether	
(55:45)	with	vigorous	shaking	(1600	rpm	for	15	seconds	followed	by	30	seconds	at	rest)	for	30	minutes15.	To	
selectively	functionalize	MRBLE	inner	core	regions	with	an	acid-labile	rink	amide	linker,	MRBLEs	were	then	treated	
with	4-[(2,4-Dimethoxyphenyl)(Fmoc-amino)methyl]phenoxyacetic	acid	(rink	amide)	(5.0	eq),	N,Nʹ-
Diisopropylcarbodiimide	(DIC)	(5.0	eq),	and	DIPEA	(10	eq)	in	dimethylformamide	(DMF)	for	1	hour	and	repeated	
twice.	After	removal	of	the	Fmoc	protecting	group	using	20%	4-methylpiperidine	(4-MP)	in	DMF	for	20	minutes,	the	
effective	on-bead	peptide	concentration	was	reduced	by	reacting	the	bead	with	a	mixture	of	Fmoc-glycine-OH:Ac-
N-glycine-OH	(1:9)	(5.0	eq),	DIC(5.0	eq),	and	DIPEA	(10	eq)	for	14	hours.	Following	Fmoc	deprotection,	MRBLEs	
were	transferred	to	an	automated	peptide	synthesizer	for	solid	phase	peptide	synthesis	(SPPS).	

On-bead	peptide	synthesis:	
Peptide	synthesis	was	performed	using	a	Biotage™	Syro	II	automated	peptide	synthesizer	following	instructions	
from	the	manufacturer	(Biotage,	Charlotte,	NC).	During	coupling	steps,	Fmoc-protected	amino	acids	(10	eq)	were	
activated	with	HCTU	(9.8	eq)	and	NMM	(20	eq)	with	coupling	times	of	8	minutes	for	standard	amino	acids	and	25	
minutes	for	phosphorylated	amino	acids.	Each	coupling	round	comprised	of	2	sequential	coupling	reactions	with	
the	addition	of	fresh	amino	acid	and	coupling	reagents.	Deprotection	was	performed	initially	with	40%	4-MP	for	2	
minutes	and	then	followed	with	20%	4-MP	for	an	additional	6	minutes.	MRBLEs	were	then	washed	thoroughly	with	
6	rounds	of	DMF	(~0.4mL)	before	the	next	coupling	step.	Before	global	deprotection	with	TFA,	~50	µL	from	a	
volume	of	400	µL	for	each	code	was	saved	for	biotin	conjugation	(described	below).	

To	perform	the	global	deprotection	step,	MRBLEs	were	washed	with	DCM	and	dried	under	vacuum	
before	the	addition	of	0.5	mL	of	TFA	cocktail	(Reagent	B,	TFA:phenol:ddH2O:triisopropylsilane,	88:5:5:2,	
v/m/v/v)	was	added	to	each	reaction	tube	and	reacted	with	shaking	(15	seconds	shaking	and	1	minute	
rest)	for	1.5	hours.	After	TFA	deprotection,	MRBLEs	containing	deprotected	peptides	were	washed	with	
TFA	(~0.5	mL,	and	collected	for	MALDI	analysis),	DCM	(~2	mL),	neutralized	with	10%	DIPEA	in	DMF	twice	
(~1	mL),	and	then	finally	washed	with	storage	buffer	(1	mL,	0.1%	TBST	with	0.02%	NaN3)	3	times43.	To	
assess	peptide	quality,	the	TFA	solution	containing	cleaved/unprotected	peptide	was	transferred	to	15	mL	
falcon	tubes	using	the	provided	liquid	transfer	system	from	Biotage.	Peptides	were	triturated	with	cold	
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diethylether	(~1	mL),	pelleted,	decanted,	and	repeated	these	steps	3	times	before	preparing	for	MALDI	
analysis	using	a	general	protocol	described	below.	

Peptide	concentration	estimation	via	biotin	conjugation	assay:	
A	small	aliquot	(~50	μL	from	400	μL)	of	each	code	was	transferred	and	pooled	into	a	separate	fritted	reaction	tube	
(Biotage	2	mL	reaction	tubes	for	SPPS)	for	biotin	(50	eq)	conjugation	using	DIC	(50	eq),	DIPEA	(100	eq),	and	DMF	
overnight	.	After	washing	the	MRBLEs	(DMF,	MeOH,	and	DCM),	another	round	of	coupling	using	the	same	
conditions	mentioned	above	was	mixed	for	2	hours	and	then	washed.	MRBLEs	with	terminal	biotin	were	then	
globally	deprotected	using	a	cocktail	of	TFA/phenol/H2O/TIPS	(87.5:5:5:2.5	v/v)	at	ambient	temperature	for	1.5	
hours.	After	global	deprotection,	MRBLEs	were	neutralized	with	10%	DIPEA	in	DMF,	washed	with	DCM,	washed	
with	3	X	PBS	containing	0.1%	TWEEN	20	(0.1%	PBST),	and	stored	in	0.1%	PBST	containing	0.02%	NaN3.		

After	biotin	conjugation,	a	40	μL	aliquot	from	a	600	μL	suspension	of	beads	was	passivated	with	0.1%	
PBST	containing	5%	BSA	in	a	150	μL	PCR	strip	tube	on	a	rotator	overnight	at	~5	°C.	The	beads	were	then	
washed	with	0.1%	PBST	containing	2%	BSA	3	times	(~100	μL),	followed	by	incubation	with	1	μL	of	labeled	
streptavidin	(final	concentration	=	~189	nM,	Abcam,	ab134241)	in	0.1%	PBST	containing	2%	BSA	(99	μL)	
for	30	minutes	on	a	rotator	at	ambient	temperature.	After	incubation,	MRBLEs	were	pelleted	and	washed	
with	0.1%	PBST	once	and	then	imaged	to	obtain	binding	data.	

MALDI	quality	control:	
After	global	deprotection,	supernatants	collected	in	15	mL	Falcon	tubes	for	each	code	were	placed	into	a	
freezer	for	1	hour;	these	tubes	were	then	centrifuged	(4000	g	for	20	minutes	at	4	°C)	and	decanted	
(repeated	3	times).	Peptides	were	then	dissolved	with	60%	ACN/H2O	(20	μL,	phosphopeptides	were	
dissolved	with	50%	acetic	acid)	for	MALDI	analysis	using	THAP	(250	mM	in	ACN)	as	the	matrix.	To	prepare	
the	MALDI	plate	(microScout	Target	MSP	96	target	polished	steel	BC,	part	#8280800),	0.5	μL	of	sodium	
citrate	(250	mM	in	H2O	containing	0.1%	TFA)	was	spotted	on	to	the	plate	surface	and	allowed	to	dry.	
After	drying,	1	μL	of	a	1:1	mixture	of	the	peptide	solution	with	a	solution	of	sodium	citrate:THAP	(1:1)	was	
spotted	onto	the	plate	and	allowed	to	dry	again	before	analysis.	Data	was	obtained	using	a	Bruker	
microflex	MALDI-TOF	(Billerica,	MA,	USA).	The	instrument	was	run	on	positive-ion	reflector	mode	with	a	
laser	setting	of	1,810	V	and	data	averaged	over	100	scans.	Raw	data	was	analyzed	using	FlexAnalysis	and	
mMass	(ver.	5.5,	www.mmass.org).	

Purification	of	calcineurin:	
N-terminally,	6-His-tagged	human	calcineurin	A	isoforms	(truncated	at	residue	400),	either	wild-type	or	
containing	the	mutation	330NIR333-AAA,	were	expressed	in	tandem	with	the	calcineurin	B	subunit	in	E.coli	
BL21	(DE3)	cells	(Invitrogen)	and	cultured	in	LB	medium	containing	carbenicillin	(50	mg/ml)	at	37°C	to	
mid-log	phase.	Expression	was	induced	with	1	mM	isopropyl	1-thio-b--galactosidase	at	16°C	for	18	hours.	
Cells	were	pelleted,	washed	and	frozen	at	-80°C	for	at	least	12	hours.	Thawed	cell	pellets	were	re-
suspended	in	lysis	buffer	(50	mM	Tris-HCl	pH	7.5,	150	mM	NaCl,	0.1%	Tween	20,	1mM	β-mercapto	
ethanol,	protease	inhibitors)	and	lysed	by	sonication	using	four	1	minute	pulses	at	40%	output.	Extracts	
were	clarified	using	two	rounds	of	centrifugation	(20,000	X	g,	20	min)	and	then	bound	to	1	ml	of	Ni-NTA	
beads	in	lysis	buffer	containing	5	mM	imidazole.	Beads	were	washed	with	lysis	buffer	containing	20	mM	
imidazole	and	eluted	with	lysis	buffer	containing	300	mM	imidazole.	Purified	calcineurin	heterodimer	
were	dialyzed	in	buffer	(50	mM	Tris-HCl	pH	7.5,	150	mM	NaCl,	1	mM	β-mercapto	ethanol)	and	stored	in	
10-15%	glycerol	at	-80°C.	

Calcineurin	binding	assays	(time	series	and	dilution	series):	
Pre-incubation	of	CN	with	anti-His	antibody	significantly	reduced	observed	background	binding	to	
sequences	containing	multiple	basic	residues	due	to	cross-reactivity	of	anti-His	antibody	(Fig.	S17-S20).	
Therefore,	CN:α-6xHis	antibody-DyLight-650	complex	(2.5	μM,	CN:αHisAb650	,	Abcam	ab117504)	was	
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prepared	by	pre-incubating	6x-His-tagged	CN	with	equal	concentration	of	αHisAb650	in	CN	buffer	at	~5	°C	
for	1	hour.	MRBLEs	were	prepared	by	transferring	a	20	μL	aliquot	from	a	600	μL	suspension	(~3000-8000	
beads	depending	on	pellet	size)	to	a	100	μL	PCR	strip	(20	μL	for	each	CN	concentration),	exchanging	
buffer	via	3	cycles	of	iterative	pelleting,	decanting,	and	resuspension	with	0.1%	PBST	containing	5%	BSA,	
pH	=	7.5	(100	μL),	and	then	left	mixing	at	~5	°C	on	a	rotator	in	the	same	wash	buffer	overnight	(~14	
hours).	MRBLEs	were	then	buffer	exchanged	once	again	with	CN	binding	buffer	(50	mM	Tris	pH	=	7.5,	150	
mM	NaCl,	0.1%	TWEEN	20)	via	3	iterative	cycles	of	pelleting,	decanting,	and	resuspension.		
	
To	perform	binding	assays,	the	CN:αHisAb650	complex	(at	2.5	μM)	was	serially	diluted	into	tubes	
containing	BSA-passivated	MRBLEs	and	CN	buffer	(2	μM,	1μM,	500	nM,	250	nM,	125	nM,	62.5	nM)	and	
incubated	for	5	hours	on	a	rotator	at	~5	°C.	After	incubation,	MRBLEs	were	pelleted,	decanted,	and	
washed	once	with	0.1%	PBST	(100	μL).	After	a	final	round	of	pelleting	and	decanting,	20	μL	of	0.1%	PBST	
was	added	and	the	beads	were	transferred	to	a	quartz	microscope	slide	for	imaging.	To	confirm	
equilibrium	conditions,	we	measured	CN:MRBLE	interactions	for	6	peptides	after	incubation	times	ranging	
from	30	minutes	to	24	hours.	Binding	appeared	to	reach	equilibrium	after	~5	hours	(Fig.	S6),	so	all	
following	experiments	were	performed	after	an	incubation	time	of	5-6	hours.	

Bead	and	antibody	imaging:	
MRBLEs	were	imaged	by	transferring	20	μL	of	suspended	beads	(entire	volume)	onto	a	quartz	microscope	
slide	(Electron	Microscopy	Sciences,	quartz	microscope	slide,	75	mm	x	25	mm,	1	mm	thick,	cat.	#	72250-
03),	placing	an	additional	quartz	coverslip	(Electron	Microscopy	Sciences,	quartz	coverslip,	25	mm	x	25	
mm,	1	mm	thick,	cat.	#	72256-02)	onto	the	droplet,	and	then	depositing	mineral	oil	around	the	edges	of	
the	coverslip	to	prevent	the	sample	from	drying	out	during	imaging.	MRBLEs	were	imaged	largely	as	
described	previously8	in	11	channels:	a	bright	field	channel,	a	Cy5	fluorescence	channel	(using	a	SOLA	
light	engine	for	excitation),	and	9	additional	lanthanide	channels	(435,	474,	536,	546,	572,	620,	630,	650,	
780	nm,	with	exposure	times	of	500,	1000,	500,	500,	375,	150,	75,	225,	2000	ms,	respectively;	Semrock,	
Rochester,	NY)	using	excitation	illumination	generated	by	a	Xenon	arc	lamp	(Lambda	SL,	Sutter	
Instrument,	Novato,	CA)	and	directed	through	a	292/27	nm	bandpass	filter	(Semrock,	Rochester,	NY)	via	a	
UV-liquid	light	guide	(Sutter	Instrument,	Novato,	CA)	mounted	in	place	of	the	condenser	using	a	custom	
3D	printed	holder.	

Image	processing	(code	calling):	
Bead	images	were	processed	using	a	custom-built	open-source	Python	software	package	freely	available	
through	PyPI	and	regularly	maintained	(Source-code:	https://github.com/FordyceLab/MRBLEs).	Briefly,	
MRBLE	boundaries	were	identified	from	bright	field	images,	followed	by	quantification	of	median	
lanthanide	intensities	in	each	channel	to	identify	embedded	MRBLE	codes.	CN	binding	was	then	
quantified	for	each	MRBLE	by	calculating	the	median	fluorescence	intensity	for	bound	protein	associated	
with	the	outer	shell	of	the	MRBLE.	

Affinity	modeling	(competitive	binding	assay):	
The	affinity	(Kd)	for	each	peptide	in	a	MBRLE	library	was	determined	via	a	two-step	nonlinear	regression	
using	a	single-site	binding	model:	
	
Eqn.	1:	𝐼+ =

,-./[1234356]
89,;<[1234356]

	

	
where	Ii	is	the	measured	fluorescence	intensity	for	each	peptide,	Kd,i	is	the	dissociation	constant	for	that	
interaction,	[CNtotal]	is	total	CN	concentration,	and	Imax	is	a	global	variable	representing	the	fluorescence	
intensity	once	MRBLE-pep	beads	are	saturated.	First,	we	determined	the	global	saturation	value	(Imax),	by	
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globally	fitting	the	top	80%	highest-intensity	MRBLE	codes.	Next,	we	globally	fit	the	entire	data	set	using	
this	Imax	value	to	yield	an	estimated	absolute	affinity	(Kd)	for	all	peptides	in	the	library.	Given	that	the	
estimated	peptide	concentration	in	these	assays	(~20	nM/x,	where	x	represents	the	number	of	species	
probed)	is	significantly	lower	than	estimated	Kd	values	of	these	interactions,	we	make	the	approximation	
[CNtotal]≈[CNfree].	Differences	in	binding	affinity	were	calculated	relative	to	a	reference	peptide	using	the	
standard	equation	(Eqn.	2):	

Eqn.	2:		𝛥𝛥𝐺 = 𝑅𝑇	𝑙𝑛 89,;
89,CDE

		

	
To	calibrate	measured	affinities	across	multiple	assays,	we	first	determined	an	absolute	affinity	for	a	
single	high-affinity	reference	peptide	(MAGPHPVIVITGPHEE)	using	the	mean	of	the	“triplicate	low”	value	
(Fig.	2C),	“triplicate	high”	value	(Fig.	S3),	and	value	from	a	binding	assay	in	which	this	peptide	appeared	
alone	(data	not	shown,	Kd	=	980	nM).	Next,	we	used	this	reference	value	and	calculated	differences	in	
binding	affinity	(ΔΔG)	to	estimate	absolute	Kd	values	for	each	peptide	within	the	calibration	library	(Table	
S3-4.	Finally,	we	used	calibrated	values	for	several	of	these	peptides	(MAGPHPVIVITGPHEE	(PVIVIT	core	
and	flank	libraries),	MAGPHPKIVITGPHEE	(PKIVIT	core	and	flank	libraries),	ASGLSPRIEITPSHEL	(NFATc2	
flank	and	core	library),	KRMEPIAIIITDTEIS	(AKAP79	flank	library	and	core	library)	and	measured	changes	in	
affinity	relative	to	these	peptides	to	estimate	absolute	ΔΔG	values	for	all	peptides	in	each	of	these	
libraries.	
	
Rosetta-based	“Sequence	Tolerance”	method:	
For	estimating	tolerated	amino	acid	substitutions	at	each	position	in	the	two	available	CN-PxIxIT	co-crystal	
structures	with	well-defined	electron	density	(positions	-1	to	9	of	the	PxIxIT	motif)	we	used	the	
generalized	sequence	tolerance	module	of	the	Rosetta	Backrub	server	available	at	
https://kortemmeweb.ucsf.edu/backrub44	.	Briefly,	the	protocol	samples	amino	acid	residues	in	different	
rotameric	conformations	on	backbone	ensembles	generated	using	Rosetta	Backrub	simulations	and	
records	low	energy	amino	acid	sequences,	from	which	amino	acid	frequencies	of	tolerated	substitutions	
are	derived.	In	contrast	to	the	published	protocol,	we	modified	only	one	position	in	the	peptide	at	a	time,	
to	more	closely	mimick	the	experimental	measurements.	We	used	ensembles	of	100	backbone	structures	
with	a	kT	value	of	0.228;	self-energies	and	interchain	interaction	energies	were	reweighted	using	the	
default	scaling	factors	of	0.4	and	1,	respectively.	
	
Rosetta-based	method	for	estimating	the	energetic	effects	of	amino	acid	substitutions	(“flex_ddG”):	
To	estimate	changes	in	binding	energy	upon	mutation	(ΔΔG),	we	used	the	Rosetta	flex_ddG	protocol30.	
We	systematically	substituted	all	twenty	natural	amino	acids	at	each	position	(-1:9)	for	the	two	peptides	
with	available	crystal	structures	bound	to	calcineurin	(CN-PVIVIT,	CN-IAIIIT),	with	the	remaining	positions	
restricted	to	the	wild-type	amino	acid	residues	in	each	crystal	structure.	Briefly,	the	flex_ddG	protocol	
uses	the	Rosetta	Talaris	2014	energy	function,	minimization	with	harmonic	restraints,	Rosetta	Backrub	
simulations	to	generate	conformational	ensembles,	mutation	and	optimization	of	side	chain	
conformations,	and	another	final	retrained	minimization	step.	We	followed	the	protocol	published	in30	,	
except	using	10,000	Backrub	steps	instead	of	the	default	value	of	35000	steps.		
	
In	vivo	calcineurin	activity	assay:	
PxIxIT	peptides	were	fused	to	eGFP	in	pEGFPc1	vector.	HEK293T	cells	were	transfected	with	pEGFPc1	
clones,	pNFAT-Luc	and	CMV-Renilla	in	a	6-well	plate	format.	18	hours	post	transfection,	1uM	FK506	or	
DMSO	(vehicle)	was	added	to	the	media	as	needed.	36	hours	post	transfection,	cells	were	treated	with	
1mM	Ionomycin	and	1mM	phorbol	12,13	di-butyrate	to	activate	calcineurin	and	AP-1	(via	PKC)	
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respectively.	6	hours	after	pathway	activation,	cells	were	collected,	washed	in	PBS	and	re-suspended	in	
DMEM	media.	80%	of	the	cells	were	used	to	measure	luciferase	activity	and	renilla	using	the	Dual-Glo	
assay	system	(Promega)	with	3	technical	replicates.	The	remaining	cells	were	frozen	and	stored	at	-80°C.	
Cell	lysates	were	prepared	in	RIPA	buffer.	15-20	μg	of	lysate	was	analyzed	by	Western	for	expression	of	
GFP.	GFP	signal	was	normalized	to	either	actin	or	tubulin.	Luciferase	activity	(normalized	to	renilla	
expression)	was	further	normalized	to	eGFP	expression.	Data	represent	at	least	3	experimental	replicates.	
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Figures	
	

	
	
Figure	1.	MRBLE-pep	experimental	pipeline	for	high-throughput	measurement	of	protein-peptide	
interactions.	(A)	Encoded	beads	are	synthesized	in	a	microfluidic	device	and	output	to	peptide	synthesis	
tips	arrayed	in	a	96	well	plate	format	with	one	MRBLE	code	per	tip.	Peptides	are	then	synthesized	directly	
on	MRBLEs	via	solid	phase	peptide	synthesis	with	a	unique	1:1	linkage	between	peptide	sequence	and	
spectral	code.	(B)	MRBLE-pep	libraries	are	pooled	and	incubated	with	an	epitope-tagged	protein	and	
fluorescently-labeled	antibody.	(C)	Following	incubation	and	washing,	peptide	sequence	and	amount	of	
bound	protein	are	determined	via	imaging.	(D)	Example	data	showing	images	of	MRBLE-pep	beads	coated	
with	a	CN-bound	and	negative	control	peptide,	measured	lanthanide	ratios,	and	bound	antibody	
intensities.	 	
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Figure	2.	MRBLEs	allow	quantitative	measurement	of	CN-SLiM	interactions	in	high-throughput.	(A)	
Sequence	alignment	for	previously	identified	CN	PxIxIT	binding	sites	(see	Table	S1	for	affinity	references).	
(B)	Crystal	structure	showing	CN	heterodimer	bound	to	the	A238L	inhibitor	including	both	PxIxIT	and	LxVP	
binding	sites	(PDB	ID:	4F0Z).	(C)	Concentration-dependent	binding	for	CN	interacting	with	either	PVIVIT	
variants	(top),	natural	PxIxIT	peptides	(bottom),	or	a	scrambled	PxIxIT	motif	(bottom).	Each	peptide	was	
synthesized	on	3	different	MRBLE	codes	(light	grey	lines);	affinities	were	determined	from	global	
Langmuir	isotherm	fits	(black)	to	median	values	at	each	concentration	(grey	circles).	(D)	MRBLE-derived	
and	literature	reported	Kd	values	for	various	CN-PxIxIT	interactions.	Grey	solid	line	indicates	linear	
regression	between	data	sets;	dotted	line	indicates	expected	1:1	agreement.	(E)	Langmuir	isotherm	fits	to	
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concentration-dependent	binding	behavior	for	CN	interacting	with	candidate	high-affinity	PVIVIT	core	
variants.		
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Figure	3.	Structure-based	modeling	predictions.	(A)	Co-crystal	structures	showing	zoomed	in	overlay	of	
substrates.	(B)	Heat	maps	showing	frequencies	from	the	Rosetta	Sequence	Tolerance	protocol	for	each	
amino	acid	substitution	at	each	position	for	PVIVIT	and	IAIIIT	targets.	(C)	Heat	maps	showing	predicted	
changes	in	binding	energy	from	the	Rosetta	flex_ddG	protocol	for	each	amino	acid	substitution	at	each	
position	for	PVIVIT	and	IAIIIT	targets.	(D)	Logo	motifs	generated	for	predicted	substitutions	at	each	
position	within	each	of	the	4	target	motifs.	Wild-type	residues	are	shown	in	red;	residues	are	arranged	
from	top-to-bottom	by	predicted	effect	on	binding	energy.		
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Figure	4.	MRBLE-pep	mapping	of	the	CN-PxIxIT	binding	energy	landscape.	(A)	Langmuir	isotherm	fits	to	
concentration-dependent	binding	behavior	for	CN	interacting	with	PVIVIT	variants	containing	systematic	
mutations	within	position	2.	(B)	Relative	change	in	binding	affinity	for	individual	substitutions	at	position	2	
(as	compared	to	WT).	(C)	Heat	map	showing	relative	affinities	per	substitution	per	position	for	4	PxIxIT	
motifs.	(D)	Langmuir	isotherm	fits	to	concentration-dependent	binding	behavior	for	CN	interacting	with	a	
medium-affinity	PVIVIT	variant	containing	the	wild	type	histidine,	a	serine,	and	a	phosphoserine	at	
position	9.	(E)	Comparison	of	the	effect	on	affinity	for	a	particular	substitution	at	a	particular	position	in	
the	PKIVIT	motif	(y	axis)	vs.	the	PVIVIT	motif	(x	axis).	Inset	shows	relative	effects	on	affinity	for	various	
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substitutions	at	the	V4	position	in	PKIVIT	(top)	and	PVIVIT	(bottom),	highlighting	differential	effects	of	an	I	
substitution.	
	
	
	

	
	
Figure	5.	Comparisons	between	in	silico	modeling	and	experimental	results.	(A)	Scatter	plots	showing	the	
relationship	between	the	experimentally	measured	(y	axis)	and	computationally	predicted	(x	axis)	ΔΔG	
values	for	all	experimentally	tested	residues	within	the	PVIVIT	sequence	at	Positions	-1	and	3	(left)	and	2	
and	4	(right).	(B)	ROC	curve	showing	calculated	true	positive	rate	(TPR,	y	axis)	plotted	against	false	
positive	rate	(FPR,	x	axis)	for	classifying	either	real	(red)	or	shuffled	(black)	data	as	‘bound’	or	‘unbound’	at	
varying	frequency	thresholds.	(C)	ROC	curve	showing	calculated	true	positive	rate	(TPR,	y	axis)	plotted	
against	false	positive	rate	(FPR,	x	axis)	for	correctly	predicting	whether	substitutions	enhance	or	reduce	
affinities	at	varying	ΔΔG	thresholds	computed	by	the	Rosetta	flex_ddG	protocol.	
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Figure	6.	In	vivo	assays	to	quantify	CN	inhibition	and	an	in	vitro	search	for	a	potent	inhibitor.	(A)	In	vivo	
experimental	assay	schematic.	(B)	Reporter	gene	inhibition	in	the	presence	of	an	empty	eGFP	vector	
(control),	an	empty	eGFP	vector	with	topical	application	of	FK506,	and	vectors	expressing	PVIVIT,	PKIVIT,	
NFATc2,	and	AKAP79	PxIxIT	peptides	with	a	C-terminal	eGFP	tag.	(C)	Reporter	gene	inhibition	in	the	
presence	of	various	PVIVIT-,	AKAP79-,	and	NFATc2-eGFP	variants.	(D)	Reporter	gene	inhibition	in	the	
presence	of	various	PKIVIT-eGFP	variants.	(E)	In	vitro	calibrated	binding	affinities	(Kd,	nM)	plotted	against	
relative	in	vivo	activation	for	data	shown	in	panels	B	(orange),	C	(green),	and	D	(blue).	(F)	In	vitro	
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measurements	of	binding	affinities	for	candidate	high-affinity	binders	identified	by	combining	favorable	
residues.	
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