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Abstract	16 
	17 
The	 majority	 of	 existing	 models	 for	 predicting	 disease	 risk	 in	 response	 to	 climate	 change	 are	18 
empirical.	 These	 models	 exploit	 correlations	 between	 historical	 data,	 rather	 than	 explicitly	19 
describing	relationships	between	cause	and	response	variables.	Therefore,	they	are	unsuitable	for	20 
capturing	 impacts	 beyond	 historically	 observed	 variability	 and	 cannot	 be	 employed	 to	 assess	21 
interventions.	In	this	study,	we	integrate	environmental	and	epidemiological	processes	into	a	new	22 
mechanistic	model,	taking	the	widespread	parasitic	disease	of	fasciolosis	as	an	example.	The	model	23 
simulates	environmental	suitability	for	disease	transmission,	explicitly	linking	the	parasite	life-cycle	24 
to	key	weather-water-environment	conditions.	First,	using	epidemiological	data,	we	show	that	the	25 
model	can	reproduce	observed	infection	levels	in	time	and	space	over	two	case	studies	in	the	UK.	26 
Second,	to	overcome	data	 limitations,	we	propose	a	calibration	approach	based	on	Monte	Carlo	27 
sampling	and	expert	opinion,	which	allows	constraint	of	the	model	in	a	process-based	way,	including	28 
a	 quantification	 of	 uncertainty.	 Finally,	 comparison	 with	 information	 from	 the	 literature	 and	 a	29 
widely-used	empirical	risk	index	shows	that	the	simulated	disease	dynamics	agree	with	what	has	30 
been	 traditionally	 observed,	 and	 that	 the	 new	 model	 gives	 better	 insight	 into	 the	 time-space	31 
patterns	of	infection,	which	will	be	valuable	for	decision	support.	32 
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1.	Introduction	36 
	37 
The	transmission	of	several	highly	pathogenic	infectious	diseases	is	closely	linked	to	weather	and	38 
environmental	conditions	(1).	Waterborne	diseases,	such	as	cholera,	are	directly	affected	by	hydro-39 
meteorological	factors	such	as	rainfall,	through	transport	and	dissemination	of	the	pathogens,	and	40 
water	temperature,	through	their	development	and	survival	rates.	Diseases	involving	a	vector	or	41 
intermediate	host	as	part	of	their	life-cycle,	such	as	schistosomiasis,	are	controlled	by	characteristics	42 
of	the	water	environment	and	land	surface	also	indirectly,	through	their	influence	on	the	vector	or	43 
host	(2,3).	44 
	45 
Our	 environment	 is	 changing	 at	 unprecedented	 rate	 due	 to	 climate	 change	 and	 direct	 human	46 
activities	(4,5),	with	implications	for	the	behaviour,	lifespans	and	distribution	of	these	diseases	and	47 
their	 carriers	 (6,7).	 Evidence	 of	 climate	 and	 environmental-driven	 changes	 in	 the	 phenology	 of	48 
pathogens	 and	 incidence	 of	 diseases	 already	 exists.	 The	 increase	 in	 frequency	 and	 intensity	 of	49 
extreme	 weather	 events	 is	 altering	 the	 occurrence	 of	 floods	 and	 droughts,	 changing	 the	50 
concentration	of	 infectious	agents	such	as	Vibrio	cholerae	 in	the	water	environment	and	human	51 
exposure	 to	 infection	 (3).	 Similarly,	 changes	 in	 the	 prevalence	 of	 schistosomiasis	 have	 been	52 
observed	due	to	the	expansion	of	the	snail	intermediate	host	habitat,	following	the	construction	of	53 
dams	 and	 implementation	 of	 irrigation	 schemes	 to	 meet	 demands	 for	 food	 and	 energy	 from	54 
increasing	numbers	of	people	(8).	55 
	56 
As	climate	change	accelerates	and	other	human-caused	disturbances	increase,	it	is	urgent	to	assess	57 
impacts	on	disease	transmission,	to	guide	interventions	to	reduce	and/or	mitigate	risk	(9).	To	this	58 
end,	 we	 need	 to:	 (a)	 understand	 the	 mechanisms	 by	 which	 the	 environment	 affects	 the	59 
epidemiological	processes,	addressing	the	system	as	a	whole,	(b)	represent	these	processes	with	60 
models	that	are	explicit	in	space	and	time,	to	more	reliably	simulate	conditions	beyond	historically	61 
observed	 variability,	 and	 (c)	 test	 these	 models	 in	 new	 ways,	 since	 simply	 reproducing	 past	62 
observations	may	no	longer	be	sufficient	to	justify	their	use	for	decision	support	(1,3,7,10-12).	63 

	64 
However,	most	current	models	for	predicting	changes	to	disease	patterns	in	response	to	climate	65 
change	are	empirical	 (7,13,14).	This	means	they	do	not	explicitly	represent	mechanisms,	but	are	66 
based	 on	 statistical	 correlations	 between	 historical	 data,	 thus	 becoming	 unreliable	 when	67 
extrapolated	 to	 novel	 conditions,	 e.g.	 into	 different	 regions	 or	 future	 climates	 (15).	Moreover,	68 
empirical	models	do	not	allow	for	what-if	analyses,	 i.e.	they	cannot	be	used	to	test	the	effect	of	69 
interventions	 on	 disease	 incidence,	 which	 would	 be	 valuable	 for	 supporting	 decision-making	70 
(10,16).		71 

	72 
In	 this	paper,	we	 incorporate	knowledge	of	environmental	and	epidemiological	processes	 into	a	73 
new	 integrated	mechanistic	model,	using	 fasciolosis	as	an	example.	This	 is	a	globally	distributed	74 
parasitic	disease	of	livestock	and	zoonosis,	whose	most	widespread	agent	is	Fasciola	hepatica,	the	75 
common	liver	fluke	(17).	Clinical	signs	of	disease	in	animals	include	weight	loss,	anaemia	and	sudden	76 
death,	while	 sub-clinical	 infections	 result	 in	 lowered	productivity	 and	 are	 estimated	 to	 cost	 the	77 
livestock	industry	$3	billion	per	year,	globally	(18,19).	Risk	of	infection	with	liver	fluke	is	strongly	78 
influenced	by	weather	and	environmental	conditions,	especially	temperature	and	soil	moisture,	as	79 
the	parasite	has	an	indirect	life-cycle	involving	an	intermediate	host	(in	the	case	of	F.	hepatica,	the	80 
amphibious	mud	 snail	Galba	 truncatula)	 and	 free-living	 stages,	 which	 grow	 and	 develop	 in	 the	81 
environment	(20-22).		82 
	83 
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Addressing	fasciolosis	is	urgent	for	a	number	of	reasons.	First,	resistance	to	available	antiparasitic	84 
drugs	 is	 on	 the	 rise	 worldwide,	making	 disease	 control	 challenging	 (23).	 Secondly,	 increases	 in	85 
disease	prevalence,	expansions	into	new	areas	and	shifts	in	its	seasonality	have	been	observed	in	86 
recent	years	and	attributed	to	altered	temperature	and	rainfall	patterns,	raising	concerns	about	the	87 
effects	of	climate	change	in	the	future	(23,24).	Finally,	it	is	emerging	as	a	major	disease	in	humans,	88 
with	at	 least	2.4	million	people	 infected	around	the	world,	and	human	treatment	relying	on	the	89 
same	veterinary	drug	to	which	resistance	is	increasing	(25).	Climate-based	fluke	risk	models	have	90 
been	developed	since	the	1950s	(20,26-28).	The	Ollerenshaw	Index	is	the	best-known	example	and	91 
is	 still	actively	used	to	predict	disease	severity	 in	Europe	 (20,29,30).	However,	 these	models	are	92 
empirical	and	therefore	of	little	use	for	assessing	risk	under	changing	conditions.	On	the	other	hand,	93 
previous	attempts	to	model	fasciolosis	mechanistically,	in	connection	with	climate,	neglect	the	role	94 
of	soil	moisture	dynamics	in	driving	infection	and	do	not	account	for	the	spatial	aspect	of	the	disease	95 
(e.g.	19,31).	96 
	97 
Therefore,	in	this	study,	we	introduce	a	new	mechanistic	coupled	hydro-epidemiological	model	for	98 
liver	 fluke,	which	 explicitly	 represents	 the	 parasite	 life-cycle	 in	 time	 and	 space,	 linked	with	 key	99 
environmental	 conditions.	We	 then	parameterise	 the	model	 for	 two	case	 studies	 in	 the	UK	and	100 
assess	whether	 it	 can	 replicate	 temporal	 and	 spatial	 variability	 of	 observed	 infection	 levels.	 To	101 
overcome	 limitations	 of	 available	 epidemiological	 data,	we	 propose	 a	 calibration	 approach	 that	102 
combines	observations	and	expert	knowledge.	Finally,	we	further	evaluate	the	model	by	comparing	103 
it	with	the	widely-used	empirical	Ollerenshaw	Index.	104 

	105 
2.	The	Hydro-Epidemiological	model	for	Liver	Fluke	106 
	107 
The	Hydro-Epidemiological	model	 for	 Liver	Fluke	 (HELF)	quantitatively	 captures	 the	mechanisms	108 
underlying	transmission	of	fasciolosis,	explicitly	describing	the	causal	relationships	between	hydro-109 
meteorological	factors	and	biological	processes,	instead	of	simply	relying	on	correlation.	To	this	end,	110 
HELF	integrates	TOPMODEL	(32,33),	an	existing	hydrological	model	which	we	use	to	simulate	soil	111 
moisture	dynamics,	and	a	novel	epidemiological	model,	which	 represents	 the	parasite	 life-cycle.	112 
TOPMODEL	 is	 chosen	 because	 its	 underlying	 assumptions	 are	 physically	 realistic	 for	 humid-113 
temperate	 catchments,	 such	 as	 UK	 catchments,	 where	 the	 dominant	 mechanism	 of	 runoff	114 
generation	 is	 surface	 saturation	 (32).	 The	epidemiological	model	 is	 developed	based	on	 current	115 
understanding	 of	 the	 life-cycle	 of	Fasciola	 hepatica	and	 its	 dependence	upon	 soil	moisture	 and	116 
temperature	(20-22).	117 
	118 
2.1.	Hydrological	component		119 
	120 
TOPMODEL	is	a	catchment-scale	rainfall-runoff	model,	which	has	been	extensively	used	in	humid-121 
temperate	 areas	 for	 different	 applications	 (e.g.	 references	 in	 34).	 The	model	 uses	 temperature,	122 
rainfall	and	Digital	Elevation	Model	(DEM)	data	to	estimate,	at	each	time	step,	spatially	distributed	123 
soil	moisture	over	the	catchment	(calculated	as	a	saturation	deficit),	as	well	as	streamflow	at	the	124 
catchment	 outlet.	 The	model	 we	 use	 is	 based	 on	 the	 version	 explained	 in	 (33)	 and	 has	 seven	125 
parameters	(Table	1).	126 
	127 
In	 TOPMODEL,	 hydrological	 processes	 through	 the	 soil	 are	 represented	 using	 a	 sequence	 of	128 
conceptual	 stores	 for	 which	 the	 model	 estimates	 water	 balances.	 An	 interception	 store,	129 
representing	vegetation	cover,	must	be	filled	by	rainfall	before	infiltration	into	the	soil	can	occur.	130 
When	water	 infiltrates	 into	 the	 soil,	 it	 first	 enters	 the	 root	 zone,	 from	which	 it	 evaporates	 as	 a	131 
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function	 of	 potential	 evapotranspiration,	 maximum	 capacity	 of	 the	 store,	 and	 its	 actual	 water	132 
content.	Water	that	is	not	evaporated	or	retained	by	the	soil	percolates	to	the	saturated	zone	(i.e.	133 
the	groundwater),	which	contributes	to	the	channel	network	through	subsurface	flow.		134 
	135 
To	simulate	the	spatial	distribution	of	soil	water	content	over	the	catchment,	the	water	balance	136 
accounting	routine	described,	which	is	lumped	at	the	catchment	scale,	is	integrated	with	spatially	137 
distributed	topographic	information	derived	from	DEM	data.	The	effect	of	topography	is	captured	138 
for	 each	 grid	 cell	 through	 calculation	 of	 a	 Topographic	 Index:	𝑇𝐼 = ln	 '

()* +
,	 	 where	𝑎 	is	 the	139 

upslope	 contributing	 area	 and	 tan 𝛽 	the	 local	 slope.	 The	 index	 is	 used	 as	 a	 measure	 of	 the	140 
likelihood	that	a	grid	cell	becomes	saturated	by	downslope	drainage:	high	values	occur	over	flat	141 
areas	in	valleys,	which	tend	to	saturate	first,	whereas	low	values	are	associated	with	areas	at	the	142 
top	of	hills,	where	there	is	little	upslope	area	and	slopes	are	steep	(Figure	1).	The	model	assumes	143 
that	all	points	with	the	same	index	value	will	respond	similarly,	hydrologically.	For	computational	144 
efficiency,	 the	distribution	of	TI	values	 is	 then	discretised	 into	classes,	 so	 that	computations	are	145 
performed	for	each	class	instead	of	for	each	grid	cell.		146 
	147 
Therefore,	a	saturation	deficit	for	each	TI	class	is	calculated	as	a	function	of	the	catchment	average	148 
saturation	 deficit,	 updated	 at	 each	 time	 step	 by	 water	 balance	 calculation,	 and	 the	 spatial	149 
distribution	of	the	TIs.	Rainfall	that	falls	on	saturated	areas	(i.e.	where	deficit	is	less	than	or	equal	150 
to	zero)	cannot	infiltrate	into	the	soil	and	generates	saturation-excess	overland	flow.	Finally,	total	151 
streamflow	is	calculated	as	the	integrated	subsurface	flow	and	saturation-excess	overland	flow,	and	152 
a	gamma	distribution	 is	used	to	model	 the	time	delay	 in	discharge	generation	at	 the	catchment	153 
outlet,	due	to	water	moving	through	the	river	channel.	154 
	155 
2.2.	Epidemiological	component		156 
	157 
The	epidemiological	model	component	of	HELF	represents	the	stages	of	the	liver	fluke	life-cycle	that	158 
live	on	pasture:	eggs,	miracidia,	 snail	 infections	and	metacercariae	 (Figure	2).	Development	and	159 
survival	of	these,	as	well	as	the	presence	of	mud	snails,	require	particular	temperature	conditions	160 
and	wet	soil.	Therefore,	the	model	takes	as	input	variables	temperature	and	soil	moisture,	as	well	161 
as	an	egg	scenario	(i.e.	number	of	embryonic	eggs	we	assume	are	deposited	on	each	TI	class	at	each	162 
time	step	by	infected	animals),	to	calculate	the	abundance	of	individuals	in	each	life-cycle	stage.		163 
	164 
Once	passed	out	on	pasture	in	the	faeces	of	infected	animals,	Eggs	(E)	develop	at	a	temperature-165 
dependent	rate,	and	hatch	into	miracidia	when	both	temperature	and	soil	moisture	conditions	are	166 
suitable	 (35).	Miracidia	 (Mi)	 are	 short	 lived:	 either	 they	 find	 a	 snail	 host	or	die	within	24	hours	167 
(35,36).	Therefore,	progression	from	miracidium	to	the	next	stage	is	calculated	as	the	probability	of	168 
finding	a	snail.	This	is	assumed	to	depend	on	soil	moisture	and	temperature,	as	Galba	truncatula	169 
snails	are	only	found	in	poorly	drained	areas	and	are	known	to	hibernate	with	cold	weather	and	170 
aestivate	during	hot	dry	periods	(35).	Snail	infections	(SI)	also	develop	in	the	model	as	a	function	of	171 
both	 temperature	 and	 soil	 moisture,	 as	 development	 within	 the	 snail	 may	 be	 halted	 due	 to	172 
hibernation	and	aestivation	(21),	until	parasites	emerge	from	snails	in	the	form	of	cercariae.	Once	173 
attached	to	grass	as	Metacercariae	(Me),	these	survive	on	pasture	and	retain	infectivity	based	on	174 
temperature,	with	moderate	weather	being	most	favourable	(35).		175 
	176 
Each	stage,	except	for	miracidia	that	only	have	a	lifespan	of	one	day,	is	represented	as	a	pool	of	177 
developing	cohorts	of	individuals	to	capture	maturation	progress	in	a	realistic	way.	Individuals	in	178 
different	cohorts	are	exposed	to	different	environmental	conditions,	and	therefore	will	develop	at	179 
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different	times	(35,36).	We	account	for	this	by	using	two	state	variables	for	each	cohort	within	each	180 
stage:	number	of	individuals	in	the	cohort	and	“age”	of	the	cohort.	The	rationale	is	that	each	cohort	181 
has	 a	 certain	 age,	 which	 increases	 with	 the	 number	 of	 days	 that	 have	 suitable	 environmental	182 
conditions,	until	the	cohort	eventually	matures	to	the	next	life-cycle	stage.	Output	from	a	stage	is	183 
then	the	sum	of	cohorts	per	unit	area	which	mature	to	the	next	one.	184 
	185 
At	each	time	step,	development	and/or	survival	rates	for	a	stage	are	calculated	based	on	the	value	186 
of	the	relevant	environmental	conditions	for	that	stage	at	that	time	step,	and	on	the	stage-specific	187 
requirements	 for	 development/survival,	 which	 are	 model	 parameters	 (Table	 2).	 The	 technique	188 
employed	to	build	the	functions	to	calculate	these	rates	has	previously	been	used	for	modelling	189 
both	 liver	 fluke	 and	 other	 parasites	 (e.g.	 19,31).	 For	 temperature-dependent	 rates,	 we	 use	190 
information	in	the	literature	from	laboratory	experiments	or	controlled	micro-environment	studies	191 
that	examine	the	time	to	development	or	death	at	a	range	of	constant	temperatures.	First,	rates	192 
are	calculated	for	each	constant	temperature	from	the	reported	e.g.	time	to	development	(i.e.	rate	193 
=	 1/time	 to	 development);	 then	 piecewise	 linear	 models	 are	 fitted	 to	 these	 rates,	 yielding	 a	194 
regression	 equation	which	 can	 be	 used	 to	 estimate	 the	 daily	 rates	 based	 on	 the	 time	 series	 of	195 
observed	temperature.	For	soil	moisture,	we	adopt	the	same	approach,	assuming	that	development	196 
is	 fastest	 when	 the	 soil	 is	 saturated	 to	 the	 surface	 (i.e.	 when	 deficit	 =	 0)	 and	 that	 there	 is	 no	197 
development	above	a	certain	maximum	deficit	(20,35).	For	stages	with	both	temperature	and	soil	198 
moisture	requirements,	we	allow	for	development	to	progress	as	a	function	of	both	(Figure	3).	199 
	200 
2.3.	Coupled	model	201 
	202 
The	 coupled	 hydro-epidemiological	 model	 runs	 with	 a	 daily	 time	 step	 and	 has	 a	 total	 of	 29	203 
parameters.	For	each	day,	HELF	calculates	the	catchment	average	saturation	deficit	based	on	rainfall	204 
and	temperature,	and	derives	the	saturation	deficit	for	each	of	25	TI	classes,	based	on	this	and	the	205 
TI	value	for	the	class.	Then,	for	each	class	and	life-cycle	stage,	the	model	calculates	the	relevant	206 
development	and/or	survival	rates,	based	on	environmental	conditions.	The	age	of	each	cohort	is	207 
updated	based	on	the	development	rate,	and,	given	an	egg	scenario,	the	model	finally	computes	208 
the	number	of	individuals	in	the	stage	as	a	function	of	the	number	from	the	previous	time	step,	plus	209 
the	 sum	 of	 the	 cohorts	 developed	 from	 the	 previous	 stage,	 minus	 those	 that	 die	 (Figure	 4).	210 
Therefore,	the	model	outputs	are	the	abundances	of	developed	eggs,	snails	located	and	infected	by	211 
miracidia,	 developed	 snail	 infections,	 and	 infective	 metacercariae	 surviving	 on	 pasture,	 which	212 
represents	 the	 environmental	 suitability	 for	 disease	 transmission	 to	 grazing	 livestock.	 These	213 
variables,	calculated	for	each	TI	class,	are	then	mapped	back	onto	each	grid	cell	in	the	catchment.		214 
	215 
With	regard	to	the	egg	scenario,	the	current	model	assumes	that	100	embryonic	eggs	are	introduced	216 
on	each	TI	class	daily,	over	the	whole	simulation	period.	This	means	we	are	considering	a	scenario	217 
of	 continuous	 livestock	grazing	and	no	disease	management	over	 the	 catchment.	However,	 this	218 
assumption	can	be	easily	changed:	the	fact	that	the	egg	scenario	is	a	model	input	leaves	the	end-219 
user	 of	 the	 model	 the	 possibility	 to	 estimate	 how	 the	 environmental	 suitability	 for	 disease	220 
transmission	 translates	 into	 risk	 of	 infection	 based	 on	 local	 farm	management	 factors	 such	 as	221 
grazing	season	length	or	disease	control	strategy.	222 
	223 
	224 
	225 
	226 
	227 
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3.	Study	sites	and	data	228 
	229 
To	test	HELF,	we	apply	it	to	two	catchments	in	the	UK,	located	in	South	Wales	and	the	North-West	230 
Midlands	 (England),	 respectively.	 The	 datasets	 employed	 include	 hydro-meteorological	 and	231 
epidemiological	data.		232 
	233 
3.1.	The	Tawe	and	Severn	Catchments	234 
	235 
The	River	Tawe	flows	approximately	50km	south-westwards	from	its	source	in	the	Brecon	Beacons	236 
to	the	Bristol	Channel	at	Swansea.	The	catchment	is	about	240km2	in	area,	with	elevation	ranging	237 
from	 about	 10	 to	 800m	 a.s.l.,	 and	most	 of	 the	 area	 characterised	 by	 a	 relatively	 impermeable	238 
bedrock.	The	River	Severn	rises	 in	mid	Wales	and	flows	through	Shropshire,	Worcestershire	and	239 
Gloucestershire,	before	also	discharging	into	the	Bristol	Channel.	The	catchment,	closed	at	Upton	240 
on	Severn,	is	about	6850km2	in	area,	with	elevation	range	and	geological	characteristics	similar	to	241 
the	 Tawe	 (37).	 Both	 catchments	 have	 grassland	 as	 the	 dominant	 land	 use	 (Figure	 5),	 which	 is	242 
extensively	 used	 for	 livestock	 farming,	 and	 are	 located	 in	 known	 fluke	 endemic	 areas	 (38).	243 
Moreover,	these	areas	are	predicted	to	become	increasingly	warmer	and	wetter	on	average	(39),	244 
which	suggests	they	will	become	even	more	favourable	for	liver	fluke	transmission	in	the	future.	245 
	246 
3.2.	Hydro-meteorological	and	epidemiological	data	247 
	248 
The	 hydro-meteorological	 dataset	 includes	 daily	 observations	 of	 rainfall,	 temperature	 and	249 
discharge.	Gridded	time	series	of	rainfall	and	temperature	are	obtained	from	CEH-GEAR	and	the	UK	250 
MetOffice,	respectively.	For	both	case	studies,	to	run	HELF,	we	take	the	average	over	the	grid	cells	251 
within	 the	catchment.	For	 the	Tawe	we	use	 these	 time	series	 for	a	12-year	period	 (1999-2010),	252 
whereas	for	the	Severn	we	use	2	years	of	data	(2013-2014),	in	line	with	the	available	epidemiological	253 
data	periods.	Observed	discharge	over	the	same	years,	at	Ynystanglws	for	the	Tawe	and	Upton-on-254 
Severn	 for	 the	Severn,	are	obtained	 from	 (37).	DEM	data	 for	both	catchments	 is	obtained	 from	255 
NextMap	with	spatial	resolution	of	5m,	then	aggregated	to	25m.	256 
	257 
The	epidemiological	dataset	consists	of	a	time	series	from	the	Veterinary	Investigation	Diagnostic	258 
Analysis	(VIDA)	database	for	the	Tawe	and	a	spatial	dataset	based	on	Faecal	Egg	Counts	(FECs)	for	259 
the	Severn.	The	VIDA	database,	compiled	from	reports	from	the	UK	Government’s	Animal	and	Plant	260 
Health	Agency	regional	labs,	provides	diagnoses	of	fasciolosis	made	from	ill	or	dead	animals.	The	261 
time	series	we	use	is	the	monthly	number	of	sheep	diagnosed	with	acute	fasciolosis	from	the	post	262 
code	district	areas	within	the	Tawe	catchment	over	1999-2010.	This	data	is	believed	to	reflect	well	263 
the	temporal	dynamics	of	within–year	infection	levels,	but	may	not	always	reflect	the	magnitude	of	264 
infection	in	the	field,	as	the	rate	of	submission	of	animals	to	the	labs	is	influenced	by	multiple	factors	265 
(40).	In	our	series,	no	cases	are	reported	for	2001	and	values	over	the	following	years	are	low,	which	266 
may	have	been	affected	by	the	2001	outbreak	of	foot-and-mouth	disease	in	the	UK.	On	the	other	267 
hand,	the	spatial	dataset	for	the	Severn	catchment	consists	of	174	cattle	herds,	from	farms	within	268 
a	60km	x	75km	area	in	Shropshire,	that	have	been	classified	into	infected	and	non-infected	based	269 
on	FECs	collected	over	Oct2014-Apr2015.	Unlike	VIDA,	this	is	active	surveillance	data,	and	thus	more	270 
likely	to	reflect	true	levels	of	infection.	However,	rather	than	a	continuous/quantitative	measure	of	271 
the	magnitude	of	infection,	this	dataset	only	provides	a	binary	classification	into	positive-negative	272 
farms,	at	one	moment	in	time	and	at	a	limited	number	of	points	within	the	catchment.	273 
	274 
	275 
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4.	Model	calibration	and	testing		276 
	277 
HELF	comprises	parameters	related	to	aspects	of	the	local	environment	and	parameters	related	to	278 
the	 phenology	 of	 the	 parasite	 (Tables	 1-2).	 Usually,	 ranges	 of	 values	 can	 be	 derived	 from	 the	279 
literature	for	these,	rather	than	point	estimates,	partly	because	of	their	associated	natural	variability	280 
and	partly	due	to	uncertainty	and	poor	understanding.	This	may	result	in	different	parameter	sets	281 
providing	equally	good	representations	of	system	behaviour,	with	implications	in	terms	of	predictive	282 
uncertainty	 and	 limitations	 to	 the	 applicability	 of	 the	 model	 (15,34).	 Therefore,	 it	 is	 crucial	 to	283 
constrain	and	evaluate	HELF,	if	we	want	to	use	it	to	assess	disease	risk	in	the	future.	284 
	285 
Usually	models	are	calibrated	and	validated	using	historic	records,	assuming	that	the	data	available	286 
reflect	 the	underlying	 system,	and	 that	 conditions	 in	 the	period	 considered	are	 similar	 to	 those	287 
under	which	the	model	will	be	used.	However,	this	may	not	be	sufficient	if	data	are	disinformative	288 
in	some	respects	and/or	if	the	purpose	of	the	model	is	to	simulate	conditions	that	are	significantly	289 
different	to	those	previously	observed	(41).		290 
	291 
Our	strategy	involves	multiple	datasets	and	methods.	On	one	hand,	we	have	high	quality	continuous	292 
data	for	both	the	meteorology	and	hydrology.	Therefore,	we	calibrate	and	validate	the	hydrological	293 
component	of	HELF	by	adopting	a	standard	split-sampling	approach	(41).	On	the	other	hand,	given	294 
the	epidemiological	data	limitations	mentioned	in	Section	3.2.,	our	approach	for	constraining	the	295 
epidemiological	model	component	not	only	uses	past	observations,	but	also	expert-driven	rules.	296 
	297 
4.1.	Calibration	and	testing	of	the	hydrological	component	298 
	299 
To	estimate	TOPMODEL	parameter	values	and	evaluate	 its	prediction	capabilities,	we	perform	a	300 
split-sample	test	using	streamflow	observations	(years	2000-2006	for	calibration	and	2007-2010	for	301 
validation,	 with	 1999	 as	 warm-up	 period)	 (41).	 The	 Shuffled	 Complex	 Evolution	 (SCE-UA)	302 
optimisation	method	 is	 employed	 to	 find	 the	parameter	 set	which	maximises	 the	 coefficient	 of	303 
determination	(R2)	between	simulations	and	observations	on	our	catchments	(42).	The	algorithm	304 
samples	an	 initial	population	of	parameter	 sets	 from	a	priori	 defined	 ranges	 (Table	1)	 and	 then	305 
evolves	this	population	of	sets	to	find	the	best	performing	one	with	respect	to	R2.	306 
	307 
4.2.	Calibration	and	testing	of	the	epidemiological	component	308 
	309 
Using	 the	 best	 performing	 parameterization	 obtained	 for	 TOPMODEL,	 first,	 we	 fit	 the	 fluke	310 
component	of	HELF	to	the	two	epidemiological	datasets	and	assess	whether	we	can	reproduce	the	311 
observed	 patterns	 of	 infection,	 ignoring	 the	 data	 limitations	 discussed.	 Secondly,	 under	 the	312 
assumption	that	these	data	may	be	disinformative,	and	given	that	we	ultimately	want	to	use	HELF	313 
to	simulate	fluke	risk	under	changing	conditions,	we	propose	an	alternative	calibration	approach	314 
based	on	Monte	Carlo	sampling	and	expert	knowledge.	Finally,	we	evaluate	the	model	by	comparing	315 
it	to	observations	from	previous	studies	and	the	commonly-used	Ollerenshaw	Index.	316 
	317 
4.2.1.	Single-objective	approach	using	epidemiological	data	318 
	319 
To	estimate	parameters	of	the	epidemiological	model	for	the	Tawe	Catchment,	we	fit	HELF	to	the	320 
VIDA	time	series	by	using	SCE-UA	to	maximise	the	Pearson	coefficient	of	correlation	(r)	between	321 
simulated	abundance	of	infective	metacercariae	and	observed	number	of	sheep	infections.	As	the	322 
VIDA	dataset	only	provides	a	single	time	series	for	the	Tawe,	we	aggregate	the	simulated	abundance	323 
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of	metacercariae	over	the	catchment,	taking	the	average	across	TI	classes.	Moreover,	to	account	for	324 
the	delay	between	the	variable	we	simulate	and	the	observations,	a	lag	parameter	is	included	in	the	325 
optimisation	process,	which	is	allowed	to	vary	between	0	(no	delay)	and	+5	months	(18).	326 
	327 
Similarly,	to	estimate	parameters	for	the	Severn	Catchment,	we	fit	HELF	to	the	FEC-based	spatial	328 
dataset.	First,	we	divide	the	area	over	which	we	have	observations	into	sub-areas	with	a	minimum	329 
of	15	data	points	each.	Second,	we	use	SCE-UA	to	find	the	parameter	set	which	maximises	r	between	330 
the	simulated	percentage	of	grid	cells	at	 risk	of	 infection	and	the	observed	percentage	of	herds	331 
infected,	over	each	sub-area.	To	this	end,	for	each	parameter	set,	firstly,	we	aggregate	the	simulated	332 
abundance	of	metacercariae	over	months	Jul-Dec2014,	assuming	that	pasture	contamination	over	333 
this	 period	 will	 be	 responsible	 for	 the	 observed	 infection	 levels	 (38).	 Secondly,	 we	 classify	 the	334 
simulated	abundance	of	metacercariae	in	each	grid	cell	into	two	classes	(no-risk	and	risk)	by	setting	335 
a	threshold	based	on	the	overall	observed	percentage	of	infection.	336 
	337 
4.2.2.	Monte	Carlo	sampling-based	approach	using	expert	opinion	338 
	339 
Given	the	limitations	of	our	epidemiological	datasets,	we	believe	that	simply	fitting	these	may	not	340 
be	sufficient	to	guarantee	reliability	of	our	new	model.	Moreover,	if	HELF	is	to	be	used	to	assess	341 
future	disease	risk,	its	credibility	should	be	assessed	via	more	in-depth	evaluation	of	the	consistency	342 
with	the	real-world	system,	instead	from	just	comparison	against	historical	data	(11).	To	this	end,	343 
we	collect	information	from	the	literature	(e.g.	24,27,30)	and	our	perceptions,	to	characterise	the	344 
seasonality	of	the	liver	fluke	life-cycle	stages	in	the	UK	over	years	2000-2010.	This	includes	shifts	in	345 
seasonality	experienced	over	this	period,	compared	to	what	has	been	traditionally	observed,	driven	346 
by	changing	temperature	and	rainfall	patterns,	but	could	be	adjusted	to	account	for	further	changes	347 
and	shifts	going	forwards.	Then,	we	formalise	this	knowledge	into	a	set	of	rules:	348 
• Rule1:	retain	the	parameter	sets	that	every	year	predict	the	first	month	of	snail	presence	(i.e.	349 

with	positive	number	of	snails)	to	happen	earlier	than	average,	if	temperature	is	above	average	350 
in	January-March	351 

• Rule2:	 retain	 the	 sets	 that	 every	 year	 produce	higher	mean	number	 of	 snail	 infections	 over	352 
summer	(June-August),	if	number	of	rain	days	over	May-July	is	above	average	353 

• Rule3:	 retain	 the	 sets	 that	 every	 year	 produce	 higher	mean	 number	 of	metacercariae	 over	354 
autumn	(August-October),	 if	 rainfall	 is	above	average	and	the	number	of	days>20°C	 is	below	355 
average	over	May-August	356 

• Rule4:	 retain	 the	 sets	 that	 every	 year	 produce	 higher	mean	 number	 of	metacercariae	 over	357 
winter	(January-February),	if	total	number	of	days>10°C	is	above	average	over	Jan-Feb	358 

Finally,	we	sample	8000	parameter	 sets	using	uniform	distributions	 from	ranges	 in	Table	2,	and	359 
reject	all	the	sets	producing	model	outputs	that	are	inconsistent	with	these	rules.	360 
	361 
4.2.3.	Comparison	with	the	Ollerenshaw	Index	362 
	363 
To	 further	 evaluate	 HELF,	 we	 use	 the	 behavioural	 parameterisations,	 i.e.	 those	 retained	 from	364 
sequential	 application	 of	 the	 rules,	 and	 compare	 disease	 risk	 simulated	 using	 these	 with	 the	365 
Ollerenshaw	Index.	This,	calculated	at	the	monthly	scale	based	on	number	of	rain	days,	rainfall	and	366 
temperature	as	in	(29),	is	the	current	standard	for	providing	liver	fluke	forecasts	in	the	UK,	where	it	367 
is	used	by	the	National	Animal	Disease	Information	Service	to	warn	farmers	about	high	risk	years	368 
(30).		369 
	370 
	371 
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5.	Results	372 
	373 
5.1.	Performance	of	the	hydrological	model	374 
	375 
Comparison	 of	 simulated	 and	 observed	 daily	 streamflow	 shows	 that	 TOPMODEL	 is	 able	 to	376 
reproduce	well	the	temporal	dynamics	of	observations,	including	the	peaks	and	recession	periods	377 
of	the	hydrograph,	with	R2=0.87	during	calibration	and	0.84	in	validation	(Figure	6).		378 
	379 
5.2.	Performance	of	the	epidemiological	model	380 
	381 
5.2.1.	Fit	to	epidemiological	data	382 
	383 
A	delay	is	evident	between	simulated	catchment	average	number	of	metacercariae	and	reported	384 
number	of	sheep	diagnosed	with	fasciolosis	from	the	Tawe	Catchment	(Figure	7).	This	is	due	to	the	385 
time-lag	 between	pasture	 contamination,	which	HELF	 simulates,	 and	 infection	 diagnosed	 in	 the	386 
animal,	which	the	VIDA	dataset	reports.	Except	for	the	year	2000,	for	which	the	model	predicts	risk	387 
of	infection	that	is	not	reflected	in	the	VIDA	numbers	over	2001,	HELF	seems	to	adequately	predict	388 
the	observed	temporal	dynamics	of	infection.	It	simulates	low	pasture	contamination	for	most	of	389 
the	period	and	captures	the	higher	peaks	over	winters	2008-2009	and	2009-2010,	driven	by	the	390 
preceding	exceptionally	wet	summers	and	rainy	autumns.	The	highest	correlation	between	the	two	391 
series	 (r=0.62)	 is	 found	at	a	 lag	of	 three	months,	which	corresponds	 to	 the	prepatent	period	of	392 
fasciolosis	reported	in	the	literature	(18).	If,	instead	of	using	the	whole	dataset	for	calibration,	we	393 
perform	a	5-fold	cross-validation,	mean	correlation	results	0.52	in	calibration	and	0.41	in	validation.	394 
	395 
Division	of	the	area	for	which	we	have	observations	within	the	Severn	Catchment	into	sub-areas	396 
with	 at	 least	 15	 data	 points	 each,	 results	 into	 9	 sub-areas	 (Figure	 8).	 If	 we	 then	 compare	 the	397 
simulated	percentage	of	 grid	 cells	 at	 risk	 of	 infection	with	 the	observed	percentage	of	 infected	398 
herds,	in	each	of	the	sub-areas,	the	two	are	in	good	agreement	(r=0.83),	suggesting	that	the	model	399 
can	replicate	the	observed	spatial	pattern	(here,	performing	a	leave-one-out	cross-validation	results	400 
in	a	mean	absolute	error	of	0.1).	Risk	of	 infection	seems	overestimated	 in	sub-areas	A2	and	A5.	401 
However,	these	were	significantly	drier	than	the	other	sub-areas	 in	2014	(Figure	S1),	and	have	a	402 
lower	percentage	of	area	suitable	for	snail	hosts	in	terms	of	soil	pH	(Figure	S2),	which	HELF	currently	403 
does	not	account	for.		404 
	405 
5.2.2.	Result	of	the	expert-driven	approach	406 
	407 
Sequential	application	of	the	expert-driven	rules	reduces	the	initial	sample	of	8000	parameter	sets	408 
to	14	behavioural	parameterisations	(Figure	9).	The	resulting	simulated	life-cycle	stages	show	that	409 
the	abundance	of	developed	eggs	on	pasture	tends	to	increase	in	March,	as	the	weather	warms	up,	410 
before	decreasing	gradually	over	the	following	months,	as	hatching	 into	miracidia	begins	(Figure	411 
10).	Snail	activity,	and	therefore	infection	of	snails	by	miracidia,	also	seems	to	start	in	spring,	and	412 
carries	 on	 until	 November,	 when	 frosts	 may	 send	 snails	 back	 into	 hibernation;	 whereas	413 
development	 of	 intra-molluscan	 infections	 peaks	 around	 August,	 leading	 to	 high	 numbers	 of	414 
infective	metacercariae	surviving	on	pasture	in	Autumn.	Finally,	if	we	compare	the	abundance	of	415 
metacercariae	-	obtained	using	the	whole	set	of	behavioural	parameterisations	-	with	the	VIDA	time	416 
series,	 first,	 we	 still	 see	 the	 expected	 delay	 between	 simulations	 and	 observations	 (Figure	 11).	417 
Moreover,	we	note	that,	on	one	hand,	uncertainty	is	large	in	terms	of	magnitude	of	the	yearly	peak	418 
of	infection.	On	the	other	hand,	uncertainty	bounds	are	narrower	in	terms	of	timing	and	duration	419 
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of	the	outbreaks,	with	the	number	of	infective	metacercariae	on	pasture	beginning	to	increase	in	420 
July,	reaching	a	peak	in	September,	before	decreasing	again	in	December,	on	average.	421 
	422 
5.2.3.	Comparison	with	the	Ollerenshaw	Index	423 
	424 
Temporal	 comparison	of	 the	 suitability	 for	 disease	 transmission	 simulated	by	HELF,	 constrained	425 
using	the	rules,	with	the	Ollerenshaw	Index,	shows	a	time-lag	of	one	month	between	the	two	series	426 
(Figures	12a	and	S3).	This	is	due	to	the	two	models	representing	different	things:	a	risk	index	based	427 
on	monthly	temperature	and	rainfall	characteristics	in	the	case	of	Ollerenshaw,	and	the	abundance	428 
of	metacercariae,	based	on	soil	moisture	and	accounting	for	the	delays	in	the	parasite	life-cycle,	in	429 
the	case	of	HELF.	From	here	we	also	see	that,	while	matching	the	empirical	index	on	inter-annual	430 
variation	(at	lag	of	one	month,	r=0.73),	the	two	models’	responses	may	differ	at	higher	temporal	431 
resolution.	For	example,	 the	Ollerenshaw	 Index	 reaches	 the	same	peak	value	 in	years	2007	and	432 
2008,	 but	 risk	 of	 infection	 in	 2007	 seems	 lower	 than	 the	 following	 year	 according	 to	 HELF.	433 
Comparison	of	the	two	models	in	space,	presented	in	Figure	12b	for	August	2006	as	an	example,	434 
shows	the	presence	of	high	risk	areas	in	the	Tawe	Catchment	according	to	both	models.	However,	435 
on	one	hand,	according	to	the	Ollerenshaw	Index,	no	proportion	of	the	catchment	is	risk-free,	and	436 
risk	of	infection	is	higher	in	the	North-East,	where	rainfall	levels	are	higher	(37).	In	contrast,	for	the	437 
same	month,	assuming	an	area	is	at	risk	if	its	number	of	metacercariae	is	positive,	HELF	estimates	438 
that	17.3%	of	the	catchment	is	risk-free,	and	that	there	are	134	patches	at	risk,	spread	throughout	439 
the	catchment,	with	mean	size	of	1.6km2.	440 
	441 
6.	Discussion	442 
	443 
In	 this	study,	we	developed	the	first	mechanistic	model	which	simulates	risk	of	 infection	with	F.	444 
hepatica	in	time	and	space,	driven	by	temperature	and	soil	moisture	dynamics.	The	novelty	of	our	445 
work	 lies	 in	 the	 description	 of	 the	 bio-physical	 processes	 underlying	 transmission	 of	 fasciolosis,	446 
advancing	 the	 study	 of	 the	 disease	 beyond	 empirical	 associations	 of	 infection	 levels	 with	447 
temperature	and	rainfall.	Despite	existing	forecasting	models	calculating	fluke	risk	based	on	these	448 
(20,29,30),	soil	moisture	has	always	been	recognised	as	the	critical	driver	of	disease	transmission	449 
for	its	role	on	development	of	the	free-living	stages	and	presence	of	the	snail	intermediate	hosts	450 
(20).	Here	we	represented	it	using	an	existing	hydrologic	model,	which	 is	dynamic	and	based	on	451 
spatially	 distributed	 topographic	 information,	 also	 known	as	 an	 important	 fluke	 risk	 factor	 (27).	452 
Moreover,	collaboration	across	the	physical	and	biological	sciences	was	necessary	to	analyse	the	453 
effect	of	both	soil	moisture	and	temperature	on	the	multiple	parasite	life-cycle	stages	(Figure	3),	454 
and	translate	the	mechanistic	understanding	of	the	system	into	an	integrated	model	(Figure	4).	455 
	456 
By	simulating	the	system	at	25m	resolution	with	a	daily	time	step,	HELF	provides	new	insight	into	457 
the	time-space	patterns	of	disease	risk,	which	will	be	valuable	for	decision	support.	Compared	to	458 
the	 Ollerenshaw	 Index,	 which	 considers	 each	 month	 independently	 from	 every	 other,	 HELF	 is	459 
dynamic.	This	means	that	high	rainfall	may	result	into	high	risk	of	infection	only	depending	on	the	460 
antecedent	moisture	 conditions	of	 the	 soil	 and	 their	 effect	 on	 the	 life-cycle	progress	 (Fig.	 12a).	461 
Moreover,	by	providing	greater	temporal	resolution,	HELF	allows	capturing	the	impact	of	short-term	462 
weather	events,	such	as	an	extremely	warm	day	or	intense	concentrated	rainfall,	which	are	believed	463 
to	be	particularly	relevant	for	the	biological	system	(13-15).	In	tandem	with	the	fact	that	HELF	can	464 
identify	hotspots	of	transmission	potential	(Figure	12b),	this	means	it	may	be	possible	for	farmers	465 
to	control	 the	magnitude	of	exposure	to	 fluke	 in	 the	 field,	 for	example	by	altering	management	466 
practices	to	avoid	livestock	grazing	in	high	risk	areas	during	peak	metacercarial	abundance.	Finally,	467 
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the	stages	included	in	HELF	make	up	the	part	of	the	life-cycle	which	is	missing	in	the	model	of	fluke	468 
dynamics	within	the	final	host	developed	in	(19).	Integration	of	the	two	would	allow	a	mechanistic	469 
description	 of	 the	whole	 cycle,	 providing	 the	 opportunity	 to	 assess,	 for	 example,	 the	 impact	 of	470 
vaccines	on	infection	levels.		471 
	472 
In	addition	to	aiding	in	the	tools	for	the	management	of	fasciolosis,	HELF	could	also	benefit	the	study	473 
of	other	diseases.	The	same	model	could	be	useful	for	rumen	fluke,	which	is	on	the	rise	in	British	474 
and	Irish	livestock	and	has	a	similar	life-cycle	to	liver	fluke,	sharing	the	same	intermediate	host	(43).	475 
On	 the	 other	 hand,	 a	 different	 hydrological	 model	 component	 could	 be	 employed	 instead	 of	476 
TOPMODEL,	 depending	 on	 the	 hydro-environmental	 drivers	 relevant	 for	 the	 disease	 under	477 
consideration	 (3).	 For	 example,	 a	 model	 based	 on	 freshwater	 would	 be	 needed	 for	 diseases	478 
involving	aquatic	intermediate	hosts,	such	as	freshwater	snails	in	the	case	of	schistosomiasis	(2).	479 
	480 
Several	 assumptions	 are	 currently	 embedded	 in	 HELF.	 Notably,	 to	 account	 for	 seasonality	 and	481 
spatial	aspect	of	 the	disease,	we	assumed	that	development	of	 the	parasite	 life-cycle	 is	entirely	482 
driven	 by	 environmental	 conditions,	 simplifying	 the	mechanisms	 related	 to	 the	 intra-molluscan	483 
stage	and	neglecting	density-dependent	processes.	Moreover,	even	with	regard	to	environmental	484 
factors,	characteristics	such	as	soil	pH	and	texture	have	been	described	as	potentially	relevant	for	485 
the	presence	of	snail	habitats	(27),	but	have	not	been	included	in	our	model,	yet.	However,	HELF	486 
could	be	expanded	to	incorporate	these,	as	well	as	additional	spatial	data,	including	remote	sensing	487 
information.	488 
	489 
To	address	common	disease	data	limitations,	we	proposed	an	approach	which	includes	the	use	of	490 
expert	 knowledge	 to	 constrain	 and	 evaluate	 our	 new	 model.	 Fitting	 observations	 is	 standard	491 
practice	 for	 calibration	of	 hydrologic	models,	when	 there	 is	 a	 gauging	 station	providing	data	 to	492 
compare	simulations	against	(Figure	6).	Distributed	soil	moisture	observations	were	not	available	493 
for	our	case	studies	(and	are	rarely	available	anywhere,	especially	at	high	resolution),	but	previous	494 
studies	 have	 shown	 that	 TOPMODEL	 can	 provide	 good	 representation	 of	 the	 spatial	 pattern	 of	495 
saturated	areas	 (44).	 Less	 frequently,	when	data	 is	 available,	 the	 same	 is	 done	 to	parameterise	496 
epidemiological	models	(e.g.	16,45)	(10).	Our	results	show	that	HELF	is	flexible	enough	to	replicate	497 
the	observed	time-space	patterns	of	infection	over	the	two	case	study	catchments	(Figures	7-8).	We	498 
speculate	mismatches	remaining	when	we	fit	the	two	datasets	are	not	necessarily	due	to	aspects	499 
not	yet	included	in	the	model	only,	but	may	also	be	related	to	data	issues.	The	absence	of	reported	500 
cases	for	2001	from	the	Tawe	Catchment	is	believed	to	have	been	influenced	by	the	outbreak	of	501 
foot-and-mouth,	which	killed	over	10	million	cows	and	sheep,	affecting	submissions	to	the	vet	labs.	502 
Similarly,	discrepancies	over	sub-areas	A2	and	A5	in	the	Severn	Catchment	may	also	be	related	to	503 
our	underlying	assumption	of	uniform	distribution	of	farms	per	sub-area,	which	may	not	necessarily	504 
reflect	the	real-world	system.	Mis-reporting	and	data	low	space-time	resolution	are	common	with	505 
many	diseases	and	have	often	been	 recognised	as	a	bottleneck	 to	developing	models	providing	506 
meaningful	predictions	of	disease	risk	(12,14,16).	Moreover,	even	if	available	epidemiological	data	507 
were	more	 reliable,	 they	 would	 still	 reflect	 historical	 conditions,	 which	may	 not	 necessarily	 be	508 
relevant	for	the	future	(11,15).	Our	calibration	strategy	includes	the	use	of	expert-driven	rules	to	509 
overcome	these	issues.	The	rules	represent	mechanistic	knowledge	of	the	system	translated	into	510 
prior	information	about	the	output	state	variables.	By	using	these,	we	can	constrain	aspects	of	the	511 
model	 for	which	no	hard	data	 is	available	 (i.e.	 the	different	 life-cycle	 stages)	 in	a	process-based	512 
manner,	without	biasing	the	parameters	towards	external	drivers	not	included	in	the	model.	The	513 
current	 formulation	 reflects	 changes	 in	 seasonality	 experienced	 over	 our	 simulation	 period.	514 
However,	going	forwards,	this	can	be	adjusted	to	account	for	further	changes,	in	order	to	reliably	515 
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assess	the	impact	on	disease	risk	of	conditions	beyond	the	range	of	previously	observed	variability.	516 
Our	 results	 show	 there	 are	 parameter	 sets	 satisfying	 all	 four	 our	 rules	 (Figure	 9),	 and	 that	 the	517 
resulting	behaviour	of	the	simulated	stages	and	lags	between	them	(Fig.	10)	agree	with	what	has	518 
been	traditionally	observed	in	the	UK	(20,24).	This	suggests	that	HELF	reflects	well	(our	perception	519 
of)	 the	real-world	system.	The	 fact	 that	a	significant	number	of	simulations	 is	 rejected	 from	the	520 
initial	sample	suggests	that	our	parameter	confinement	strategy	is	effective,	which	is	crucial	as	the	521 
inability	to	identify	behavioural	parameterisations	may	result	in	significant	predictive	uncertainty	522 
when	using	the	model	under	changing	conditions	(15,34).	Moreover,	using	HELF	with	Monte	Carlo	523 
sampling	allows	explicit	consideration	of	uncertainty,	by	propagating	it	from	the	parameter	ranges	524 
to	the	model	simulations.	This	means	we	can	provide	decision-makers	with	a	degree	of	confidence	525 
to	be	attributed	to	the	model	results.	The	reason	why	uncertainty	in	the	simulated	risk	of	infection	526 
still	seems	high	in	terms	of	magnitude	(Figure	11)	is	that	the	rules	are	currently	based	on	information	527 
about	the	seasonality	of	the	disease	only,	driven	by	our	aim	of	providing	a	model	that	is	generally	528 
applicable	in	the	UK.	However,	if	reliable	local	data	were	available,	the	rules	could	be	modified	or	529 
increased	in	number	to	make	the	model	more	accurate	locally	(as	in	16,46).	On	the	other	hand,	the	530 
fact	 that	 uncertainty	 bounds	 are	 narrow	 in	 terms	 of	 timing	 and	 duration	 of	 the	 outbreaks	 is	531 
particularly	useful	to	inform	farmers’	decisions	about	e.g.	when	to	allow	grazing	of	animals	or	when	532 
to	treat	them.	533 
	534 
7.	Conclusions	535 
	536 
We	developed	and	tested	a	new	mechanistic	hydro-epidemiological	model	to	simulate	the	risk	of	537 
liver	 fluke	 infection,	 linked	to	key	weather-water-environmental	processes	 (HELF).	The	 fact	 that,	538 
unlike	previous	models,	HELF	explicitly	describes	the	processes,	rather	than	relying	on	correlation,	539 
makes	it	more	likely	robust	for	capturing	the	impact	of	‘new’	conditions	on	disease	risk.	We	showed	540 
that	 the	 model	 is	 sufficiently	 flexible	 to	 fit	 observations	 over	 two	 UK	 case	 studies,	 but	 also	541 
introduced	 an	 expert-driven	 calibration	 strategy	 to	 make	 the	model	 more	 robust	 to	 data	 with	542 
limited	 reliability	and	 in	 the	presence	of	 climate	change.	Finally,	 comparison	with	a	widely-used	543 
empirical	model	of	liver	fluke	risk	showed	that,	while	matching	the	existing	index	on	interannual	544 
variation,	 HELF	 provides	 better	 insight	 into	 the	 time-space	 patterns	 of	 disease,	 which	 will	 be	545 
valuable	for	decision	support.	Driving	the	model	with	climate	and	management	scenarios	will	enable	546 
assessing	future	risk	of	infection	and	evaluating	control	options	to	reduce	and/or	mitigate	disease	547 
burden.	 This	 is	 urgent,	 given	 the	 widespread	 increasing	 drug	 resistance	 and	 threat	 of	 altered	548 
patterns	of	transmission	due	to	climate-environmental	change.	549 
	550 
Through	the	example	of	fasciolosis,	we	demonstrated	(i)	that	sufficient	mechanistic	understanding	551 
of	 the	 bio-physical	 system	may	 be	 available	 to	 develop	 and	 test	 a	 process-based	model	 for	 an	552 
environmentally-mediated	 disease,	 without	 having	 to	 rely	 only	 on	 limited	 and	 potentially	553 
disinformative	 data,	 and	 (ii)	 how	 accounting	 for	 the	 critical	 hydro-environmental	 controls	554 
underlying	transmission	can	be	valuable	to	better	understand	seasonality	and	spread	of	emerging	555 
or	re-emerging	threatening	diseases.	556 
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Table	1:	Hydrological	model	parameters	and	initial	ranges.		

	

	

	

	
Table	2:	Epidemiological	model	parameters	and	initial	ranges.		
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Figure	1:	Spatial	pattern	of	Topographic	Index	values	for	the	River	Tawe	Catchment	(UK).		

	

	

	

	
	

Figure	2:	Simplified	representation	of	the	liver	fluke	life-cycle,	with	an	amphibious	mud	snail	serving	
as	intermediate	host.		
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Figure	 3:	 Functions	 used	 in	 HELF	 to	 calculate	 temperature	 and	 soil	 moisture-dependent	
development	and	mortality	rates.	

	

	
Figure	4:	Simplified	flow	diagram	of	HELF,	which	integrates	a	hydrological	and	a	liver	fluke	life-cycle	
component,	to	simulate	the	abundance	of	infective	metacercariae	(Meta)	on	pasture.	
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Figure	5:	Location	and	land	cover	map	of	the	Tawe	and	Severn	Catchments	(36).	
	
	

	

	
	
Figure	6:	Extract	of	the	calibration	and	validation	periods	using	daily	streamflow	data	for	the	River	
Tawe	Catchment	(total	period	is	2000-2006	for	calibration	and	2007-2010	for	validation).	
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Figure	7:	(bottom)	Monthly	comparison	of	simulated	catchment	average	number	of	metacercariae	
and	observed	number	of	infections	(VIDA	data)	over	years	2000-2010	for	the	Tawe	Catchment.	(top)	
Years	2008	and	2009	have	the	highest	mean	summer	rainfall	within	the	simulation	period,	as	well	
as	a	sufficiently	wet	autumn,	resulting	in	high	suitability	for	disease	transmission.	
	
	
	

	
	
Figure	8:	 (left)	Sub-areas	within	the	Severn	Catchment	for	which	we	have	data	points	(i.e.	cattle	
herds	 classified	 into	 infected	and	not-infected	based	on	 FECs	 collected	over	winter	 2014-2015).	
(right)	Comparison	of	simulated	percentage	of	grid	cells	at	risk	of	infection	and	observed	percentage	
of	infected	herds	for	each	sub-area.		
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Figure	 9:	 Evolution	 of	 the	 initial	 sample	 of	 8000	 parameterisations	 (each	 including	 the	 22	
epidemiological	 model	 parameters	 sampled	 from	 within	 their	 initial	 ranges)	 along	 the	 4	
confinement	steps.	
	

	
Figure	10:	Monthly	behaviour	of	the	parasite	life-cycle	stages	simulated	with	HELF	for	year	2001,	

as	an	example	(median	of	the	behavioural	simulations).	
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Figure	11:	Monthly	comparison	of	simulated	catchment	average	number	of	metacercariae,	obtained	
using	the	behavioural	parameter	sets	(90%	bounds),	and	observed	number	of	infections	(VIDA	data)	
over	years	2000-2010	for	the	Tawe	Catchment.	
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Figure	 12:	 (a)	 Comparison	 of	 the	 Ollerenshaw	 risk	 index	 pattern,	 in	 black,	 with	 the	 temporal	
dynamics	of	pasture	contamination	simulated	with	HELF	(median	of	the	behavioural	sets)	in	blue,	
for	an	extract	of	the	simulation	period	over	the	Tawe	Catchment.	(b)	Risk	maps	for	August	2006,	as	
an	example,	obtained	using	the	Ollerenshaw	Index	(left)	and	HELF	(right).	
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