1 Ethane-dependent synthesis of polyhydroxyalkanoates by

2 the obligate methanotroph Methylocystis parvus OBBP

- 3 Jaewook Myung^{a,e}#, James C. A. Flanagan^{b,f}, Wakuna M. Galega^a, Robert M. Waymouth^b, Craig
- 4 S. $Criddle^{a,c,d}$
- ^a Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305,
- 6 USA
- 7 ^b Department of Chemistry, Stanford University, Stanford, California 94305, USA
- 8 ^c Woods Institute for the Environment, Stanford, CA 94305, USA
- 9 ^d William and Cloy Codiga Resource Recovery Center, Stanford, CA 94305, USA
- 10 ^e Current address: Department of Civil and Environmental Engineering, Southern Methodist
- 11 University, Dallas, TX 75205, USA
- ¹² ^f Current address: Brighton College, Eastern Road, Brighton, BN2 0AL, United Kingdom
- 13
- 14 Running title: Methanotrophic synthesis of PHAs using ethane
- 15
- 16 # Address correspondence to: Jaewook Myung, jjaimyung@smu.edu
- 17 Phone: (+1) 214-768-4229

18 ABSTRACT (250 words)

19	Under conditions of nutrient-limited growth, Type II obligate methanotrophs oxidize C ₁
20	compounds, such as methane or methanol and accumulate intracellular granules of poly(3-
21	hydroxybutyrate) (P3HB). Here, we report that, under same nutrient-limited conditions, the Type
22	II obligate methanotroph Methylocystis parvus OBBP can use ethane as its sole carbon and
23	energy source for synthesis P3HB granules, accumulating up to 35 ± 4 wt% P3HB. ¹³ C-NMR
24	spectra of the P3HB confirmed incorporation of ${}^{13}C$ from $[{}^{13}C_2]$ ethane. Moreover, when valerate
25	was added as a co-substrate with ethane, oxidation of the ethane supported synthesis of the
26	copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV).
27	IMPORTANCE (150 words, nontechnical explanation of the significance of the study)
27 28	IMPORTANCE (150 words, nontechnical explanation of the significance of the study) The presence of ethane in natural gas is often considered undesirable for methanotroph-based
28	The presence of ethane in natural gas is often considered undesirable for methanotroph-based
28 29	The presence of ethane in natural gas is often considered undesirable for methanotroph-based biotechnology due to the C_1 specialization of obligate methanotrophs and concerns about
28 29 30	The presence of ethane in natural gas is often considered undesirable for methanotroph-based biotechnology due to the C_1 specialization of obligate methanotrophs and concerns about inhibitory byproducts arising from methane monooxygenase-mediated cometabolism of ethane.
28 29 30 31	The presence of ethane in natural gas is often considered undesirable for methanotroph-based biotechnology due to the C ₁ specialization of obligate methanotrophs and concerns about inhibitory byproducts arising from methane monooxygenase-mediated cometabolism of ethane. This work establishes that co-oxidation of ethane and further metabolism in the absence of

34 KEYWORDS

ethane; methanotroph; methane monooxygenase; PHA; PHB; natural gas; polyhydroxyalkanoatesynthesis

38 INTRODUCTION

39	Aerobic methanotrophs are a unique group of gram-negative bacteria capable of utilizing
40	methane as sole carbon and energy source (1). The control of methanotrophs is critical as they
41	play a key role in mitigating the greenhouse gas impacts of methane (2) and can produce nitrous
42	oxide, an even more powerful global warming agent (3). Biotechnological applications of
43	methanotrophic bacteria include production of biodiesel (4), propylene oxide (5), single cell
44	protein (6), extracellular polysaccharides (7), human health supplements (8), and bioplastics,
45	including poly(3-hydroxybutyrate) (P3HB) (9–11), poly(3-hydroxybutyrate-co-3-
46	hydroxyvalerate) (PHBV) (11–14), poly(3-hydroxybutyrate-co-4-hydroxybutyrate), poly(3-
47	hydroxybutyrate-co-5-hydroxyvalerate-co-3-hydroxyvalerate), and poly(3-hydroxybutyrate-co-
48	6-hydroxyhexanoate- <i>co</i> -4-hydroxybutyrate) (15).
40	0-nyuloxynexanoau-e0-4-nyuloxybutyrau) (15).
49	Ethane (C_2H_6) is of interest for methanotroph-based biotechnology because it is the second most
49	Ethane (C_2H_6) is of interest for methanotroph-based biotechnology because it is the second most
49 50	Ethane (C_2H_6) is of interest for methanotroph-based biotechnology because it is the second most common component of natural gas (up to 5–10%) after methane (16). Because the obligate
49 50 51	Ethane (C_2H_6) is of interest for methanotroph-based biotechnology because it is the second most common component of natural gas (up to 5–10%) after methane (16). Because the obligate methanotrophs are one-carbon specialists, ethane is typically depicted as an undesirable
49 50 51 52	Ethane (C_2H_6) is of interest for methanotroph-based biotechnology because it is the second most common component of natural gas (up to 5–10%) after methane (16). Because the obligate methanotrophs are one-carbon specialists, ethane is typically depicted as an undesirable contaminant (17). While cometabolic oxidation of ethane to ethanol by methane monoxygenase
49 50 51 52 53	Ethane (C_2H_6) is of interest for methanotroph-based biotechnology because it is the second most common component of natural gas (up to 5–10%) after methane (16). Because the obligate methanotrophs are one-carbon specialists, ethane is typically depicted as an undesirable contaminant (17). While cometabolic oxidation of ethane to ethanol by methane monoxygenase is well-known, soluble products resulting from this oxidation are often viewed as inhibitory and
 49 50 51 52 53 54 	Ethane (C_2H_6) is of interest for methanotroph-based biotechnology because it is the second most common component of natural gas (up to 5–10%) after methane (16). Because the obligate methanotrophs are one-carbon specialists, ethane is typically depicted as an undesirable contaminant (17). While cometabolic oxidation of ethane to ethanol by methane monoxygenase is well-known, soluble products resulting from this oxidation are often viewed as inhibitory and an obstacle to beneficial use of natural gas. In this study, we report P3HB production by a pure

58 MATERIALS AND METHODS

59 **Culture conditions.** Unless otherwise specified, all *Methylocystis parvus* OBBP cultures were 60 grown in medium JM2, which is a modified version of ammonium mineral salts (AMS) medium 61 (18). Medium JM2 contained the following chemicals per L of solution: 2.4 mM MgSO₄ \cdot 7H₂O, 62 0.26 mM CaCl₂, 36 mM NaHCO₃, 4.8 mM KH₂PO₄, 6.8 mM K₂HPO₄, 10.5 µM Na₂MoO₄ · 63 2H₂O, 7 µM CuSO₄ · 5H₂O, 200 µM Fe-EDTA, 530 µM Ca-EDTA, 5 mL trace metal solution, 64 and 20 mL vitamin solution. The trace stock solution contained the following chemicals per L of 65 solution: 500 mg FeSO₄ \cdot 7H₂O, 400 mg ZnSO₄ \cdot 7H₂O, 20 mg MnCl₂ \cdot 7H₂O, 50 mg CoCl₂ \cdot 66 6H₂O, 10 mg NiCl₂ · 6H₂O, 15 mg H₃BO₃ and 250 mg EDTA. The vitamin stock solution 67 contained the following chemicals per L of solution: 2.0 mg biotin, 2.0 mg folic acid, 5.0 mg 68 thiamine · HCl, 5.0 mg calcium pantothenate, 0.1 mg vitamin B12, 5.0 mg riboflavin and 5.0 mg 69 nicotinamide.

All cultures were incubated in 160 mL serum bottles (Wheaton, Millville, NJ, USA) capped with
butyl-rubber stoppers and crimp-sealed under a methane/oxygen headspace (molar ratio 1:1.5; >
99% purity; Praxair Technology, Inc., Danbury, CT, USA). Liquid volume was 50 mL, and the
headspace volume was 110 mL. Cultures were incubated horizontally on orbital shaker tables at
150 rpm. The incubation temperature was 30 °C.

Methane-fed balanced growth phase. Fifty-milliliter cultures were grown to final optical
densities (OD₆₀₀) of 0.8–1.2 then centrifuged (3000 × g) for 15 min. The pellets were
resuspended in 30 mL of JM medium to create the inoculum for triplicate 160 mL serum bottle
cultures. Each culture received 10 mL inoculum plus 40 mL of fresh medium (39.5 mL of
medium JM plus 0.5 mL of 1.35 M ammonium chloride stock) and was flushed for 5 min with a
methane/oxygen mixture (molar ratio of 1:1.5). After growth at 30 °C for 24 h, the headspace in

81 each culture was again flushed for 5 min with the methane/oxygen mixture then incubated at 82 30 °C for a second 24 h period of balanced growth. All experiments were carried out in triplicate.

83 Ethane-fed unbalanced growth phase. After 48 h, all cultures were harvested and subjected to 84 nitrogen-limiting conditions. Triplicate samples were centrifuged $(3000 \times g)$ for 15 min and 85 suspended in fresh medium without nitrogen. The headspace of each bottle was flushed with the ethane/oxygen gas mixture (molar ratio of 1:1.5, > 99% purity; Praxair Technology, Inc., 86 87 Danbury, CT, USA) at t = 0 h and t = 24 h. To confirm ethane incorporation into the P3HB 88 granules, [¹³C₂]ethane (99 atom% ¹³C₂ ethane, Sigma-Aldrich, St. Louis, MO, USA) was added

89 in some cycles.

92

97

98

90 Ethane-fed unbalanced growth phase plus valerate. After detection of P3HB from ethane-

91 growth cell cultures, tests were performed to determine whether ethane could support production of PHBV when valerate was added during the PHA accumulation phase. Grown cells were

93 centrifuged (3500 rpm) for 15 min to create a pellet. The cell pellet was re-suspended in 50 mL

of JM2 media without added nitrogen, and vortexed vigorously to obtain a uniform suspension. 94

95 The suspension was transferred into 160-mL serum bottle, capped and crimp sealed. Valerate (10

96 mM) was added as sodium valerate to a subset of the serum bottles to determine whether ethane

could support production of PHBV. The headspace was flush with $C_2H_6:O_2$ mixture (molar ratio

1:4; > 99% purity; Praxair Technology, Inc., Danbury, CT, USA) and incubated for 48 hr. At the

99 24-hr midway point, the headspace of each vial was flushed with the same ethane mixture. At the

100 end of the 48-hr PHA accumulation period, the cells were harvested, centrifuged $(3000 \times g)$ for

101 15 min to create a pellet, and then freeze dried for further PHA analysis.

Ethane oxidation products analysis. In some ethane-fed unbalanced growth phases, 1 mL of
cell suspensions were sampled every 15 min during the first initial hour to analyze the
concentrations of oxidation products (alcohols, aldehydes, and carboxylic acids) of ethane.
Products were determined using gas chromatography (detailed methods are discussed in
Analytical methods).

107 Culture purity check. To test culture purity, biomass was removed after the 48 h period of 108 balanced growth. Genomic DNA was extracted using the FastDNA SPIN Kit for Soil (MP 109 Biomedicals, Santa Ana, CA, USA), as per the manufacture's protocol. Bacterial 16S rRNA was 110 amplified using the bacterial primers BAC-8F (5'-AGAGTTTGATCCTGGCTCAG-3') and 111 BAC-1492R (5'-CGGCTACCTTGTTACGACTT-3') (19). A polymerase chain reaction (PCR) 112 was performed using AccuPrime Tag DNA Polymerase System (Invitrogen, Carlsbad, CA, USA) 113 with the following thermocycling steps: (i) 94 °C for 5 min; (ii) 30 cycles consisting of 94 °C for 114 30 s, 55 °C for 30 s, 68 °C for 80 s; and (iii) an extension at 68 °C for 10 min. Amplicon 115 presence and quality of PCR reaction were verified via 1.5% agarose gel electrophoresis. 116 PCR products were purified using QIAquick PCR Purification Kit (Qiagen, Chatsworth, CA, 117 USA), then cloned using pGEM-T Easy Vector System with JM109 competent Escherichia coli 118 cells (Promega, Madison, WI, USA) per the manufacture's protocol. Randomly selected clones 119 were sequenced by Elim Biopharmaceuticals Inc. (Hayward, CA, USA), generating 120 near-full 120 length 16S rRNA gene sequences. Retrieved DNA sequences were compared with reference 121 sequences using Basic Local Alignment Search Tool (BLAST).

122 Confirmation of obligate methanotrophy. To test use of ethane as a carbon source for growth,
123 cultures were incubated under ethane/oxygen gas mixture (molar ratio of 1:1.5, > 99% purity;

124	Praxair Technology, Inc., Danbury, CT, USA) in 50 mL of fresh medium (49.5 mL of medium
125	JM plus 0.5 mL of 1.35 M ammonium chloride stock). Control cultures without any added
126	carbon source were also prepared. To rule out the effect of O_2 tension in methanotrophic growth,
127	various concentrations of O_2 (1, 5, 10, and 25% O_2 in the headspace) were tested. OD_{600} values
128	were measured for 10 days.

129 Analytical methods. To analyze concentrations of methane, ethane, and oxygen, 0.5 mL of gas

130 phase from each enrichment culture was injected onto GOW-MAC gas chromatograph with an

131 Altech CTR 1 column and a thermal conductivity detector. The following method parameters

132 were used: injector, 120 °C; column, 60 °C; detector, 120 °C; and current, 150 mV. Peak areas of

133 methane, ethane, and oxygen were compared to standards and quantified using the software

134 ChromPerfect (Justice Laboratory Software, Denville, NJ, USA).

135 Products of ethane oxidation (alcohols and aldehydes) were analyzed using a GC (Agilent 6890N;

136 Agilent Technologies, Palo Alto, CA, USA) equipped with an HP-INNOWax column (Agilent

137 Technologies, Palo Alto, CA, USA) and a flame ionization detector.

138 To analyze total suspended solids (TSS), 0.5–5.0 mL of cell suspension was filtered through pre-

139 washed, dried, and pre-weighted 0.2 µm membrane filters (Pall, Port Washington, NY, USA).

140 The filtered cells and membrane filters were dried at 105 °C for 24 h, then weighed on an AD-6

141 autobalance (PerkinElmer, Norwalk, CT, USA).

142 **PHA weight percentages.** To determine PHA weight percent, between 5 and 10 mg of freeze-

143 dried biomass were weighed then transferred to 12 mL glass vials. Each vial was amended with 2

144 mL of methanol containing sulfuric acid (3%, vol/vol) and benzoic acid (0.25 mg/mL methanol),

145 supplemented with 2 mL of chloroform, and sealed with a Teflon-lined plastic cap. All vials 146 were shaken then heated at 95–100 °C for 3.5 h. After cooling to room temperature, 1 mL of 147 deionized water was added to create an aqueous phase separated from the chloroform organic 148 phase. The reaction cocktail was mixed on a vortex mixer for 30 s then allowed to partition until 149 phase separation was complete. The organic phase was then sampled by syringe and analyzed 150 using a GC (Agilent 6890N; Agilent Technologies, Palo Alto, CA, USA) equipped with an HP-5 151 column (containing (5% phenyl)-methylpolysiloxane; Agilent Technologies, Palo Alto, CA, 152 USA) and a flame ionization detector. DL-3-Hydroxybutyric acid sodium salt (Sigma–Aldrich, St. Louis, MO, USA) and PHBV with 3HV fractions of 5 mol%, 8 mol%, and 12 mol% (Sigma-153 154 Aldrich, St Louis, MO, USA) was used to prepare external calibration curves. The PHA content 155 (wt%, w_{PHA}/w_{CDW}) of the samples was calculated by normalizing to initial dry mass. 156 **PHA purification.** PHA was quantified using the gas chromatography protocol of Braunegg et 157 al. (20). PHA granules were extracted from the cells by suspending 500 mg of freeze-dried cell 158 material in 50 mL Milli-Q water, adding 400 mg of sodium dodecyl sulfate (>99.0% purity; 159 Sigma–Aldrich, St. Louis, MO, USA) and 360 mg of EDTA, followed by heating to 60 °C for 60 160 min to induce cell lysis. The solution was centrifuged $(3000 \times g)$ for 15 min, and the pellet 161 washed three times with deionized water. To purify the PHA, pellets were washed with a 50 mL 162 sodium hypochlorite (bleach) solution (Clorox 6.15%), incubated at 30 °C with continuous 163 stirring for 60 min, then centrifuged $(3000 \times g)$ for 15 min. Sample pellets were washed and re-164 centrifuged three times with deionized water.

Molecular weight analysis. Molecular weights of PHAs were evaluated using gel permeation
chromatography (GPC). Sample pellets dissolved in chloroform at a concentration of 5 mg/mL

167 for 90 min at 60 °C were filtered through a 0.2 µm PTFE filter, then analyzed with a Shimadzu 168 UFLC system (Shimadzu Scientific Instruments, Columbia, MD, USA) equipped with a 169 Shimadzu RID-10A refraction index detector. The GPC was equipped with a Jordi Gel DVB 170 guard column (500 Å, Jordi Labs, Mansfield, MA, USA) and Jordi Gel DVB analytical columns 171 (105 Å, Jordi Labs, Mansfield, MA, USA). The temperature of the columns was maintained at 40 °C, and the flow rate of the mobile phase (chloroform) was 1 mL min⁻¹. Molecular weights 172 173 were calibrated with polystyrene standards from Varian (Calibration Kit S-M2-10, Agilent 174 Technologies, Palo Alto, CA, USA).

175 Nuclear magnetic resonance (NMR). NMR spectroscopy was used to detect the abundance of 13 C in P3HB samples made from bacteria fed either naturally-abundant (99% 12 C, 1% 13 C) 176 (control sample) or isotopically-labeled (99% ¹³C, 1% ¹²C) ethane. A stock solution of internal 177 178 standard was made by dissolving 1.0 mg hexamethyldisiloxane (HMDSO) in 1.44 mL CDCl₃. For both samples, 0.5 mL of this internal standard stock solution (2.130 x 10^{-3} mmol) was 179 180 combined with approximately 1 mg of P3HB (an accurate amount of P3HB in the sample was determined by ¹H-NMR: *vide infra*). ¹H-NMR spectroscopy (500 MHz, 32 scans, delay time (d1) 181 182 = 20 s) was firstly used to calculate an accurate amount of dissolved P3HB in the samples by 183 comparing peak integrations of the CH₃ protons from HMDSO and CH₃ protons from P3HB. ¹³C-NMR spectroscopy (125 MHz, 2044 scans (for P3HB from naturally abundant ethane) and 184 2392 scans (for P3HB from $[^{13}C_2]$ -ethane), delay time (d1) = 16 s, room temperature, 90° pulse) 185 186 was then performed on the two samples. In both samples, a comparison of the peak integrations 187 of the CH₃ carbons from HMDSO and CH₃ carbon from P3HB was used to determine whether 188 the carbon was present in a natural abundance or in greater than natural abundance (which would indicate incorporation of ¹³C-carbons from the $[^{13}C_2]$ -ethane). 189

190 **RESULTS**

191 Culture purity check and tests of growth with ethane. Culture purity checks gave no 192 indication of culture contamination by heterotrophic bacteria (21, 22). All cloned 16S rRNA 193 gene fragments matched reference sequences for *M. parvus* OBBP. This strain was tested for 194 growth on ethane. No growth was detected on ethane over a range of headspace O_2 levels (1, 5, 195 10, and 25%), confirming obligate methanotrophy. 196 **P3HB** production using ethane. Table 1 summarizes P3HB production results for *M. parvus* 197 OBBP when methane or ethane was added as a carbon source during a nitrogen-limited, 198 unbalanced growth phase. In either case, P3HB was the final product. When methane was added, 199 the wt% P3HB was 48 ± 5 wt%, and the TSS was 1820 ± 200 mg/L. When ethane was added, 200 the wt% P3HB decreased to 35 ± 4 wt%, and the TSS decreased to 1440 ± 160 mg/L. 201 Patterns of gas consumption and generation were evaluated for the serum bottle cultures fed 202 methane (Figure 1a) or ethane (Figure 1b) on a nitrogen-limited, unbalanced growth phase. The 203 errors bars represent standard deviations for triplicate batch cultures. 204 When fed methane, almost all methane and oxygen were consumed within the first 9 h. The final 205 concentration of CO₂ was 587 ± 90 mg CO₂/L. The maximum specific rate of methane utilization (\hat{q}_{CH4}) was 0.058 ± 0.009 g CH₄ g TSS⁻¹ h⁻¹. The maximum specific rate of oxygen utilization 206 (\hat{q}_{O2}) was 0.164 ± 0.021 g O₂ g TSS⁻¹ h⁻¹. The maximum specific rate of CO₂ production (\hat{q}_{CO2}) 207 was 0.038 ± 0.007 g CO₂ g TSS⁻¹ h⁻¹. No inhibition was observed throughout the 24 h period. 208 209 When fed ethane, both ethane and oxygen were present throughout the 24 h period. The final 210 concentration of CO₂ was 185 ± 33 mg CO₂/L. The maximum specific rate of ethane utilization

211 (\hat{q}_{C2H6}) was 0.048 ± 0.008 g C_2H_6 g TSS⁻¹ h⁻¹. The maximum specific rate of oxygen utilization 212 (\hat{q}_{O2}) was 0.088 ± 0.015 g O_2 g TSS⁻¹ h⁻¹. The maximum specific rate of CO₂ production (\hat{q}_{CO2}) 213 was 0.010 ± 0.002 g CO₂ g TSS⁻¹ h⁻¹. The consumption rate of ethane and oxygen slowed down 214 after t = 6 h, suggesting the presence of inhibitory substances in the cell cultures.

Isotopic enrichment. ¹³C-NMR spectroscopy was used to detect the abundance of ¹³C in P3HB 215 samples made from bacteria fed either naturally-abundant (99% 12 C, 1% 13 C) (control sample) 216 or isotopically-labeled (99% ¹³C, 1% ¹²C) ethane. A HMDSO internal standard was used in both 217 218 samples (see full Supplemental Material for full calculation). In the control sample, where the 219 P3HB was synthesized from bacteria supplied with naturally abundant ethane, the carbon peak 220 integrals indicated that the ¹³C-content in the polymer was approximately 1% (i.e. consistent with the 1% natural abundance of 13 C) (Figure 2b). In contrast, in the P3HB sample from 221 bacteria supplied with $[^{13}C_2]$ -ethane, the carbon peak integrals indicated that the ^{13}C -content in 222 223 the polymer was approximately 10% (Figure 3b). This demonstrates unequivocally that the 224 bacteria uptake ¹³C-labeled ethane, and that it is utilized in the synthesis of P3HB.

Molecular weight characterization. Table 2 illustrates the number average molecular weight (M_n) and molecular weight distributions (M_w/M_n) of P3HB produced by *M. parvus* OBBP when fed methane or ethane. Values for M_n and M_w/M_n are not statistically different when fed methane or ethane (p-value of $M_n = 0.75$, p-value of $M_w/M_n = 0.43$).

Oxidation products of ethane. Cell cultures of *M. parvus* OBBP oxidized ethane gas. Products
from the oxidation of ethane included acetaldehyde and acetate (Table 3). Ethanol was not
detected, suggesting that *M. parvus* OBBP has an efficient alcohol dehydrogenase system.

PHBV production from ethane and valerate. When ethane was the source of carbon and energy during the PHA accumulation phase, P3HB was the sole PHA produced; when supplemented with valerate (10 mM), $12.9 \pm 2.6\%$ of PHBV was generated ($25 \pm 0.01\%$ 3HV mole fraction).

236 **DISCUSSION**

237 Obligate methanotrophs are restricted to grow on C₁ substrates including methane, methanol, and

in some cases formate, formaldehyde, and methylamines (23). While *M. parvus* OBBP is unable

to grow on ethane under conditions of balanced, nutrient-sufficient growth, this work establishes

that *M. parvus* OBBP is able to take up ethane and oxidized it under nitrogen-limited,

unbalanced growth conditions. Methane monooxygenases (MMOs) are known to be non-specific

242 (17, 24) and capable of oxidizing aliphatic compounds, aromatic compounds, and alkanes,

including ethane (25–31), and, our data indicate that MMO-generated ethanol degrades rapidly to

acetaldehyde then acetic acid. A fraction of the acetic acid is assimilated into P3HB. This is the

245 first evidence that pure culture of well-known Type II obligate methanotrophs assimilate ethane

and produce P3HB polymer with high molecular weight comparable to the P3HB polymer made

with methane (Table 2). Incorporation of 13 C-labeled ethane was confirmed using 13 C-NMR.

Figure 4 illustrates the proposed pathway for oxidation and assimilation of ethane. All the

249 presented enzymes in *M. parvus* OBBP have been identified and their primary structures are

250 deposited in publically available databases.

MMO oxidation of ethane to ethanol requires reducing equivalents, which can be obtained from
each subsequent oxidation step. Oxidation of ethane yielded mixtures of intermediates in the

medium including acetaldehyde and acetate, but no ethanol (Table 3). The absence of ethanol
and low levels of acetaldehyde suggest that *M. parvus* OBBP possesses a highly efficient
dehydrogenase system.

256 Our data indicate that acetic acid is produced inside intracellularly by oxidation of ethane to 257 ethanol and the acid generated is secreted into solution. The rates of intracellular oxidation of 258 ethanol to acetate exceed the rates of acetic acid oxidation and assimilation into P3HB, resulting 259 in the secretion of acetic acid and its accumulation in the media. Levels of acetate in the media 260 were much higher rate than those of acetaldehyde (Table 3), in close agreement with that 261 reported previously (31). This result and our analysis of P3HB production (Table 1) indicate that 262 *M. parvus* OBBP possesses the enzyme systems needed to funnel acetic acid into the P3HB 263 biosynthetic pathway, with the balance either excreted or oxidized for energy. In the presence of 264 ethane, MMO activity decreased over time, perhaps due to dissipation of proton gradient needed 265 for ATP production as acetic acid accumulated (Figure 1b) (32, 33).

266 In summary, the results from this study establish that pure cultures of obligate methanotrophs 267 can process the two most dominant gases in natural gas into P3HB and PHBV without methane. 268 This may be industrially significant given that ethane is typically the second-largest component 269 of natural gas. Our findings also have implications for the way in which we view the 270 methanotrophic P3HB biosynthesis. Until now, researchers have largely assumed that obligate 271 methanotrophs are limited to utilization of C_1 compounds. This work demonstrates that this basic 272 assumption is incorrect for nutrient-limited, unbalanced growth conditions. Under such 273 conditions, M. parvus OBBP can use at least two gas substrates as well as multi-carbon co-274 substrates for production of PHAs. Of course, additional studies are needed to generalize this

275	finding for other Type II methanotrophs. In preliminary tests of Methylosinus trichosporium		
276	OB3b, ethane addition did not support P3HB production (data not shown).		
277	ACK	NOWLEDGEMENTS	
278	This v	work was supported in part by unrestricted gifts from Chevron and by a Samsung	
279	Schol	arship. This work was also supported by the Center for the Utilization of Biological	
280	Engin	eering in Space (CUBES), a Space Technology Research Institute grant from NASA's	
281	Space Technology Research Grants Program under grant or cooperative agreement award		
282	number NNXNNX17AJ31G S02. We thank the Stanford Nano Shared Facilities for staff		
283	assistance, training, and access to instruments required for this research. JF is grateful to the		
284	Stanfo	ord Center for Molecular Analysis and Design (CMAD) for a graduate fellowship.	
285	REFI	ERENCES	
286	1.	Karthikeyan OP, Karthigeyan K, Cirés S, Heimann K. 2014. Review of sustainable	
287		methane mitigation and biopolymer production. Crit Rev Environ Sci Technol 45:1579–	
288		1610.	
289	2.	Singh BK, Bardgett RD, Smith P, Reay DS. 2010. Microorganisms and climate change:	
290		terrestrial feedbacks and mitigation options. Nat Rev Microbiol 8:779–790.	
291	3.	Myung J, Wang Z, Yuan T, Zhang P, Van Nostrand JD, Zhou J, Criddle CS. 2015.	
292		Production of nitrous oxide from nitrite in stable Type II methanotrophic enrichments.	
293		Environ Sci Technol 49:10969–10975.	
294	4.	Fei Q, Guarnieri MT, Tao L, Laurens LML, Dowe N, Pienkos PT. 2014. Bioconversion of	
295		natural gas to liquid fuel: Opportunities and challenges. Biotechnol Adv 32:596-614.	

296	5.	Hou C. 1984. Propylene oxide production from propylene by immobilized whole cells of
297		Methylosinus sp. CRL 31 in a gas-solid bioreactor. Appl Microbiol Biotechnol 19:1-4.
298	6.	Yazdian F, Hajizadeh S, Shojaosadati SA, Khalilzadeh R, Jahanshahi M, Nosrati M. 2005.
299		Production of single cell protein from natural gas: parameter optimization and RNA
300		evaluation. Iran J Biotechnol 3:235–242.
301	7.	Chiemchaisri W, Wu JS, Visvanathan C. 2001. Methanotrophic production of
302		extracellular polysaccharide in landfill cover soils. Water Sci Technol 43:151–158.
303	8.	Müller H, Hellgren LI, Olsen E, Skrede A. 2004. Lipids rich in phosphatidylethanolamine
304		from natural gas-utilizing bacteria reduce plasma cholesterol and classes of phospholipids:
305		A comparison with soybean oil. Lipids 39:833-841.
306	9.	Wendlandt KD, Jechorek M, Helm J, Stottmeister U. 2001. Producing poly-3-
307		hydroxybutyrate with a high molecular mass from methane. J Biotechnol 86:127–133.
308	10.	Myung J, Kim M, Pan M, Criddle CS, Tang SKY. 2016. Low energy emulsion-based
309		fermentation enabling accelerated methane mass transfer and growth of poly(3-
310		hydroxybutyrate)-accumulating methanotrophs. Bioresour Technol 207:302-307.
311	11.	Flanagan JCAJCA, Myung J, Criddle CSCS, Waymouth RMRM. 2016.
312		Poly(hydroxyalkanoate)s from waste biomass: A combined chemical-biological approach.
313		ChemistrySelect 1:2327–2331.
314	12.	Myung J, Flanagan JCA, Waymouth RM, Criddle CS. 2016. Methane or methanol-
315		oxidation dependent synthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by
316		obligate Type II methanotrophs. Process Biochem 51:561–567.
317	13.	Cal AJ, Sikkema WD, Ponce MI, Franqui-Villanueva D, Riiff TJ, Orts WJ, Pieja AJ, Lee
318		CC. 2016. Methanotrophic production of polyhydroxybutyrate-co-hydroxyvalerate with

319 high hydroxyvalerate content. Int J Biol Macromol 87:302–307.

- 320 14. Myung J, Galega WM, Van Nostrand JD, Yuan T, Zhou J, Criddle CS. 2015. Long-term
- 321 cultivation of a stable Methylocystis-dominated methanotrophic enrichment enabling
- 322 tailored production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Bioresour Technol
- 323 198:811–818.
- 15. Myung J, Flanagan JCA, Waymouth RM, Criddle CS. 2017. Expanding the range of
- 325 polyhydroxyalkanoates synthesized by methanotrophic bacteria through the utilization of

326 omega-hydroxyalkanoate co-substrates. AMB Express 7:118.

- Mueller JC. 1969. Preferential utilization of the methane component of natural gas by a
 mixed culture of bacteria. Can J Microbiol 15:1114–1116.
- Malashenko Y, Sokolov I, Romanovskaya V. 2000. Role of monooxygenase reaction
 during assimilation of non-growth substrates by methanotrophs. J Mol Catal B Enzym

331 10:305–312.

33218.Whittenbury R, Phillips KC, Wilkinson JF. 1970. Enrichment, isolation and some

333 properties of methane-utilizing bacteria. J Gen Microbiol 61:205–218.

334 19. Stackebrandt E, Goodfellow M. 1991. Nucleic acid techniques in bacterial systematics.
335 Wiley, Chichester; New York.

336 20. Braunegg G, Sonnleitner B, Lafferty RM. 1978. Rapid Gas-Chromatographic Method for

- 337Determination of Poly-Beta-Hydroxybutyric Acid in Microbial Biomass. Eur J Appl
- 338 Microbiol Biotechnol 6:29–37.
- 339 21. Dedysh SN, Dunfield PF. 2011. Facultative and obligate methanotrophs: How to identify
 340 and differentiate them. Methods Enzymol 495:31–44.
- 341 22. Semrau JD, DiSpirito AA, Vuilleumier S. 2011. Facultative methanotrophy: false leads,

342		true results, and suggestions for future research. FEMS Microbiol Lett 323:1-12.
343	23.	Dedysh SN, Knief C, Dunfield PF. 2005. Methylocella species are facultatively
344		methanotrophic. J Bacteriol 187:4665-4670.
345	24.	Hou CT, Patel RN, Laskin AI, Barnabe N. 1980. Microbial oxidation of gaseous
346		hydrocarbons: Oxidation of lower N-alkenes and N-alkanes by resting cell suspensions of
347		various methylotrophic bacteria, and the effect of methane metabolites. FEMS Microbiol
348		Lett 9:267–270.
349	25.	Criddle CS. 1993. The kinetics of cometabolism. Biotechnol Bioeng 41:1048–1056.
350	26.	Alvarez-Cohen L, McCarty PL. 1991. Product toxicity and cometabolic competitive
351		inhibition modeling of chloroform and trichloroethylene transformation by
352		methanotrophic resting cells. Appl Environ Microbiol 57:1031–1037.
353	27.	Fogel MM, Taddeo AR, Fogel S. 1986. Biodegradation of chlorinated ethenes by a
354		methane-utilizing mixed culture. Appl Environ Microbiol 51:720–724.
355	28.	Higgins IJ, Best DJ, Hammond RC. 1980. New findings in methane-utilizing bacteria
356		highlight their importance in the biosphere and their commercial potential. Nature
357		286:561–564.
358	29.	Oldenhuis R, Vink RLJM, Janssen DB, Witholt B. 1989. Degradation of chlorinated
359		aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane
360		monooxygenase. Appl Environ Microbiol 55:2819–2826.
361	30.	Patel RN, Hou CT, Laskin AI, Felix A. 1982. Microbial oxidation of hydrocarbons:
362		Properties of a soluble methane monooxygenase from a facultative methane-utilizing
363		organism, Methylobacterium sp. strain CRL-26. Appl Environ Microbiol 44:1130–1137.
364	31.	Imai T, Takigawa H, Nakagawa S, Shen G-J, Kodama T, Minoda Y. 1986. Microbial

365		oxidation of hydrocarbons and related compounds by whole-cell suspensions of the
366		methane-oxidizing bacterium H-2. Appl Environ Microbiol 52:1403–1406.
367	32.	Axe DD, Bailey JE. 1995. Transport of lactate and acetate through the energized
368		cytoplasmic membrane of Escherichia coli. Biotechnol Bioeng 47:8–19.
369	33.	Yoon S, Im J, Bandow N, Dispirito AA, Semrau JD. 2011. Constitutive expression of
370		pMMO by Methylocystis strain SB2 when grown on multi-carbon substrates: Implications
371		for biodegradation of chlorinated ethenes. Environ Microbiol Rep 3:182–188.
372		
373		

TABLES

- Table 1. Final P3HB wt% and TSS values after a 48 h nitrogen-limited, unbalanced growth
- 376 phase when methane or ethane was added as a carbon source.

Carbon source	P3HB wt%	TSS (mg/L)
Methane	48 ± 5	1820 ± 200
Ethane	35 ± 4	1440 ± 160

377

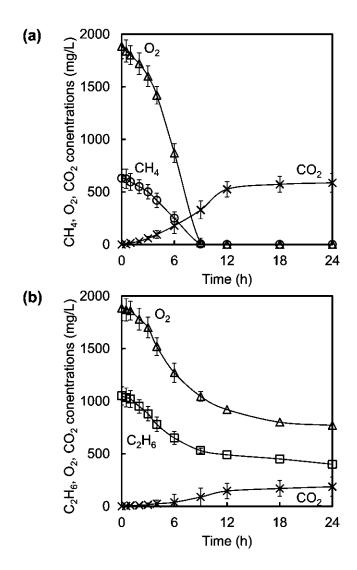
378

380 Table 2. Molecular weights and distributions for extracted P3HB.

Carbon source	M _n	M _w /M _n
Methane	$1.42 \pm 0.20 \text{ E}{+}06$	1.89 ± 0.05
Ethane	$1.37 \pm 0.15 \text{ E}{+}06$	1.85 ± 0.06

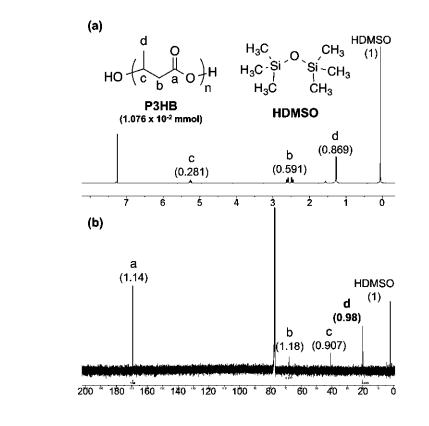
Table 3. Oxidation products of ethane by cell cultures of *M. parvus* OBBP during the first hour

in a nitrogen-limited, unbalanced growth phase


Products detected	Rate of formation (mg product mg TSS ⁻¹ h ⁻¹)
Ethanol	ND
Acetaldehyde	0.066 ± 0.011
Acetate	0.71 ± 0.13

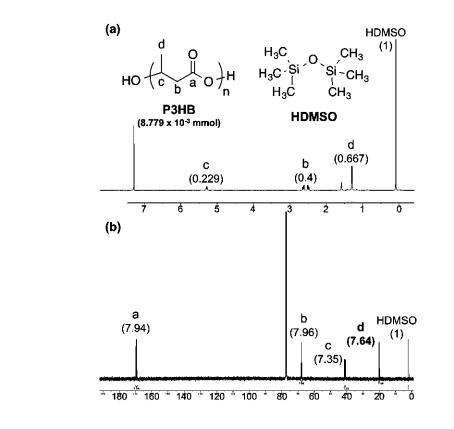
386

387


389 FIGURES

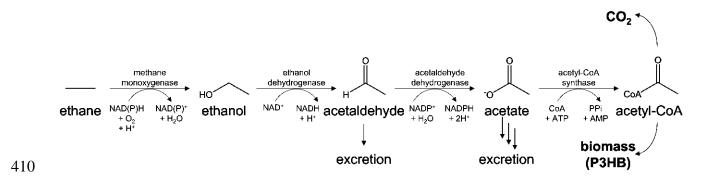
- 390 Figure 1. Concentrations of methane (\bigcirc), ethane (\square), oxygen (\triangle), and carbon dioxide (\times)
- 391 measured during the nitrogen-limited, unbalanced growth phase when (a) methane or (b) ethane
- 392 was added as a carbon source. Gases in both the gas phase and the liquid phase were taken
- 393 account to compute for the concentrations. The errors bars represent standard deviations for
- 394 triplicate enrichment cultures.

395


- 397 Figure 2. (a) 1 H- and (b) 13 C-NMR spectra of P3HB polymer produced using naturally abundant
- 398 ethane. Numbering of the atoms is illustrated on a chemical structure. Numbers inside the
- 399 parentheses are the corresponding peaks' integration numbers.

400

401


- 403 Figure 3. (a) ¹H- and (b) ¹³C-NMR spectra of P3HB polymer produced using $[^{13}C_2]$ ethane.
- 404 Numbering of the atoms is illustrated on a chemical structure. Numbers inside the parentheses
- 405 are the corresponding peaks' integration numbers.

406

407

409 Figure 4. Pathway for assimilation of ethane by *M. parvus* OBBP.

