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Abstract

Odor attraction in walking Drosophila melanogaster is commonly used to relate neural function to
behavior, but the algorithms underlying attraction are unclear. Here we develop a high-throughput
assay to measure olfactory behavior in response to well-controlled sensory stimuli. We show that odor
evokes two behaviors: an upwind run during odor (ON response), and a local search at odor offset (OFF
response). Wind orientation requires antennal mechanoreceptors, but search is driven solely by odor.
Using dynamic odor stimuli, we measure the dependence of these two behaviors on odor intensity and
history. Based on these data, we develop a navigation model that recapitulates the behavior of flies
in our apparatus, and generates realistic trajectories when run in a turbulent boundary layer plume.
The ability to parse olfactory navigation into quantifiable elementary sensori-motor transformations
provides a foundation for dissecting neural circuits that govern olfactory behavior.
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1 Introduction
Fruit-flies, like many animals, are adept at using olfactory cues to navigate towards a source of food.
Because of the genetic tools available in this organism, Drosophila melanogaster has emerged as a leading
model for understanding how neural circuits generate behavior. Olfactory behaviors in walking flies
lie at the heart of many studies of sensory processing[52] [59], learning and memory [1] [44], and the
neural basis of hunger [51] [62]. However, the precise algorithms by which walking flies locate an odor
source are not clear.

Algorithms for olfactory navigation have been studied in a number of species, and can be broadly
divided into two classes, depending on whether the organisms typically search in a laminar environ-
ment or in a turbulent environment. In laminar environments, odor concentration provides a smooth
directional cue that can be used to locate the odor source. Laminar navigators include bacteria [8], ne-
matodes [48], and Drosophila larvae [22] [21]. In each of these organisms, a key computation is detection
of temporal changes in odor concentration, which drives changes in the probability of re-orientation
behaviors. In turbulent environments, odors are transported by the instantaneous structure of air or
water currents, forming plumes with complex spatial and temporal structure [15] [16] [66]. Within a
turbulent plume, odor fluctuates continuously, meaning that instantaneous concentration gradients do
not provide simple information about the direction of the source . Navigation in turbulent environ-
ments has been studied most extensively in moths [29] [17] [2] [32] [53], but has also been investigated
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in flying adult Drosophila [63] and marine plankton [45]. In these organisms, the onset or presence of
odor drives upwind or upstream orientation, while loss of odor drives casting orthogonal to the direc-
tion of flow. An important distinction between laminar and turbulent navigation algorithms is that the
former depend only on the dynamics of odor concentration, while the latter rely also on measurements
of flow direction derived from mechanosensation or optic flow [13]. Also unclear is the role of tempo-
ral cues in turbulent navigation. Several studies have suggested that precise timing information about
plume fluctuations might be important for navigation [2] [34], or that algorithms keeping track of the
detailed history of odor encounters may promote chemotaxis [64], but the relationship between odor
dynamics and olfactory behaviors has been challenging to measure experimentally [46].

Olfactory navigation has not been studied as quantitatively in walking flies. A walking fly in nature
will encounter an odor plume that is developing close to a solid boundary. Such plumes are broader,
exhibit slower fluctuations, and allow odor to persist further downwind from the source, compared to
airborne plumes [15] [16] [66]. Navigational strategies in these two environments might therefore be
different. In laboratory studies, walking flies have been shown to turn upwind when encountering an
attractive odor [19] [58], and downwind when odor is lost [4]. However, flies can also stay within an
odorized region when wind cues provide no direction information, by modulating multiple parameters
of their locomotion [25]. It is not clear how these diverse motor programs work together to promote
navigation towards an attractive odor source in complex environments.

Here we set out to define elementary sensory-motor transformations that underlie olfactory navi-
gation in walking fruit flies. To this end, we designed a miniature wind-tunnel paradigm that allows us
to precisely control the wind and odor stimuli delivered to freely walking flies. Using this paradigm,
we show that flies, like other organisms, navigate through distinct behavioral responses to the presence
and loss of odor. During odor, flies increase their ground speed and orient upwind. Following odor
loss, they reduce their ground speed and increase their rate of turning. By blocking antennal wind sen-
sation, we show that mechanosensation is required for the directional components of these behaviors,
while olfaction is sufficient to induce changes in ground speed and turning. This implies that olfactory
navigation is driven by both multi-modal and unimodal sensori-motor transformations. We next used
an array of well-controlled dynamic stimuli to define the temporal features of odor stimuli that drive
upwind orientation and turn probability. We found that behavioral responses to odor are significantly
slower than peripheral sensory encoding, and are driven by an integration of odor information over
several hundred milliseconds (for upwind orientation) and several seconds (for turn probability).

To understand how these elementary responses might promote navigation in a complex environ-
ment, we developed a simple computational model of how odor dynamics and wind direction influ-
ence changes in forward and angular velocity. We show that this model can recapitulate the mean
behavior of flies responding to a pulse stimulus, as well as the variability in response types observed
across flies. Finally we examine the behavior of our model in a turbulent odor plume measured experi-
mentally in air, finding that its performance is comparable to that of real flies in the same environment.
These simulations suggest that integration over time may be a useful computational strategy for navi-
gating in a boundary layer plume, allowing flies to head upwind more continuously in the face of odor
fluctuations, and to generate re-orientations clustered at the plume edges. Our description of olfactory
navigation algorithms in walking flies, and the resulting computational model, provide a quantitative
framework for analyzing how specific sensory-motor transformations contribute to odor attraction in
a complex environment, and will facilitate the dissection of neural circuits contributing to olfactory
behavior.

2 Results

2.1 ON and OFF responses to odor in a miniature wind-tunnel paradigm
To investigate the specific responses underlying olfactory navigation, we developed a miniature wind-
tunnel apparatus in which we could present well-controlled wind and odor stimuli to walking flies
(Figure 1A and B and Methods). Flies were exposed to a constant flow of filtered, humidified air, into
which we injected pulses of odor with rapid onset and offset kinetics. The time courses of odor con-
centration and air speed inside the behavioral arena were measured using a photo-ionization detector
(PID) and an anemometer (Figure 1E ). Because flies are free to move about the chamber, and because
the odor from takes about 1 s to advect down the arena, flies will encounter and lose the odor at slightly
different times. We therefore used PID measurements made a several locations in the arena to warp our
behavior data to the exact times of odor onset and offset (see Methods, figure S1). We used genetically
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blind flies (norpA36 mutants) in order to remove any possible contributions of visual responses. Flies
were starved 5 hours prior to the experiment, and were tested for approximately 2 hours (from ZT 2-4),
in a series of 70 second-long trials with blank (wind only) and odor trials randomly interleaved.

We observed that in the presence of 10% apple cider vinegar (ACV), flies oriented upwind, and
moved faster and straighter (Figure 1C, magenta traces). This “ON” response peaked 4.4±2.5 seconds
after odor onset, but remained as long as odor was present. Following odor offset, flies exhibited
more tortuous and localized trajectories (Figure 1C, cyan traces). This “OFF” response resembles local
search behavior observed in other insects [67], and persisted for tens of seconds after odor offset. These
two responses are usually readily perceptible and distinguishable by observing the movements of flies
during an odor pulse (Figure 1C, Supplementary Video 1). On trials without odor, flies tended to
aggregate at the downwind end of the arena (Figure 1D).

To analyze these responses quantitatively, we first noted that flies alternate between periods of
movement and periods of immobility (Figure S3A-B). To focus on the active responses of flies, we con-
sidered in our analyses only those periods in which flies were moving, and we established a threshold
of 1 mm/s below which flies were considered to be stationary (see Methods). Then we analyzed how
flies’ movements changed in response to an odor pulse by extracting a series of motor parameters
(Figure 1F,see Methods). We computed each measure both as a function of time (Figure 1F) and on a
fly-by-fly basis for specific time intervals before, during, and after the odor presentation (Figure 1G).

During odor presentation, upwind velocity (i.e. speed of flies along the longitudinal axis of the
arenas) and ground speed both increased significantly, while angular velocity and curvature (i.e. ra-
tio between angular velocity and ground speed) decreased after an initial peak. This resulted in the
straighter trajectories observed during odor; the initial peak observed in angular velocity and curva-
ture corresponds to big turns performed by flies to orient upwind after odor onset. Following odor
offset, angular velocity increased, while ground speed decreased, resulting in the increased curvature
characteristic of local search (Figure 1F,G). Since an increase in probability of reorientation has been
traditionally identified as a hallmark of localized search [8] [48] [22] [21], we calculated the turn proba-
bility of flies in our arena as a binarized version of curvature around a threshold of 20 deg/mm. Indeed,
turn probability increased as well after odor offset (Figure 1F,G). Upwind velocity also became nega-
tive after odor offset, although this response was weaker than the upwind orientation during odor, and
peaked later than the changes in ground speed and curvature.

Although most of the flies we tested showed ON and OFF responses as described above, we ob-
served considerable variability between individuals (Figure S2). Individuals varied in the strength of
their odor responses, with some flies exhibiting strong upwind orientation and search, while others
showed little odor-evoked modulation of behavior (Figure S2A-C). Motor parameters from the same
individual in different trials were correlated, whereas parameters randomly selected from different
individuals were not (Figure S2D). Thus, the movement parameters of the “average fly” depicted in
Figure 1 underestimate the range of search behaviors shown by individuals, with particular flies ex-
hibiting both much stronger and much weaker ON and OFF responses. There was a slight tendency
for responses to be weaker during the first few trials; after this behavior was stable (on average) across
the entire experimental session (Figure S2F).

Together, these data indicate that apple cider vinegar drives two distinct behavioral responses: an
ON response consisting of upwind orientation coupled with faster and straighter trajectories, and an
OFF response consisting of slower and more curved trajectories.

2.2 Local search is driven purely by odor dynamics
We next asked whether any change in behavior could be produced by odor in the absence of wind
information. Previous studies have found that optogenetic activation of orco+ neurons did not elicit
attraction [60], unless wind was present [4]. However, modulation of gait parameters by odor has also
been observed when the wind is directed perpendicular to the plane of the arena [25]. To ask whether
walking flies could respond to odor in the absence of wind, we stabilized the third segment of the
antennae using a small drop of UV glue. Fruit flies sense wind direction using stretch receptors that
detect rotations of the third antennal segment [68]. This manipulation therefore renders flies “wind-
blind” [10] [6].

We found that wind-blind flies showed severely impaired directional responses to odor and wind.
Upwind velocity was not significantly modulated either during the odor or after (Figure 2A-B, top).
Indeed, odor-induced runs in different directions (either up- or downwind or sideways) could be ob-
served in individual trajectories (Figure 2C). In addition, the downwind positional bias seen in the
absence of odor was reduced (Figure 2D). The average arena position of wind-blind flies on no-odor
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trials was no different from that of intact flies in the absence of wind (Figure 2D). Thus, antennal wind
sensors are critical for the oriented components of olfactory search behavior.

However, wind-blind flies still responded to odor by modulating their ground speed and angular
velocity. Wind-blind flies increased their curvature after odor offset and also increased their ground
speed during odor (Figure 2B). These changes can be seen in the examples shown in Figure 2C, where
flies adopt somewhat straighter trajectories during odor, and exhibit local search behavior following
odor offset. These results imply that odor can directly modulate gait parameters to influence navigation
in the absence of wind. Together these experiments show that olfactory navigation depends both on
multimodal processing (odor-gated upwind orientation), and on direct transformation of odor signals
into changes in ground speed and curvature.

2.3 ON and OFF responses to dynamic stimuli
Because natural odor stimuli are highly dynamic, we next asked what features of the odor signal drive
ON and OFF responses. To address this question, we presented flies with a variety of dynamically
modulated stimuli. We focused our analysis on upwind velocity and turn probability, as measures of
the ON and OFF response respectively, as these parameters provided the highest signal-to-noise ratio.

We first looked at how ON and OFF behaviors depended on the concentration of the odor stimulus.
In these experiments, different groups of flies were exposed to square pulses of apple cider vinegar at
dilutions of 0.01%, 0.1%, 1% and 10% (Figure 3A-B). We found that both upwind velocity during odor
and turn probability after offset grew with increasing odor concentration between 0.01% and 1%, but
saturated or even decreased at 10% (Figure 3A-B). These responses were well fit by a Hill function with
a dissociation constant κd of 0.072 (for ON) and and 0.127 (for OFF; Figure 3A and B, left and right
insets). A saturating Hill function nonlinearity is to be expected from odor transduction kinetics, and
has been found to describe encoding of odor stimuli by peripheral olfactory receptor neurons [26] [38]
[23] [55], and central olfactory projection neurons [42].

We next wondered whether OFF behaviors could be elicited by gradual decreases in odor concen-
tration, as turning behavior in gradient navigators is sensitive to the slope of odor concentration [8] [48].
To perform this experiment, we used proportional valves to deliver a pulse of saturating concentration
(10% ACV), that then decreased linearly over a period of 2.5, 5 or 10 seconds (Figure 3C-D, Methods).
We observed that turn probability began to grow gradually as soon as the odor concentration started
to decrease (Figure 3D, white arrow), but peaked close to the point where the linear off ramp returned
to baseline (black arrow). This result suggests some form of sensitivity adaptation, that allows the fly
to respond to a small decrease from a saturating concentration of odor. We also noted that upwind
velocity remained positive during these ramps (Figure 3C, white arrow), suggesting that ON and OFF
responses can be driven—at least partially— at the same time.

Finally, we wished to gauge the ability of flies to follow rapid fluctuations in odor concentration,
as occurs in real odor plumes. Indeed olfactory receptor neurons can follow odor fluctuations up to
10-20Hz [38] [30], and these rapid responses have been hypothesized to be critical for navigation in
odor plumes [38] [23]. To test the behavioral response of flies to rapid odor fluctuations, we used
proportional valves to create ascending and descending frequency sweeps of 10% ACV between ap-
proximately 0.1 and 1 Hz (Figure 3E-H). The peak frequency we could present was limited to 1 Hz, as
higher frequencies would be attenuated by diffusion during the time it takes for the stimulus to tra-
verse the arena. Higher frequency stimuli could not be assessed, as flies freeze in response to higher
wind speeds [68]. In addition, we presented an odor waveform drawn from PLIF (planar laser imaging
fluorescence) measurements of a boundary layer acetone plume in air (Figure 3I-J, see Methods).

As in previous experiments, we warped all behavioral data to account for the fact that flies en-
counter the odor fluctuations at different times depending on their position in the arena (Figure S1
and Methods). In addition, we excluded behavioral data points within 3 mm of the side walls, where
boundary layer effects would cause slower propagation of the stimulus waveform. We also excluded
responses occurring after each fly reached the upwind end of the arena, where arena geometry would
constrain their direction of movement. The resulting traces represent our best estimate of the time
courses of behavioral parameters (Figure S3) although we cannot completely rule out some contribu-
tion of odor diffusion or arena geometry.

We found that upwind velocity tracked odor fluctuations at the lowest frequencies, but that mod-
ulation became attenuated at higher frequencies (end of the ascending frequency sweep and start of
the descending frequency sweep; Figure 3E and G), suggesting low-pass filtering of the odor signal.
Similarly, upwind velocity peaked in response to nearly every fluctuation in the plume walk, but re-
mained elevated during clusters of odor fluctuations (Figure 3I). The frequency-dependent attenuation
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was seen in both ascending and descending frequency sweeps, arguing against it being an effect of
position in the arena, or duration of exposure to odor. Attenuation was not due to the filter imposed
on trajectories during processing, as it was visible also when this filtering step was omitted (Figure
S3C-D). We think it is also unlikely to be due to a limit on our ability to measure fast behavior reac-
tions. We observed rapid decreases in groundspeed in response to click stimuli that did not attenuate
at higher frequencies (Figure S3C,F), arguing that the attenuation seen with odor does not reflect a limit
on detecting rapid behavioral responses. Turn probability at offset showed even stronger evidence of
low-pass filtering. Fluctuations in turn probability were attenuated during the higher frequencies of
both frequency sweeps, and the strongest responses occurred at the end of the stimulus to the absence
of odor (Figure 3F, H, J). The initial peaks in turn probability most likely represent the initial upwind
turn, rather than an OFF response.

Together these data argue that walking flies do not respond to every whiff of odor as an indepen-
dent stimulus, but rather that both ON and OFF responses depend, although in different ways, on the
history of odor encounters.

2.4 Phenomenological models of ON and OFF responses
We next sought to develop computational models that could account for the behavioral dynamics de-
scribed above. A challenge was that behavioral responses saturated at concentrations above 1% ACV,
and they were also modulated by small decreases and fluctuations from a higher concentration (10%).
This suggests some form of adaptation, in which the sensitivity of behavior to odorant shifts over time,
allowing responses to occur near what was previously a saturating concentration. Sensitivity adapta-
tion has been described at the level of olfactory receptor neuron transduction, and can be implemented
as a slow rightward shift in the Hill function that describes intensity encoding [26] [38] [23]. We there-
fore modeled adaptation by filtering the odor waveform with a long time constant τA and using the
resulting signal to dynamically shift the midpoint of the Hill function to the right (see Methods). The
baseline κd of the Hill function was taken from the fits in Figure 3A and B. We call this process "adap-
tive compression" (Figure 4A) as it both compresses the dynamic range of the odor signal (from orders
of magnitude to a linear scale), and adaptively moves the linear part of this function to the mean of
the stimulus. We then tested four models: one with adaptive compression followed by linear filtering
(“ACF”), one with linear filtering followed by adaptive compression (“FAC”), and the same models
without adaptation (“CF” and “FC” respectively). We note that the FC model, with linear filtering
followed by a fixed nonlinearity, is most similar to traditional linear-nonlinear models.

We first fit models of the ON response to all upwind velocities shown in Figure 3, omitting and
reserving the “plume walk” stimulus to use as a test. We found that both models with adaptation
performed better than models without, and that the model with adaptive compression first (“ACF”,
Figure 4A) outperformed the adaptive model with filtering first (“FAC”, Figure 4B). As shown in Figure
4C, model ACF correctly predicted saturation with increasing odor concentration, and also the fact that
responses to high odor concentrations exhibit adaptation while those to low odor concentrations do
not. This model also correctly predicted the attenuation seen during frequency sweeps (Figure 4D and
E), although some details of response timing early in the stimulus were not matched. We note that
behavioral responses used for fitting were recorded in three different experiments with different sets
of flies, and we used a single set of parameters to fit all responses; some differences between real and
predicted response (for example the timing of response onset in Figure 3D and E vs C) may reflect
differences in responses across experiments. The time constant of filtering was 0.72 s (see Table 1),
significantly slower than encoding in peripheral ORNs [30] [38]. The time constant of adaptation was
very slow (9.8 s). Models without adaptation (pink trace in Figure 4D-E) exhibited strong saturation
during the frequency sweep, which was not observed experimentally.

We next fit the OFF response using four related models. In this case the filtering step was given by a
difference between two filtered waveforms with different time constants, one slow and one fast, thresh-
olded above zero (Figure 4F, Methods). Again we found that models with adaptation outperformed
those without, and that the adaptive model with compression first very slightly outperformed the
adaptive model with filtering first (Figure 4G). This model reproduced reasonably well the responses
of flies to odor ramps (Figure 4H). The slow time constant of filtering was 4.84 s, accounting for the
selectivity of the OFF response to low frequencies during frequency sweeps (Figure 4I and J). The time
constant of adaptation was of similar magnitude to that derived from fitting the ON response (10.62 s).

TO further assess the best-performing ON and OFF models with adaptive compression followed by
filtering, we tested the performance of these models on the “plume walk” stimulus. We found that the
ON model reproduced most major contours in the “plume walk” response (Figure 4K), although there
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was some discrepancy in the timing of peaks early in the response as for the frequency sweeps (Figure
4D). The OFF model also captured many of the major peaks in the behavioral response (Figure 4L), as
well as the time course of the slow offset response after the end of the stimulus. Overall the RMSE
errors between predictions and data for the plume walks were comparable to those for the stimuli we
used for fitting. We conclude that models featuring adaptive compression followed by linear filtering
provide a good fit to behavioral dynamics over a wide range of stimuli.

2.5 A model of olfactory navigation
To understand how the ON and OFF functions defined above might contribute to odor attraction, we
incorporated our ON and OFF models into a simple model of navigation. In our model (Figure 5A-C),
we propose that odor dynamics directly influence ground speed and turn probability through the ON
and OFF functions developed and fit above. Specifically, ON(t) drives an increase in ground speed and
a decrease in turn rate, leading to straight trajectories, while OFF(t) drives a decrease in ground speed
and an increase in turn rate, leading to local search (Figure 5B). Ground speed (v) and turn probability
(P(t)) of our model flies are then be defined by

v(t) = v0 + κ1ON(t)− κ2OFF(t) (1)

P(t) = P0 − κ3ON(t) + κ4OFF(t) (2)

where v0 and P0 are baseline values extracted from behaving flies (Figure 1F).
Second, we propose that turning has both a probabilistic component, driven by odor, and a deter-

ministic component, driven by wind. In the absence of any additional information about how these
turn signals might be combined, we propose that they are simply summed. To model deterministic
wind-guided turns, we constructed a sinusoidal desirability function or “D-function” which drives
right or leftward turning based on the current angle of the wind with respect to the fly. Such func-
tions were originally proposed to explain orientation to visual stripes [49]. In an upwind D-function,
wind on the left (denoted by negative ψ values) drives turns to the left (denoted by negative θ̇ values),
and vice-versa (Figure 5C, magenta trace). Conversely, in a downwind D-function, wind on the left
drives turns to the right, and vice-versa (black trace). Supporting the notion of a wind direction-based
D-function, we found that the average angular velocity as a function of wind direction in the period im-
mediately after odor onset had a strong "upwind" shape (Figure 5D, magenta trace), while the angular
velocity after odor offset had a weaker "downwind" shape (Figure 5D, black trace). In our navigation
model the angular velocity of the fly is then given by

θ̇(t) = ρ(t)G + κ5ON(t)Du(ϕ) + κ6Dd(ϕ) (3)

where ρ(t) is a binary Poisson variable with rate P(t) and G is the distribution of angular velocities
drawn from when ρ is 1 (see Methods). This first term generates probabilistic turns whose rate de-
pends on recent odor dynamics. The second term is an upwind D-function, gated by the ON function,
that produces strong upwind orientation in the presence of odor. The final term is a constant weak
downwind D-function that produces a downwind bias in the absence of odor.

This navigation model is parameterized by six coefficients (κ1-κ6) that link the ON and OFF func-
tions to modulation of ground speed and turn probability, and that determine the strength of the up-
wind and downwind D-functions. We first adjusted these parameters so that average motor parame-
ters calculated from simulations of our model in response to a 10 s odor pulse would match the ground
speed, upwind velocity, and turn probability of the “mean fly” seen in Figure 1 (Figure 5E, see Methods
and Table 2). Similar to real flies, this model produced upwind runs during the odor pulse and search-
ing after odor offset (Figure 5F). Average upwind velocity during the odor and turn probability after
the odor were comparable to measurements from real flies (compare Figure 5G and Figure 1G). As a
second test, we set the D-function coefficients (κ5 and κ6) to zero, making the model fly indifferent to
wind direction and mimicking a wind-blind real fly. In this case, the model produced undirected runs
during odor and search behavior at odor offset, as in our data (compare Figure 5H-I and Figure 2A-B).

We also asked whether our model could account for variability in behavior seen across flies (Figure
S2). To address this question, we asked whether differences in behavior could be accounted for by
applying fly-specific scale factors to the ON and OFF functions of the model. To define these scale
factors, we returned to our main data set (Figure 1) and computed an ON scale value for each fly equal
to its mean upwind velocity, divided by the mean upwind velocity across flies. An OFF scale value
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was computed similarly by taking the mean turn probability for a fly divided by the mean across flies.
This procedure allowed us to express the behavior of each fly as a scaled version of the group average
response. Next, keeping all other parameters in our navigation model fixed as previously fitted, we
scaled the ON and OFF functions to match the value of individual flies. The trajectories produced by
these scaled models resembled the behavior of individual flies both qualitatively and quantitatively.
For example, scaling down the ON and OFF functions produced similar behavior to a weak searching
fly (Figure 5J, compare directly to green-highlighted examples in Figure S2A), while scaling up the ON
and OFF function produced behavior similar to a strongly-searching fly (Figure 5K, compare directly
to blue-highlighted examples in Figure S2A).

Together, these results support the idea that our model captures essential features of how flies
respond to odor and wind in miniature wind-tunnels, including the responses of intact and wind-blind
flies, and variations in behavior across individuals. Thus, this model provides a basis for examining
the predicted behavior of flies in more complex environments.

2.6 Behavior of real and model flies in a turbulent environment
Finally, we sought to test whether our model could provide insight into the behavior of real flies in
more complex odor environments. To that end we constructed two equivalent wind tunnels capable of
delivering a turbulent odor plume (Figure 6A; see Methods). In one tunnel (New York) we incorporated
IR lighting below the bed and cameras above it to image fly behavior in response to a turbulent odor
plume. In the second tunnel (Colorado), we used a UV laser light sheet and acetone vapor to obtain
to high-resolution movies of the plume for use in modeling (Figure 6B). These two apparatuses had
similar dimensions, and matched odor delivery systems and wind speeds. We used photo-ionization
detector measurements to corroborate that the shape and dynamics of the plume in the New York
tunnel was similar to the one measured in Colorado (Figure 6B).

We next examined the behavior of walking flies in this wind tunnel. Flies were of the same genotype
and were prepared for experiments in the same way as those used previously. They were constrained
to walk by gluing their wings to their backs with a small drop of UV glue and by placing a 1cm-wide
water-filled moat at the edge of the arena.

We first tested flies with wind only (no odor) at 10cm/s. As in our miniature wind tunnels, we
found that flies uniformly preferred the downwind end of the arena (Figure 6C). In the absence of
wind, this preference was reduced (Figure 6D). We observed no preference for the upwind end of
the tunnel (which received greater ambient light from the room) or for the odor tube, confirming that
these norpA36 flies lacked phototaxis and visual object attraction. Finally, we examined behavior in the
presence of a plume of ACV 10%, and we observed diverse responses (Figure 6E). 5 out of 14 (36%) flies
successfully located the odor source, walking upwind and lingering in a small region close to the odor
tube (Figure 6E, left trace). Other flies searched in the middle of the arena without getting close to the
source (Figure 6E, middle trace, 29%), while others headed downwind and remained at the downwind
end of the arena (Figure 6E, right trace, 43%).

To compare the performance of our model to the behavior of the flies, we ran simulations with our
model using the plume movie measured in the Colorado wind tunnel as a virtual environment (Supple-
mentary Video 2). At each time step, we took the odor concentration at the location of the simulated fly
and used this to iteratively compute ON and OFF functions and update the fly’s position accordingly
(Figure 6F-H). We observed that model flies produced trajectories similar to those of real flies in the
wind tunnel. For example, some flies responded to odor with general movement upwind interrupted
by occasional excursions out of the plume (Figure 6F); overall, 66% successfully came within 2cm of
the odor source. Other model flies searched but failed to locate the source (17% of trials; Figure 6H, left
trace), while others “missed” the plume and moved downwind (17% of trials; Figure 6H, right trace).
Using a single set of model parameters fit to the mean behavioral responses in Figure 1F, we found that
our model yielded a higher success rate than real flies (Figure 6I, 66% versus 36% success rate).

Given the large degree of variability in behavior across individuals, we wondered if this variability
could account for the difference in success rates between real and model flies. We therefore ran simula-
tions incorporating variability in fly behavior. In each trial of this simulation, we randomly drew a pair
of ON and OFF scale values (as described previously) and used it to scale the ON and OFF responses of
the model for that trial. Introducing variability in the model decreased the success rate to 45% (Figure
6I) and made it more similar to that of real flies in the wind tunnel. This simulation produced 27% of
“failed” searching trials and 28% of trials in which flies “missed” the plume and went downwind.

The simulations described above indicate that the trajectories produced by our model in a turbulent
environment are qualitatively similar to those produced by real flies. To gain insight into the roles that
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ON and OFF behaviors play in this environment, we color-coded model trajectories according to the
magnitude of the ON and OFF functions underlying them (Figure 6F-G). We observed that the ON
function was dominant throughout most of the odorized region, while excursions from the plume
elicited strong OFF responses that frequently resulted in the model fly re-entering the plume. OFF
responses were also prominent near the odor source, where they contributed to the model fly lingering
as observed in real flies. ON and OFF magnitudes varied over a much smaller range than the range of
odor concentrations, suggesting that the adaptive compression we incorporated into the model helps
flies to respond behaviorally over a greater distance downwind of the source. Plotting the strengths
of both responses as a function of position in an odor plume supported this analysis of individual
trajectories (Figure 6J-K). This analysis showed ON being active in the area within the plume, and
more active the closer to the center of the plume (Figure 6J), where the concentration of odor is higher
and intermittency is lower. This suggests that ON responses are responsible for making flies progress
within the odor area, allowing them to eventually reach the odor source. The OFF function was most
active in the area surrounding the odor plume (Figure 6K), suggesting it plays a role in relocating the
plume after flies walk outside of it and the odor signal is lost. OFF values were also high just upwind of
the source. Notably, OFF values were generally low within the plume, even though large fluctuations
do occur within this region. This suggests that the slow integration time of the OFF response may help
it to detect the edges of the time-averaged plume, allowing flies to slow down and search only when
the plume has genuinely been exited.

Finally, we assessed the relative role of ON and OFF functions in promoting source localization. To
address this question, we ran a series of simulations in an odor plume (500 trials each), systematically
changing the scaling factors of the ON and OFF functions (Figure 6L). We observed that performance
increased with both functions, but that ON was more critical for success in the plume, producing large
improvements in performance as it increased. This is consistent with the idea that wind direction is a
highly reliable cue in this environment (indeed, it is likely more reliable in our model than in reality, as
we did not incorporate local variations in flow induced by turbulence into our model). To test the idea
that ON and OFF might have different importance in a windless environment, we repeated the analysis
just described in a simulated Gaussian odor gradient with no wind (Figure 6M). In this environment,
success rates were lower, but the contributions of ON and OFF were more similar, with higher success
rates when the OFF function was the strongest for any given strength of the ON function.

These results suggest that ON and OFF responses play specific roles in helping locate an odor
source, and that they have different impact on success depending on the features of the environment.
Specifically, the wind orientation component of the ON response plays an outsized role in an environ-
ment with a clear wind direction, while the OFF response may make a larger contribution when wind
direction cues are unreliable. Together these data support the idea that the elementary ON and OFF
behaviors we have described and modeled are similar to the those engaged by natural plume stimuli,
and provide a basis for understanding navigation in complex environments.

3 Discussion

3.1 Quantitative measurement of olfactory attraction behavior in adult
fruit-flies
The ability to navigate towards attractive odors is widespread throughout the animal kingdom and is
critical for locating both food and mates [5]. Taxis towards attractive odors is found even in organisms
without brains, such as E. coli, and is achieved by using changes in the rate of odorant-receptor binding
to drive changes in the rate of random re-orientation events, called tumbles or twiddles [8]. Precise
quantification of the behavior elicited by controlled chemical stimuli has been critical to the dissection
of neural circuits underlying navigation in gradient navigators such as C. elegans [24] and Drosophila
larvae [61].

Larger organisms that navigate in air or water face fundamentally different problems in locating
odor sources [13] [35]. Odors in open air are turbulent. Within a plume, odor concentration at a single
location fluctuates over time, and local concentration gradients often do not point towards the odor
source [15] [66]. To solve the problem of navigating in turbulence, many organisms have evolved
strategies of combining odor information with flow information. For example, flying moths and flies
orient upwind using optic flow cues during odor [29] [17] [63]. Marine invertebrates travel upstream
when encountering an attractive odor [45]. Although neurons that carry signals appropriate for guiding
these behaviors have been identified [41] [40], a circuit-level understanding of these behaviors has been
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lacking. Obtaining such an understanding will require quantitative measurements of behavior coupled
with techniques to precisely activate and inactivate populations of neurons.

In recent years, the fruit-fly Drosophila melanogaster has emerged as a leading model for neural cir-
cuit dissection [56]. The widespread availability of neuron-specific driver lines, the ease of expressing
optogenetic reagents, and the ability to perform experiments in a high-throughput manner have estab-
lished the fruit-fly as a compelling experimental model. Here we have developed a high-throughput
behavioral paradigm for adult flies that allows for precise quantification of fly movement parameters
as a function of well-controlled dynamic odor and wind stimuli. An important distinction between our
paradigm, and others previously developed for flies [25] [63] [4], is that it allows us to control the odor
and wind stimuli experienced by the flies regardless of their movement. This "open loop" stimulus pre-
sentation allowed us to measure the dependence of specific behaviors on odor dynamics and history.
In addition, our paradigm allows for movement in two dimensions (in contrast to [58] [4], which al-
lowed us to observe and quantify search behavior elicited by odor offset. By combining this paradigm
with techniques to activate and silence particular groups of neurons, it should be possible to dissect the
circuits underlying these complex multi-modal forms of olfactory navigation.

3.2 Unimodal and multimodal responses guide olfactory navigation in
adult Drosophila
In our behavioral paradigm, we observed two distinct behavioral responses to a pulse of apple cider
vinegar: an upwind run during odor, and a local search at odor offset. Previous studies have suggested
that flies cannot navigate towards odor in the absence of wind [4], while others have suggested that
odor modulates multiple parameters of locomotion, resulting in an emergent attraction to odorized
regions[25]. Our findings suggest a synthesis of these two views. We find that upwind orientation
requires wind cues transduced by antennal mechanoreceptors. In contrast, offset searching is driven
purely by changes in odor concentration. In computational model simulations, we found that when
wind provided a reliable cue about source direction, wind orientation was the major factor in the suc-
cess of a model fly in finding the source. However, when wind cues were absent, ON and OFF behav-
iors both played equal roles. In real environments, wind direction is rarely completely reliable [36], so
both behaviors are likely to contribute to successful attraction.

The ON and OFF responses that we describe here have clear correlates in behaviors described in
other organisms. The upwind run during odor has been described previously [19] [58] and seems to
play a similar role to the upwind surge seen in flying insects [65]. Upwind orientation in walking flies
appears to depend entirely on mechanical cues while upwind orientation during flight has been shown
to be sensitive to visual cues [28] [27] [63]. Searching responses after odor offset have been observed in
walking cockroaches [67], and have been observed in adult flies following removal from food [18] [31]
but have until recently not been reported in flies in response to odor. The OFF response seems to play a
role related to casting in flying insects, allowing the fly to relocate an odor plume once it has been lost,
although the response we observed did not have any component of orientation orthogonal to the wind
direction, as has been described in flight [29] [63].

3.3 Temporal features of odor driving ON and OFF behaviors
A common feature of chemotaxis strategies across organisms is the use of temporal cues to guide behav-
ior. In gradient navigators, the dependence of behavior on temporal features of odor is well established.
Decreases in tumble rate in bacteria are driven by nearly instantaneous increases in odor concentration
[8]. In constrast, pirouettes in C. elegans are driven by decreases in odor concentration over a window of
several seconds [48]. The temporal features of odor that drive behavioral reactions in plume navigators
are less clear. Studies of moth flight trajectories in a wind tunnel have suggested that moths respond to
each filament of odor with a surge and cast [2] [65], and cease upwind flight in a continuous miasma
of odor [27]. These findings have led to the idea that the rapid fluctuations found in plume are critical
for promoting upwind progress [2] [34]. In constrast, Drosophila have been observed to fly upwind in a
continuous odor stream [9], suggesting that a fluctuating stimulus is not required to drive behavior in
this species. Flight responses to odor have been described as fixed reflexes [63], although some depen-
dence on odor intensity and history has been found [46]. Measurement of these dependencies has been
hampered by the inability to precisely control the stimulus encountered by behaving animals.

Here we have used an open loop stimulus and a very large number of behavioral trials, to directly
measure the dependence of odor-evoked behaviors on odor dynamics and history. We find that in
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walking Drosophila, ON behavior (upwind orientation) is continuously produced in the presence of
odor. ON behavior exhibited a filter time constant of 0.72 seconds, significantly slower than encoding
of odor by peripheral olfactory receptor neurons [30] [38]. We think it is unlikely that this represents a
limit on our ability to measure behavioral reactions with high temporal fidelity, as we observed very
rapid, short-latency freezing in response to valve clicks that were faster and more reliable than olfactory
responses. One possible explanation for this difference is that olfactory information may be propagated
through multiple synapses before driving changes in motor behavior, while the observed freezing may
be a reflex, executed through a more direct coupling of mechanoreceptors and motor neurons.

OFF responses (increases in turn probability) were driven by differences between the current odor
concentration, and an integrated odor history with a time constant of 4.8 seconds. This long integra-
tion time was evident in responses to frequency sweeps and to the “plume walk”, where increases in
turn probability were only observed in response to relatively slow odor fluctuations, or to long pauses
between clusters of odor peaks. This filtering mechanism may allow the fly to ignore turbulent fluctua-
tions occurring within the plume, and to respond with search behavior only when the overall envelope
of the plume is lost. As most olfactory receptor neurons respond to the presence of odor, it is likely
that the OFF response must be computed more centrally in the brain. A possible location for this com-
putation is in local interneurons of the antennal lobe, many of which exhibit offset responses to odor
driven by post-inhibitory rebound [39]. Rebound responses have been shown to grow with the dura-
tion of inhibitory current between 2 and 10 seconds [39], providing a potential mechanism for the slow
integration seen in the OFF response.

In addition to low-pass filtering, we found that behavioral responses to odor were best fit by mod-
els that included a compressive nonlinearity —in the form of a Hill function— whose sensitivity was
slowly adjusted by adaptation. This type of adaptive compression has been observed in the transduc-
tion responses of Drosophila olfactory receptor neurons [26] [38] [23]. Additional adaptation has been
observed at synapses between first and second order olfactory neurons [37] [11]. Adaptation at mul-
tiple sites in the brain may contribute to the relatively slow adaptation time constants we measured
for behavior (9.8 and 10 seconds for ON and OFF respectively.) Our adaptive compression model has
some similarity to the quasi-steady state model of [55], in which sensitivity to odor is dynamically ad-
justed to a running average of recent changes in odor history. Similar to that study in larvae, our study
also suggests that events early in olfactory transduction can shape the time course of subsequent motor
responses.

Why might olfactory behavior in walking flies reflect integration of olfactory information over time
while upwind flight in moths appears to require a rapidly fluctuating stimulus? Two possibilities, in
addition to species differences, are worth considering. One is that the temporal demands of walking
differ from those of flight. A flying fly travels at much faster speeds than a walking one and will there-
fore traverse a plume in less time [63]. In addition, plumes developing near a boundary tend to be
broader than than those in open air [15], again making detection of the plume edge potentially more
important than responding rapidly to each plume encounter. Second, receptor-odorant interactions
can have different kinetics [38] and may induce differing amounts of adaptation [12]. Differences in
temporal processing of odors across species could also therefore reflect differences in the kinetics of
individual odor-receptor interactions. Experiments expressing moth receptors in fly neurons, or com-
paring the history-dependence of flight vs walking reactions in the same species, may help resolve
these differences.

3.4 Modeling olfactory search behavior
To relate elementary sensory-motor transformations to behavior in complex odor environments, we
developed a simple model of olfactory navigation. In our model, two nonlinear functions, ON and
OFF, drive different combinations of forward and angular velocity to produce upwind orientation and
local search. Our model differs from previous models of turbulent navigation [50] [3] [63] in that it does
not specify any distinct behavioral states such as "upwind orientation" or "casting." This is consistent
with the observation that intermediate behavior, in which a positive upwind velocity overlaps with an
increase in angular velocity, can be observed during decreasing odor ramps. Our model also differs
from those requiring extensive memory of past odor encounters [64], as odor history enters into the
algorithm only through the long time constants of the OFF function and of adaptation. As described
above, both these types of temporal sensitivity have been documented in responses of first and second-
order olfactory neurons.

To validate our model, we showed that it can reproduce several features of experimentally observed
fly behavior. First, the model can produce the upwind run during odor and the local search at offset
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that we observe in response to odor pulses in our miniature wind-tunnels. Second, it can still produce
straighter trajectories and local search in the absence of wind information. Third, variation in the
scale of the ON and OFF functions can generate the type of variability we observe in behavior across
flies. Finally, the model produces a distribution of behaviors (source finding, intermediate search, and
downwind orientation) similar to that of real flies when tested in a turbulent odor plume. Despite these
similarities, there are aspects of fly behavior that our model does not capture. For example, we were
unable to precisely match the distribution of angular velocities observed in our data and still produce
realistic trajectories. This suggests that there is additional temporal structure in real fly behavior that
our model lacks. In addition, we have not included any sensitivity to differences in odor concentration
between the antennae, although this has been well-documented experimentally [7] [20]. This sensitivity
could be added as an additional term contributing to total angular velocity (equation 3) and might
contribute to higher success rates in a low-wind environment.

Nevertheless, our model provides a relatively straightforward way to understand the relationship
between temporal filtering of odors, sensory-motor coupling, and behavior in various odor environ-
ments. It should thus facilitate studies relating changes in neural processing to olfactory behavior.
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5 Materials and Methods

5.1 Fly strains
We used genetically blind flies norpA36 mutants, [43] [47] to avoid visual contributions to behavior. The
norpA36 allele was backcrossed for seven generations to an isogenic w1118 stock (Bloomington 5905, also
known as iso31 as described in [54] that exhibits robust walking behavior [57], using PCR to follow the
allele through backcrossing. norpA36 males were crossed to w1118 virgins and virgin female norpA36/+
progeny were backcrossed to w1118 males. In each subsequent generation, 15 to 20 virgin females were
backcrossed singly to w1118 males and genomic DNA was extracted from each female after several
days of mating. PCR amplification was performed with primers flanking the norpA36 deletion (oNS659
AAACCGGATTTCATGCGTCG and oNS660 TGTCCGAGGGCAATCCAAAC; 95◦C 2 min, 30x(95◦C
20 s, 60◦C 10 s, 72◦C 15 s, 72◦10 min) to identify heterozygous norpA36/+ mothers giving rise to wild-
type (172 bp) and mutant (144 bp) products. After seven generations of backcrossing, single males
were crossed to an isogenic FM7 stock to generate homozygous stocks, and those bearing norpA were
identified with PCR. Both w1118norpA36 and w+norpA36 stocks were generated during backcrossing. We
used only w1118 flies for behavior.

All flies were collected at least 1 day post-eclosion. After collection, flies were housed in custom-
made cardboard boxes at room temperature (21.5-23.5◦C), with a light cycle of 12 hour, for at least 3
days prior to experiments to allow habituation. Different boxes were shifted by two hours relative to
the others to allow us to perform several experiments with the same conditions in the same day. At
the time of the experiments, flies were 5 to 14 days old (average age was 7.1±1.8 days). Prior to the
experiments, flies were starved for 5 hours in an empty transparent polystyrene vial with a small piece
of paper soaked in distilled water to humidify the air. Experiments were performed between 2-4 hours
after lights on (ZT 2-ZT 4).

5.2 Behavioral apparatus
Our behavioral apparatus was modified from the design of [4] and was designed to allow us to monitor
the position and orientation of flies walking freely in two dimensions while tightly controlling the odor
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and wind stimuli they experienced. The behavioral arena was composed of several layers of laser-cut
plastic, all 30 by 30 cm in size with varying thicknesses (detailed below), in which different shapes were
cut to create an internal air circuit and four individual behavioral chambers that measured 14 by 4 cm
each. The arena was designed using Adobe Illustrator (design: Adobe Systems, San Jose, CA; plastics:
Pololu Corp, Las Vegas, NV and McMaster, Robbinsville, NJ; laser cutting: Pololu). The internal layers
—in which the individual chambers were cut— were made of 0.5 mm-thick PETG (McMaster refer-
ence: 9513K123), 0.8 mm delrin (McMaster: 8575K131), and 0.4 mm fluorosilicone rubber (McMaster:
2183T11). Additionally, the arenas had a floor and ceiling layers made of 4.5 mm clear acrylic (Pololu).

The ceiling was held in place with 7 set screws; combined with the fluorosilicone rubber layer this
ensured that air did not escape from the chambers and produced more uniform odor concentrations
throughout the arena. Each behavioral chamber had a separate air inlet through which charcoal-filtered
air was supplied, and an outlet at the opposite end. A series of baffles in the PETG layer, as well as
the short vertical extent of the chambers (1.6 mm) ensured laminar flow of air through our chambers
(calculated Reynolds number 11.5). Total airflow through the arena, as measured by anemometer, was
11.9cm/s.

The arena was placed in an imaging chamber constructed from a breadboard (Thorlabs) and 80/20
posts (McMaster: 47065T101) held in place with brackets (McMaster: 47065T236). Illumination was
provided by an LED panel composed of an aluminum sheet (McMaster: 88835K15 ) covered with in-
frared (IR) LED strips (Environmental lights, irrf850-5050-60-reel). A diffuser (Acrylite: WD008) was
placed between the LED panel and the arena to provide uniform lighting. Flies were imaged from be-
low the arena using a monochrome USB 3.0 camera (Basler: acA1920-155um) and a 12 mm 2/3” lens
(Computar: M1214-MP2). An IR filter (Eplastics: ACRY31430.125PM) was placed between the camera
and the arena. LEDs were controlled using buckblock drivers (Digikey). An Arduino microprocessor
(teensy 2.0, PJRC) was used to strobe the IR LEDs at 50 Hz and to synchronize them with each camera
frame.

Imaging and stimulus delivery were controlled by custom software written in Labview (National
Instruments, Austin, TX). Timing of odor was controlled by a National Instruments board (PCIe-6321).
Flies were tracked by comparing the camera image at each time point to a background image taken
prior to the experiment. Background-subtracted images were thresholded and binarized; a region of
interest per chamber was then taken for further processing. Particle filtering functions were applied to
each region of interest to remove particles less than 3 pixels (0.4 mm) long or greater than 50 pixels (6.8
mm) long. A particle analysis function was used to identify the fly in each chamber and to compute its
center of mass and orientation.

Since the particle analysis function could only determine the fly’s orientation up to 180◦(i.e. it
cannot distinguish the front and back of the fly), we used a second algorithm to uniquely determine the
animal’s orientation. Each background-subtracted image was passed through a second thresholding
operation with a lower threshold intended to include the translucent wings. The center of mass of
this larger particle was compared to the center of mass of the smaller wingless particle to determine
the orientation of the fly in 360◦. Orientation measurements were strongly correlated with movement
direction, but provided a smoother readout of heading direction when its velocity was low. Position
(X and Y coordinates) and orientation were computed in real time during data collection and saved to
disk.

5.3 Stimulus Delivery
Wind and odor stimuli were delivered through inlets at the upwind end of the arena. Each arena was
supplied with a main air line that provided charcoal-filtered wind. Wind flow rate was set to 1 l/min by
a flowmeter (Cole-Parmer, Vernon Hills, IL). This line could be shut off by a 3-way solenoid valve (Cole
Parmer, SK-01540-11) in order to measure behavior in the absence of wind (Figure 2). To measure air
flow, we used an anemometer (miniCTA 54T30, Dantec Dynamics, Skovlunde, Denmark), inserting the
probe into the chambers through holes on a special ceiling made for this purpose The anemometer was
calibrated by measuring the outlet of a single 25 mm diameter tube (filled with straws to laminarize
flow) connected directly to a flow meter. The measured air velocity was 11.9 cm/s.

Odor was delivered via rapidly switching three-way solenoid valves (LHDA1233115H, The Lee
Company, Westbrook, CT) located just below the arena, that directed odorized air either to the cham-
bers or to a vacuum. Each chamber had its own valve, and odor was injected just downstream of the
main air inlet, 1.7 cm upstream of the baffle region of the chamber. Charcoal-filtered air was odorized
by passing it through a scintillation vial filled with 20 ml of odorant solution (apple cider vinegar or
ethanol), then directed through a manifold (McMaster: 4839K721) to each of the four valves. Impor-
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tantly, the vials containing the odor solution were almost full, creating a relatively small head space
where odor could readily accumulate. Odorized air flow rate was set to 0.4 l/min using flowmeters.
During non-odor periods, odorized air was directed into a vacuum manifold and away from the ap-
paratus. Flow rates in the arena and vacuum manifold were matched to eliminate transients in odor
concentration during switching. An equal volume of "balancing" air was injected into the arena dur-
ing these periods to maintain a constant air flow rate throughout the experiment. Balancing air was
humidified by passing over an identical scintillation vial filled with water and was delivered by an
identical 3-way valve. Odor and balancing valves fed into a small t-connector, that was suspended
from the arena using ≈1 cm of tygon tubing (0.8 mm inner diameter, E-3603). This design, in which
odor flowed continuously and was switched close to the arena, produced rapid odor dynamics with
few concentration artifacts, but also a small mechanical stimulus when the valve was switched. This
odor delivery system was using for experiments in Figures 1 and 2, and for intensity experiments in
Figure 3A-B.

To produce analog odor stimuli including ramps, frequency sweeps, and the plume walk stimulus,
we added 2-way proportional valves (EVP series, EV-P-05-0905; Clippard Instrument Laboratory, Inc.,
Cincinnati, Ohio) 20 cm upstream of the odor and balancing scintillation vials. Proportional valves
were driven indepentendly by valve drivers (EVPD-2; Clippard) and were calibrated so that their max-
imal opening would produce the same flow rate as in experiments using 3-way valves. (3-way valves
were held open during experiments with analog stimuli.) Proportional valves produce increasing air-
flow with applied current; however they exhibit both nonlinearity and histeresis, in which the effect of
a driving current depends on the past and current state of the valve. To generate our desired stimulus
waveforms, we first provided an ascending and descending ramp stimulus to the valves and measured
the subsequent odor waveform in the behavioral chambers using a PID (see below). We used the re-
sults of that measurement as a lookup table to create a driving current command that produced the
desired odor waveforms. Lookup tables for odor and balancing valves were measured separately. We
used PID measurements at several locations in the arena to verify that the delivered odor waveform
matched our desired odor waveform. We used an anemometer (see below) to verify that the total flow
rate during the stimulus (in which odor and balancer valves were run together) did not vary by more
than 1%.

To measure odor concentration in our arenas we used a photo-ionization detector (miniPID, Au-
rora Systems, Aurora, Canada) inserted into the arena, again using a special ceiling. All calibration
measurements were made using 10% ethanol, which provided higher signal to noise than ACV. Mea-
surements at the top of the arenas revealed an average rise time of ≈180 ms and a fall time of ≈220 ms
for square pulses delivered using 3-way valves. The latency of the measured odor onset from nominal
odor onset increased linearly with distance from the odor source (up to 900-1000 ms at the downwind
end of the arena), consistent with our measurement of air velocity (Figure S1). For frequency sweep
stimuli, we observed some widening of peaks with distance down the arena, consistent with the effects
of diffusion (Figure S1). Diffusion thus set the upper limit on the frequency of stimuli that we could
reliably deliver within our arena (about 1Hz).

5.4 Experimental protocol
Each experiment lasted approximately 2 hours, during which flies performed an average of 86.7±7.7
trials. (Some trials were discarded due to tracking problems, as described below, and not all experi-
ments lasted exactly the same amount of time). Each trial lasted 70 seconds, and was followed by a gap
of ≈6 seconds while the computer switched to the next trial. There were 3 to 4 types of trials that were
randomly interleaved during the experiment. One of those types was always a blank trial, in which
flies only experienced clean air flow. The other types corresponded to different types of odor stimuli,
that were dependent on the experiment: namely, square odor pulses for experiments in Figures 1, 2
and 3A; odor ramps in Figure 3C; frequency sweeps and plume data in Figure 3D-F.

For experiments in Figure 2, we rendered flies “wind-blind” by anesthetizing them on a cold plate
and cutting their aristae and stabilizing their antennae. We cut the aristae by clipping them with fine
forceps at the lowest possible level without touching the antennae. Then, we put a very small drop
of ultra-violet (UV) glue on the anterior side of the antennae, falling between the second and third
segments, and also touching the rest of the clipped aristae. We then used a pen-sized ultra-violet light
to cure the glue, and made sure it was solid before putting the flies back to their home vials to recover
for 24 hours. The whole procedure took approximately 5 minutes, and never longer than 10. We did this
procedure in a pair of flies at a time, stabilizing the antenna of one and using the other as sham-treated
(it was placed on the cold plate and under the UV light exactly like the trated fly was).
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For experiments in Figure 6, approximately 48 hours before the experiment, we applied a drop of
UV glue connecting both wings of the fly or to each wing hinge. This prevented flies from flying while
allowing us to still use use the wings to detect heading.

5.5 Analysis of behavioral data
All analysis was performed in Matlab (Mathworks, Natick, MA). X and Y coordinates and orientation
information were extracted from the data files, and any trials with tracking errors (i.e. flies’ position
was missed at some point) were discarded. In some trials, we observed orientation errors in the form
of sudden changes of approximately 180◦. In these cases, orientation was corrected by calculating
the heading of the flies using X and Y coordinates, and filling in the gaps in orientation using the
orientation that best correlated with that information, producing coherent and continuous orientation
vectors. Coordinates and orientations were low-pass filtered at 2.5 Hz using a 2-pole Butterworth
filter to remove tracking noise that was produced especially when flies were not moving. X and Y
coordinates were then converted to mm, and trials in which flies moved less than a total of 25 mm were
discarded. Distance moved was calculated as the length of the hypotenuse between two subsequent
pairs of coordinates.

We next calculated a series of gait parameters from each trial’s data. Ground speed was obtained
by dividing the distance moved by the time interval of each frame (20 ms). Upwind velocity was calcu-
lated using the derivative of the filtered Y coordinates divided by the time interval of 20 ms. Angular
velocity was calculated as the absolute value of the derivative of the filtered unwrapped orientation (i.e.
orientation with phases corrected to be continuous beyond 0◦or 360◦) divided by the time interval of
20 ms. For all gait parameters shown (ground speed, upwind velocity, angular velocity), we excluded
data points in which ground speed was less than 1 mm. This was necessary because flies spend a large
amount of time standing still. Distributions of gait parameters are therefore highly non-Gaussian, with
large peaks at 0 (Figure S3A), and parameter means are highly influenced by the number of zeros. In
addition, the probability of moving (obtained by binarizing the ground speed with a threshold of 1
mm/s) changes dramatically in response to odor, and remains high for tens of second after odor offset
(Figure S3B). Exclusion of the large number of zeros from average gait parameters produced more reli-
able estimates of these parameters. Curvature was calculated by dividing angular velocity by ground
speed (excluding any points where ground speed was less than 1 mm/s). Turn probability was calcu-
lated binarizing curvature with a threshold of 20 deg/mm.

Because it takes a little over a second for the odor waveform to advect down the arena, the exact
time of odor encounter and loss depends on the position of the fly within the arena. This advection
delay has a strong effect on our estimates of gait parameter dynamics, particularly for fluctuating si-
nusoidal stimuli. We therefore developed a warping procedure to align behavioral responses to the
actual time at which each fly encountered the odor on each trial. To implement this procedure, we
first recorded the PID response to each stimulus at three different points along the arena (Figure S1).
We then calculated the delay for the odor to reach the position of the fly for each time frame during
the odor stimulus, and shifted all the data points back by this amount. The periods before and after
the odor stimulation are also shifted according to the initial position of flies in the odor period. This
method can skip a data point when the fly moves upwind or can repeat a data point when the fly
moves downwind, but the majority of the data are conserved and the resulting waveforms resemble
very much the initial ones. After warping, all trials from all flies can be equally compared to a standard
PID measurement done at the top of the arenas (i.e. the odor source). Warping was applied to all data
shown in Figures 1-3. Note that in experiments using 3-way valves (Figure 1), the click of the valve
produced a brief freezing responses that was visible as a dip in ground speed. However, because of the
warping, the time of the valve click is distributed across flies, as their ground speeds have been aligned
to the time of odor encounter rather than the time of valve opening. This results in a smeared dip in
the ground speed trace near the beginning and end of the odor stimulus.

For experiments using frequency sweeps and plume walks, we additionally excluded data obtained
after the fly reached the top end of the chamber, as well as data from within 3 mm of the side walls.
These exclusions were made to minimize the effect of arena geometry on gait parameter estimates,
and to exclude regions where boundary layer effects would cause the odor waveform to advect more
slowly. To calculate the data shown in the insets of Figure 3E and G, and in Figure S3I, we used a jack-
knife procedure to resample the responses of flies to frequency sweep stimuli. We made 10 estimates
of the mean, excluding 34 trials from each estimate. To estimate the modulation of upwind velocity
and ground speed in response to each cycle of the stimuli, we took the times between minima of the
stimulus waveform as the limits for each cycle of the ascending frequency sweep; for the descending
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frequency sweep we used the intervals between maxima of the odor waveform. Within those limits,
we calculated the minimum-to-maximum amplitude for each of the 10 different mean responses. The
results shown in the figures are the mean of these estimates as a function of frequency of the corre-
sponding stimulus cycles. The frequency of the cycles was estimated as 1 over the duration of the
cycle. Error bars in the figure insets represent the standard error (SE) across estimates, calculated as

SE =

√
n−1

n

n

∑
i=1

(xi − x)2

√
n

(4)

where xi is each of the peak-to-peak estimates excluding one fly, x the estimate including all flies,
and n the number of data subsets used (10).

5.6 Statistical analysis
In Figure 1G, Figure 2B and Figure 5G, we compared the mean values of different motor parameters
from the same fly in three different periods of time in the trials, namely: “before odor” from -30 to 0
seconds before the odor, “during odor” from 2 to 3 seconds during the odor, and “after odor” from
1 to 3 seconds after odor offset. We performed a Wilcoxon signed rank paired test for each of those
comparisons and corrected the threshold for statistical significance alpha using the Bonferroni method.
All significant comparisons were marked with asterisks in the figures, and the exact p-values obtained
are presented in the following tables.

Comparison
Upwind
velocity

Ground
speed

Angular
velocity

Curvature
Turn

probability
Before–during odor 2.0·10−12 3.9·10−9 1.7·10−3 4.9·10−5 2.3·10−3

Before–after odor 6.3·10−2 7.7·10−6 1.2·10−11 5.5·10−10 7.3·10−14

During–after odor 1.4·10−12 1.5·10−10 9.5·10−11 7.1·10−10 4.8·10−12

p-values for camparisons made in Figure 1G. The alpha value after correcting for multiple comparisons was 0.0167.

Comparison
Upwind
velocity

Ground
speed

Curvature

Before–during odor 0.27 0.016 0.34
Before–after odor 0.84 0.85 0.003
During–after odor 0.41 0.008 0.002

p-values for camparisons made in Figure 2B. The alpha value after correcting for multiple comparisons was 0.0167.

Comparison
Upwind
velocity

Turn
probability

Before–during odor 1.3·10−83 1.2·10−55

Before–after odor 9.0·10−46 1.3·10−83

During–after odor 1.3·10−83 1.3·10−83

p-values for camparisons made in Figure 5G. The alpha value after correcting for multiple comparisons was 0.0001.

To estimate the Standard Error of the proportion of successful trials shown in Figure 6I, we used
the formula

SE =

√
p(1− p)

n
(5)
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where p was the proportion of successful trials and n the number of trials.

5.7 Computational modeling
Our computational model was composed of two parts. In the first, we asked whether simple phe-
nomenological models, comprised of a linear filtering step, and a nonlinear adaptive compression
function, were capable of capturing the dynamics of upwind velocity and turn probability in response
to a wide array of odor waveforms. We compared fits of four model versions to our behavioral data,
and tested the resulting best fit model by predicting responses to the plume walk stimulus. These fits
comprise the two temporal functions which we call ON and OFF.

In the second part, we asked whether a simple navigational model, based on the ON and OFF func-
tions fit to the data and described in Figure 5, was capable of reproducing the types of trajectories we
observed experimentally and of locating the source of a real odor plume. In addition, this model al-
lowed us to test the contribution of each of its components to successful odor localization. In the model,
we first compute two temporal functions of the odor stimulus, ON and OFF. These two signals are then
used to modulate ongoing behavioral components (angular velocity and ground speed) which itera-
tively update the fly’s position. The model can be run in open loop, as in our behavioral expeirments,
by providing an odor input as a function of time, or in closed loop, where the odor concentration at
any point in time depends on the fly’s position in a real or virtual space. All computational modeling
was performed in Matlab. Differential equations were simulated using the Euler method with a time
step of 20 ms.

5.7.1 Odor ON and OFF functions

The ON function was composed of an adaptive compression step and a linear filtering step (model
ACF in Figure 4). Adaptation was driven by an adaptation factor A(t) that accumulated slowly in the
presence of odor:

τA
dA
dt

= odor(t)− A(t) (6)

Compression was modeled using a Hill equation with a baseline Kd of 0.01 (expressed as a fraction
of our highest odor concentration: 10% apple cider vinegar). This baseline value was taken from our
fits of responses to square pulses of different concentration (Figure 3). Adaptation slowly increased the
effective Kd, reducing the sensitivity of behavior to odorant, and maintaining responses of about the
same size over a wide concentration range:

C(t) =
odor(t)

odor(t) + Kd + A(t)
(7)

The filtering step was given by

τON
dON

dt
= C(t)−ON(t) (8)

For the OFF model, adaptation and compression were modeled in the same way, but filtering per-
formed by applying two filters, one fast and one slow, and then taking the difference between the slow
and the fast filter output, thresholded at 0:

τ f ast
dR1
dt

= C(t)− R1(t) (9)

τslow
dR2
dt

= C(t)− R2(t) (10)

OFF = max(0, R2− R1) (11)

Model parameters used in Figure 4 are shown in Table 1. These same model parameters were used
for all remaining simulations. We also considered 3 additional models. In the FAC model, the order
of operations was inverted, so the odor was first filtered, then adaptively compressed. In the CF and
FC models, we omitted the adaptation step, and again tried both orders of operation (compression first
and filtering first):
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C(t) =
odor(t)

odor(t) + Kd
(12)

We found that models lacking adaptation performed significantly worse for both ON and OFF. All
fits were made using the function nlintfit in Matlab. Fit parameters and RMSE values are given in Table
1.

5.7.2 Modulation of Behavioral Components

The temporal functions described above were used to modulate the ground speed of the fly v and its
heading H, from which the XY coordinates of the position of the fly at each point in time could be
calculated.

The ground speed at each time step was give by:

v(t) = v0 + κ1ON(t)− κ2OFF(t), where v ≥ 0 (13)

where v0 is the baseline speed, set at 6 mm/s based in our behavioral data. κ1 and κ2 determine the
influence of ON and OFF functions on the final speed.

The heading at each time step (∆t of 20 ms) was computed by adding the instantaneous angular
velocity to the current heading:

H(t + ∆t) = H(t) + ∆tθ̇(t) (14)

The angular velocity at each time step θ̇(t) is a linear sum of several components driven by different
sensory stimuli: a random component, driven by odor dynamics, and two deterministic components,
driven by wind:

θ̇(t) = ρ(t)G(0, σ)2 + κ5ON(t)Du(ψ) + κ6Dd(ψ) (15)

The first term represents probabilistic turning whose rate is modulated by the dynamics of odor.
ρ(t) is a binary Poisson variable that generates a draw from a Gaussian distribution with mean 0 and
standard deviation σ when it is equal to 1. The value drawn from this distribution was squared to yield
a distribution of angular velocities with higher kurtosis, as observed in the distribution of real flies’
angular velocities. However, we did not attempt to directly match the distribution of angular velocities
found in our data. (Indeed, we found that matching this distribution produced trajectories that were
far too jagged). The rate of ρ(t) is given by

P(t) = P0 − κ3ON(t) + κ4OFF(t) (16)

Thus, the rate of random turns has a baseline of P0, decreases in the presence of odor (when ON(t)
is positive) and increases after odor offset (when OFF(t) is positive).

The second and third terms represent deterministic turns driven by wind. To model these turns,
we defined two sinusoidal desirability functions or D-functions (ref) —Du for upwind orientation and
Dd for downwind orientation— given by the equations:

Du(ψ) = sin(ψ) (17)

Dd(ψ) = − sin(ψ) (18)

where ψ is the direction of the wind relative to the fly. A negative value of ψ indicates wind coming
from the fly’s left, and a positive value of θ̇(t) indicates a turn to the left, so Du produces a turn to the
left when wind is sensed on the left and vice-versa, leading to upwind orientation. The function Dd
produces a turn to the right when wind is sensed on the left resulting in downwind orientation. This
function is always on but has a small coefficient κd, resulting in a mild downwind bias when combined
with baseline random turning driven by the first term ρ(t)G(0, σ). The upwind orientation function Du
is gated by the ON function and has a larger coefficient. This means that in the presence of odor, this
term comes to dominate turning, driving strong upwind orientation.

From v(t) and H(t), the X and Y coordinates were calculated according to:

X(t + ∆t) = X(t) + ∆tv(t) cos
(

H(t)
)

(19)

Y(t + ∆t) = Y(t) + ∆tv(t) sin
(

H(t)
)

(20)
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Simulations in the turbulent plume were run at 15 Hz rather than 50 Hz to match the sample rate
of the plume measurements. All rate constants (including turn probability per sample) were converted
accordingly. Supplementary Video 2 shows an example of the model navigating a real odor plume.

5.8 Turbulent wind tunnel construction
We generated a turbulent odor plume in a low-speed bench-top wind tunnel with a flow-through de-
sign. Two wind tunnels were built, one in Colorado (for plume measurements) and one in New York
(for behavioral measurements). In the Colorado wind tunnel, air entered the tunnel through a bell-
shaped contraction (4:1 ratio) and passed through a turbulence grid (6.4 mm diameter rods with a 25.5
mm mesh spacing) prior to the test section. The test section was 30 cm wide, 30 cm tall, and extended
100 cm in the direction of the flow. Air exited the test section through a 15 cm long honeycomb section
used to isolate the test section from a fan located in the downstream contraction. The fan generated a
mean flow of air through the tunnel at 10 cm/s. Acetone was released isokinetically into the center of
the test section through a 0.9 cm diameter tube aligned with the flow. The tube opening was located 10
cm downstream of the turbulence grid and 6 mm above a false floor spanning the length and width of
the test section. The New York tunnel was designed similarly, except that test section measured 38 cm
by 38 cm by 92 cm, the honeycomb was 5 cm long, and odor was released from a 1cm diameter tube at
floor level. Air flow was 10cm/s and odor release was isokinetic as in the Colorado wind tunnel. The
New York tunnel was fitted with an aluminum IR light panel (Environmental lights, irrf850-5050-60-
reel) 2.5 cm below a diffuser (Acrylite: WD008) and a 1 cm thick acrylic layer that acted as the arena
floor. A channel 1 cm wide and 0.4 cm deep was milled into this arena and filled with water to constrain
flies to walk within the imaging area, 31 cm wide and 87 cm long. Two cameras (Point Grey: 2.3MP
Mono Grasshopper3 USB 3.0) with 12 mm 2/3” lenses (Computar: M1214-MP2) were suspended ap-
proximately 45 cm above the arena to image fly movement. Tracking code was written in Labview and
used the same algorithms as described above to extract position and heading at 50Hz.

5.9 Plume measurements in air
To measure plume structure and dynamics in air, we used a planar laser-induced fluorescence (PLIF)
system [33] to image a plume of acetone vapor. A UV laser light sheet entered the test section of the
tunnel through a slit along the length of the test section to excite acetone vapor. A camera imaged the
resulting acetone fluorescence in the test section through a glass window. The imaging area covered up
to 30 cm downwind from the odor source and up to 8 cm to both sides. The plume was imaged in the
1 mm thick laser sheet centered on the tube 6 mm above the bed. A total of 4 minutes were recorded.
Images were then post-processed into calibrated matrices of normalized concentrations.

We produced acetone vapor by bubbling an air and helium gas mixture through flasks partially
filled with liquid acetone. To reduce fluctuations in concentration, a water bath maintained flask tem-
perature at 19 deg C which was approximately 2 degrees cooler than ambient air temperature to prevent
condensation. To account for the density of acetone, we blended air (59% v/v) and helium (41% v/v)
for the carrier gas. Assuming 95% saturation after contact with the liquid acetone, the gas mixture was
approximately 25% acetone by volume and neutrally buoyant.

An Nd:YAG pulsed laser emitted light at a wavelength of 266 nm and a frequency of 15 Hz to
illuminate the acetone plume. After excitation at that wavelength, acetone vapor fluoresces with an
intensity proportional to its concentration. A high quantum efficiency sCMOS camera imaged the
acetone plume fluorescence at 15 Hz. To enhance signal and minimize noise, we collected data in a
dark environment, used a lens with high light-gathering capabilities (f/0.95), and binned the pixels
from 2048x2048 native resolution to 512x512 resolution (0.74 mm/pixel).

Images were post-processed using an algorithm adapted from [14] to correct for variations in laser
sheet intensity, lens vignette, and pixel-to-pixel gain variation. The correction used a spatial map of
the image system response by imaging the test section while it was filled with a constant and uniform
distribution of acetone. Signal intensities were normalized by the intensity at the tube exit such that
concentrations have average values between 0 and 1.

The “plume walk” stimulus was generated by taking the time course of odor concentration along
a linear trajectory going upwind through a plume movie at 6 mm/s (the average ground speed of our
flies), starting 8.9 cm laterally from the midline and 30 cm downwind from the source.
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Figure 1: ON and OFF responses to an attractive odor pulse. A) Schematic of the behavioral apparatus (side view) showing illumination and
imaging camera. B) Schematic of the behavioral arena (top view) showing four behavior chambers and spaces to direct air and odor through
the apparatus. Dots mark air and odor inputs. Black cross: site of wind and odor measurements in E. C) Example trajectories of three different
flies before (black), during (magenta) and after (cyan) a 10 second odor pulse showing upwind runs during odor and search after odor offset.
D) Distribution of fly positions on trials with wind and no odor; flies prefer the downwind end of the arena. E) Average time courses of wind
(top; anemometer measurement; n=10) and odor (bottom; PID measurement normalized to maximal concentration; n=10) during 10 s odor trials.
Measurements were made using 10% ethanol at the arena position shown in B. F) Calculated parameters of fly movement averaged across flies
(mean±SEM; n=75 flies; see Methods). Traces are color coded as in C. Gray shaded area: odor stimulation period (ACV 10%). All traces warped to
exact time of odor encounter and loss prior to averaging. Small deflections in ground speed near the time of odor onset and offset represent a brief
stop response to the click of the odor valves (see Figure S3). G) Average values of motor parameters in F for each fly for periods before (-30 to 0 s),
during (2 to 3 s) and after (11 to 13 s) the odor. Gray lines: data from individual flies. Black lines: group average. Horizontal lines with asterisk:
Statistically significant changes in a Wilcoxon signed rank paired test after correction for multiple comparisons using the Bonferroni method (see
Methods for p values). n.s.: not significant.
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Figure 2: Multimodal and unimodal contributions to olfactory behavior. A) Stabilization of the antennae abolishes odor-evoked changes in
upwind velocity but not curvature. Traces show mean±SEM for n=13 wind-blind flies and n=15 sham-treated flies (see Methods) B) Mean values of
upwind velocity, curvature and ground speed in wind-blind flies during periods before, during, and after the odor pulse (time windows as in Figure
1G). Gray lines: data from individual wind-blind flies. Orange lines: group average. Horizontal lines with asterisk: statistically significant changes
in a Wilcoxon signed rank paired test after correction for multiple comparisons using the Bonferroni method (see Methods for p values). n.s.: not
significant. n=13 C) Example trajectories of three different wind-blind flies before (black), during (magenta) and after (cyan) the odor pulse. Note
different orientations relative to wind during the odor. D) Antenna stabilization decreases preference for the downwind end of the arena on trials
with wind and no odor. Blue: average (±SEM) arena position of control flies on trials with wind and no odor (n=15). Orange: average position of
wind-blind flies in the same stimulus condition (n=13). Black: Average position of sham-treated flies in the absence of both odor and wind (n=23).
The average arena position of wind-blind flies did not differ significantly from that of no-wind flies (p=0.93). Sham-treated flies spent significantly
more time downwind than wind-blind (p=0.04) or no-wind intact flies (p=0.0027). Horizontal lines with asterisk: statistically significant changes in
a Wilcoxon rank sum test (alpha=0.05). n.s.: non-significant. Black lines between C and D provided for reference of dimensions in D.
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Figure 3: Responses of walking flies to dynamic odor stimuli. A) Upwind velocity (left, top traces; average±SEM) of different groups of flies
responding to a 10 s pulse of ACV at dilutions of 0.01% (n=13), 0.1% (n=19), 1% (n=18) and 10% (n=75). Left-bottom traces show PID measurements
using ethanol (max concentration 10%), normalized to maximal amplitude. Right inset: mean upwind velocity during odor (2 to 3 s) as a function
of odor concentration (black; mean±SEM), and fitted Hill function (green; green dot: κd=0.072). B) Turn probability calculated from the same data.
Right inset black traces: mean turn probability after odor (11 to 13 s). κd=0.127 for fitted Hill function (green). C) Upwind velocity (average±SEM)
in response to stimuli with off-ramps of 2.5 (n=38), 5 (n=38) and 10 (n=35) seconds duration. Bottom traces: PID signals of the same stimuli using
ethanol. D) Same as C, showing turn probability from the same data sets. White arrows in C and D show elevated upwind velocity and turn
probability that co-occur during a slow off-ramp. Black arrow in D: peak turn probability response at the foot of the off-ramp. E) Upwind velocity
(mean±SEM; n=31) in response to an ascending frequency sweep stimulus. Bottom trace: PID signal of the stimulus, measured using ethanol.
Right inset: average (±SEM) modulation of upwind velocity as a function of frequency in each stimulus cycle (see Methods). F) Same as E for turn
probability calculated from the same data. Right inset: modulation of turn probability as a function of frequency. G) Equivalent to E, showing
responses to a descending frequency sweep (n=33). In the inset, the first high-frequency cycle was left out of the analysis. H) Same as G for turn
probability calculated from the same data. I) Equivalent to G, showing responses to a simulated “plume walk” (n=30; see Results). J) Same as I for
turn probability calculated from the same data.
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Figure 4: Computational modeling of ON and OFF response functions. A) ON model schematic featuring adaptive compression followed by
linear filtering. B) Root mean squared error between predictions of four ON models and behavioral data. FC: filter then compress; CF: compress
then filter; FAC: filter then adaptive compression; ACF: adaptive compression then filtering. C) Upwind velocity of real flies (top thiner traces;
average; same data in Figure 3A) and predictions of the ACF ON model (top thicker traces) to square pulses of ACV at different concentrations.
Bottom traces: stimuli, normalized to maximal amplitude. Note that adaptation appears only at higher concentrations and that responses saturate
between 1 and 10% ACV. D) Upwind velocity of real flies (top black trace; average; same data in Figure 3E), and predictions of ACF (red) and CF
(pink) ON models to an ascending frequency sweep. Bottom trace: stimulus. Note that the model without adaptation (CF) exhibits saturation not
seen in the data. E) Same as D for a descending frequency sweep stimulus (same data in figure 3G). F) OFF model schematic featuring adaptive
compression followed by differential filtering. G) Root mean squared error between predictions of four OFF models and behavioral data. H) Turn
probability of real flies (top thiner traces; average; same data in Figure 3D) and predictions of the ACF OFF model (top thicker traces) to odor ramps
of different durations. Bottom traces: stimuli. I) Turn probability (top black trace; average; same data in Figure 3F), and predictions of ACF OFF
model (top red trace) to an ascending frequency sweep. Bottom trace: stimulus. J) Same as I for a descending frequency sweep stimulus (same
data in Figure 3H). K) Upwind velocity (top black trace; average; same data in Figure 3I), and predictions of CFA ON model to the “plume walk”
stimulus (see Results). Bottom trace: stimulus. RMSE=1.355. L) Same as K for the same stimulus, showing turning probability of real flies (top black
trace; average; same data in Figure 3J) and predictions of the ACF OFF model (top red trace). Bottom trace: stimulus. RMSE=0.038. Plume walk
responses were not used to fit the models.
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Figure 5: A navigation model based on ON and OFF functions can recapitulate many aspects of our behavioral data. A) Schematic of a fly
showing model outputs (v: ground speed; θ̇: angular velocity) and input (ψ: wind angle with respect to the fly). B) Schematic of the model
algorithm. Odor stimuli are first adaptively compressed, then filtered to produce ON (magenta) and OFF (cyan) functions. These functions modulate
ground speed and angular velocity of the simulated fly. Angular velocity has both a random component controlled through turn probability and
a deterministic component guided by wind. C) Wind direction influences behavior through two sinusoidal D-functions which drive upwind
(magenta) and downwind (black) heading respectively. A weak downwind drive is always present, while a stronger upwind drive is gated by the
ON function. D) D-functions (average angular velocity as a function of wind angle with respect to the fly) calculated from responses of real flies
(data from Figure 1, mean±SEM, n=75). Magenta trace: data from 0-2 s during odor. Black trace: 0-2 s after odor. E-G) Simulated trajectories of
model flies are similar to those of real flies. E) Ground speed, upwind velocity and turn probability (average; n=75) from real flies (black; data from
Figure 1) and from 500 trials simulated with our model (orange) in response to a 10 second odor pulse. F) Example trajectories from the simulation
in E. Black: before odor. Magenta: during odor. Cyan: after odor. Black arrow: direction of the wind. G) Mean values of upwind velocity and
turn probability from the model simulations in E, before (-30 to 0 s), during (2 to 3 s) and after (11 to 13 s) the odor pulse. Gray lines: data from
individual trials. Black lines: group average. Horizontal lines with asterisk: Statistically significant changes in a Wilcoxon signed rank paired test
after correction for multiple comparisons using the Bonferroni method (see Methods for p values). n.s.: not significant. H-I) Simulated trajectories
of wind-blind flies. H) Upwind velocity and turn probability (average) from 500 trials simulated in response to a 10 second odor pulse with no wind
(both D-functions coefficients set to 0) to mimic the responses of wind-blind flies (see Figure 2). Note the absence of modulation in upwind velocity.
I) Example trajectories from the simulation in H. Color code and arrow as in F. Note that trajectories preserve the characteristic shapes of the ON
and OFF responses but lack any clear orientation during ON responses. J-K) Simulated trajectories of weak and strong-searching flies. J) Upwind
velocity and turn probability of a weak-searching fly. Real fly appears in green-highlighted examples in Figure S2 (here black traces; average; n=15
trials). The model simulation (green traces; average; n=15 trials) was created by using the mean upwind velocity and turn probability for this fly
(Figure S2, green) as a fraction of the population average upwind velocity and turn probability to scale the ON and OFF functions (values used: ON
scale=0.3, OFF scale=0.26). Bottom: example trajectories from the model simulation, compare directly to Figure S2A left (color code and arrow as
in F). K) Equivalent to J, for a strong-searching fly (n=34 trials). Compare blue-highlighted examples in Figure S2 with the model simulation (n=34
trials; values used: ON scale=1.9, OFF scale=1.6). 28
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Figure 6: Real and virtual behavior of flies in a turbulent odor environment. A) Schematic of a turbulent wind tunnel used for behavioral
experiments and PLIF imaging (top view; see Methods). Black arrows: direction of air flow drawn by fan at downwind end; top arrow coincides
with the tube carrying odor to the arena. Black dots and associated traces: sites of PID measurements (and corresponding signals; units normalized
to mean concentration near the odor source). Smaller dashed square: Area covered with the PLIF measurements in the Colorado wind-tunnel
(see Methods). Yellow line: position of the wooden dowel grid. Purple line: position of the honeycomb filter. Blue square: perimeter moat filled
with water. B) PLIF measurements of an odor plume (average of 4 minutes of data). Blue/red horizontal lines: Sites of cross-sections (bottom
plot). Bottom plot: cross-sections of the plume measured with PLIF (solid lines; 4 minutes average) and PID (dashed lines; 3 min average). Right
plot: Odor concentration along midline of the plume (x=0) measured with PLIF and PID (4 and 3 min average, respectively). All measurements
in B appear normalized to average odor concentration at the source. C-D) Flies exhibit a downwind preference in the turbulent wind tunnel. C)
Distribution of fly positions during trials with wind but no odor (n=14 flies). D) Same as C, during trials with no wind (n=13 flies). E) Example
trajectories of flies during trials with an odor plume. From left to right: a successful trial in which the fly came within 2 cm of the source; intermediate
trial in which the fly searched but did not find the source; failed trial where fly moved downwind. Arrowheads: starting positions. Green circles:
2 cm area around odor source. Dashed gray lines: area covered by PLIF measurements (use as positional reference; right-most trace shows only
lower section of outline). F) Example trajectory of a model fly that successfully found the odor source (background image from B). Colors show
times when ON>0.1 (magenta) or OFF>0.05 (cyan). White arrowhead: Starting position and orientation. Green circle: 2 cm area around source. G)
Time courses of odor concentration encountered along the trajectory in F, with corresponding ON and OFF responses. Green arrowheads: time of
entrance into the green circle. H) Example trajectories of model flies (color code, green circle and arrowheads as in F). Left trace and green circle
associated: intermediate trial where fly searched but did not find the source. Right trace: failed trial where fly moved downwind. Dashed line:
lower section of the plume area. I) Performance (proportion of successful trials±SE; see Methods) of real and model flies in a plume. Data from real
flies on trials with only wind (n=13 flies) and trials with wind and odor (n=14 flies). Model data using parameters fit to the mean fly in every trial
(n=500 trials; see Results). Model with variable ON and OFF scaling, reflecting variability in ON/OFF responses across individuals (n=500 trials;
see Results and Figure S2). J-K) Average strength of ON (J) and OFF (K) responses as a function of position for model flies in the plume (data from
simulation with mean parameters). Red dots: odor source. Note that ON is high throughout the odor plume, especially along its center, while OFF
is highest at the plume edges. L) Performance of the model in a plume (proportion of successful trials) with different scaling factors applied to ON
and OFF responses. Black dot: performance of model using fitted values. M) Same as L for model flies navigating a simulated odor gradient with a
gaussian distribution and no wind (see Methods).
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ON MODEL τON — τA scaleON RMSE Corr.Coef.
Filtering then adaptive compression (FAC) 0.34 — 20.36 5.9 1.5784 0.89
Adaptive compression then filtering (ACF) 0.72 — 9.8 7.3 1.4122 0.92

Filtering then compression (FC) 0.04 — — 4.4 1.747 0.85
Compression then filtering (CF) 0.3 — — 4.5 1.7058 0.86

OFF MODEL τOFF1 τOFF2 τA scaleOFF RMSE Corr.Coef.
Filtering then adaptive compression (FAC) 0.76 3.96 16.7 0.3 0.0345 0.75
Adaptive compression then filtering (ACF) 0.62 4.84 10.08 0.6 0.0336 0.77

Filtering then compression (FC) 0.58 3 — 0.1 0.0409 0.62
Compression then filtering (CF) 0.06 5.02 — 0.3 0.0389 0.69

TABLE 1. Values of ON and OFF functions parameters. Results of fitting the different ON and OFF functions to behavioral data by non-linear
regression. Highlighted in green are the models of choice and the parameters that were used in the navigation model and the simulations shown
in Figures 5 and 6. τx : different time constants of ON, OFF and adaptation filters. RMSE: root mean squared error between predictions of the
models and the corresponding data they were fitted to. Corr.Coef.: Pearson’s linear correlation coefficients between predictions of the models and
the corresponding data they were fitted to.

NAVIGATION MODEL
Parameter Value Units Role

P0 0.12 Rate Baseline turn rate
σ 20 deg/s Standard deviation of angular velocity distribution
v0 6 mm/s Baseline ground speed
κ1 0.45 mm/s Strength of ON speed modulation
κ2 0.8 mm/s Strength of OFF speed modulation
κ3 0.03 — Strength of ON turning modulation
κ4 0.75 — Strength of OFF turning modulation
κ5 5 deg/sample Strength of ON upwind-drive modulation
κ6 0.5 deg/sample Strength of downwind-drive modulation

TABLE 2. Values of navigation model parameters used in all simulations in this article, with their function in the model explained.
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SUPPLEMENTARY FIGURE 1. Warping method corrects for differences in odor encounter timing as a function of position within the arena. A)
Schematic of the behavioral arena marking different points at which we measured the odor waveform by PID. Arrow signals wind direction. B) PID
measurements of an upward frequency sweep stimulus recorded at the three points in A using 10% ethanol. Note the delay between the stimulus
measured at the source (blue) and the one measured at the bottom of the arena (yellow). C) Same PID traces as in B after warping traces measured
downwind of the source (red and yellow). Note the overlap between the three traces in each phase of the stimulus. D) Trajectory of a fly in a single
trial while experiencing the stimulus depicted in C. Time in the stimulus (0-25 s) is color coded, showing that the fly moved from the bottom of the
arena to the top during the stimulus. E) Upwind velocity of the fly in the example trial shown in D. Black trace represents raw upwind velocity.
Magenta trace shows data after warping. Note that warping reduces the apparent latency of the first behavioral response, and that the difference
between the traces decreases as the fly approaches the odor source D) Same as E, but traces represent the mean upwind velocity of a group of flies
in response to the same stimulus (n=31; data in figure 3E). Note that warping improves the phasic structure in the data.
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SUPPLEMENTARY FIGURE 2. Variability between individuals in responses to an odor pulse. A) Example trajectories from two different flies
(left and right groups), from non-consecutive trials, in response to a 10 s odor pulse. Left hand fly: weak searcher, right-hand fly: strong searcher. B)
Mean upwind velocity during odor (2 to 3 s) and turn probability after odor (11 to 13 s) for each fly (n=75; data in Figure 1). Each point represents
the average of a single fly (mean±SEM). Dashed lines: group average values for ON and OFF responses. Green and blue dots: weak- and strong-
searching flies featured in panels A and C. Data from these flies is used in Figure 5J and K. C) Average upwind velocity and turn probability of weak-
and strong-searching flies in B, and of the whole group (gray traces), in response to a 10 s odor pulse. D) Flies exhibit characteristic search strengths.
Left plot: upwind velocity for each fly on half of trials versus upwind velocity in remaining trials (n=75 flies; trials for each half were randomly
selected). Each point represents mean upwind velocity 2-3 s after odor onset for each fly in Figure 1. Middle plot: same analysis performed on
trials where fly identity was scrambled. Right plot: Quantification of correlations for upwind velocity during odor, ground speed before odor, and
turn probability at offset. Each bar shows the correlation coefficient (mean±STD) from 10 repetitions of the corresponding correlation, either with
fly identity preserved (filled bars), or scrambling the data (blank bars). Ground speed (GS) was taken from -30 to 0 seconds before odor. Upwind
velocity (UV) was taken from 2 to 3 seconds during odor. Turn probability (TP) was taken from 1 to 3 seconds after odor. E) Trial-by-trial correlation
coefficients between movement parameters (computed for each fly, then averaged across flies, n=75). ON parameters are correlated with each other,
as are OFF parameters, but ON and OFF are not correlated with each other. This suggests that ON and OFF responses are separately regulated on a
trial by trial basis. GSON : Mean ground speed from 2-3 s during odor. UVON : Mean upwind velocity from 2-3 s during odor. AVOFF : Mean angular
velocity from 1-3 s after odor. COFF : Mean curvature from 1-3 s after odor. TPOFF : Mean turn probability from 1-3 s after odor. F) Mean upwind
velocity from 2-3 s during odor for each trial of every fly in Figure 1 in which the stimulus was a 10 s odor pulse, represented in chronological order
along the X axis. Gray lines: data from individual flies. Black traces: Area between SEM errors.
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SUPPLEMENTARY FIGURE 3. Data processing methods. A-C) Segmentation of data into moving and non-moving epochs for analysis. A)
Distribution of ground speed values for all flies during trials with a 10 s odor pulse (n=75; data from Figure 1). Y axis on a logarithmic scale.
Note large peak close to 0mm/s corresponding to non-moving epochs. B) Probability of moving at greater than 1mm/s increases during odor and
remains elevated for tens of seconds after odor offset. PID measurement (top trace) and probability of movement (bottom trace) during a 10 s odor
pulse (mean±SEM; n=75; data from Figure 1). Thus, if non-moving periods are not omitted from computation of movement parameters such as
ground speed and angular velocity, the means of these parameters are heavily influenced by the fraction of non-moving flies (i.e. the number of
zeros) in each epoch. C-D) Effects of low pass filtering on estimates of behavioral responses to fluctuating stimuli. C) Upwind velocity (top) and
ground speed (middle) of flies in response to an ascending frequency sweep stimulus (mean±SEM; n=31; data from Figure 3E). Blue traces: data
as it was used in Figure 3. Red traces: data processed exactly as the blue traces, except we omitted the low-pass filtering at 2.5 Hz. Note that
the difference between the two sets is small and mostly shows as increased high-frequency noise in the periods before the stimulus. Bottom black
trace: stimulus. D) Same as C, showing turn probability (top) and curvature (middle) in response to the same stimulus. E-F) Reliable modulation
of behavior at high frequencies can be observed in response to valve clicks. E) Mean ground speed (n=31 flies) in response to a random train of
valve clicks with a 50% probability of occurrence. Vertical gray lines: time at which the odor valves opened or closed, producing a click sound and
slight vibration. Note that flies slowed their ground speed after every click. F) Modulation of ground speed during random valve clicks (black
trace; mean±SEM (absolute values); n=31; data in E) and during every cycle of an ascending frequency sweep stimulus (green trace; mean±SEM;
n=31; data and analysis in Figure 3E, inset). Frequency of valve clicks ranged from 0.18 to 2 Hz and was calculated as 1 over the inter-click interval
(responses to the first click were ignored).
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SUPPLEMENTARY VIDEO 1. Behavior of four flies in response to an ACV 10% pulse. The time
of the odor stimulus is signaled by the green dot appearing at the top of the image. Flies start to move
upwind shortly after the start of the stimulus (partly due to the time it takes for the odor front to reach
their respective positions), and they stop advancing upwind after the odor is gone and engage in a
more localized search behavior. Air and odor move from the top of the image towards the bottom at
11.9 cm/s.

SUPPLEMENTARY VIDEO 2. Behavior of a model fly navigating an odor plume. The video
shows 3 minutes long trial, sped up 4 times. The background image represents the odor concentration
of the plume (equivalent to Figure 6B) recorded by PLIF in the Colorado wind tunnel (see Methods).
The moving dot represents the position of the model fly, with changing colors depending on its current
behavior. Magenta dot: ON response is larger than 0.1. Cyan dot: OFF response is larger than 0.05.
White circle: no odor-evoked responses.
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