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Abstract 19 

Cecropins form a family of amphipathic α-helical cationic peptides with broad-spectrum 20 

antibacterial properties and potent anticancer activity. The emergence of bacteria and 21 

cancer cells showing resistance to cationic antimicrobial peptides (CAMPs) has fostered 22 

a search for new, more selective and more effective alternatives to CAMPs. With this 23 

goal in mind, we looked for cecropin homologs in the genome and transcriptome of the 24 

spruce budworm, Choristoneura fumiferana. Not only did we find paralogs of the 25 

conventional cationic cecropins (Cfcec+), our screening also led to the identification of 26 

previously uncharacterized anionic cecropins (Cfcec-), featuring a poly-L-aspartic acid 27 

C-terminus. Comparative peptide analysis indicated that the C-terminal helix of Cfcec- is 28 

amphipathic, unlike that of Cfcec+, which is hydrophobic. Interestingly, molecular 29 

dynamics simulations pointed to the lower conformational flexibility of Cfcec- peptides, 30 

relative to that of Cfcec+. Phylogenetic analysis suggests that the evolution of distinct 31 

Cfcec+ and Cfcec- peptides may have resulted from an ancient duplication event within 32 

the Lepidoptera. Our analyses also indicated that Cfcec- shares characteristics with 33 

entericidins, which are involved in bacterial programmed cell death, lunasin, a peptide of 34 

plant origins with antimitotic effects, and APC15, a subunit of the anaphase-promoting 35 

complex. Finally, we found that both anionic and cationic cecropins contain a BH3-like 36 

motif (G-[KQR]-[HKQNR]-[IV]-[KQR]) that could interact with Bcl-2, a protein 37 

involved in apoptosis; this observation is congruent with previous reports indicating that 38 

cecropins induce apoptosis. Altogether, our observations suggest that cecropins may 39 

provide templates for the development of new anticancer drugs.  40 

 41 

Keywords: Choristoneura fumiferana; anionic cecropins; C-terminal poly-L-aspartic 42 

acid; ancient duplication; apoptotic motif; anticancer peptide. 43 

 44 
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Graphical abstract 46 

  47 

 48 

 49 

Highlights 50 

1. Genes encoding novel anionic cecropins (Cfcec-), featuring a C-terminal poly-L-51 

aspartic acid, were found in the genome of the spruce budworm, Choristoneura 52 

fumiferana.  53 

2. Divergence between Cfcec+ and Cfcec- could be the result of an ancient duplication 54 

event within the Lepidoptera. 55 

3. There is an apparent relationship between motifs observed in cecropin peptides and 56 

apoptosis. 57 

4. Anionic cecropins from the spruce budworm display characteristics suggesting they 58 

could have anticancer activity 59 

 60 

Abbreviations: Cfcec+, C. fumiferana cationic cecropins; Cfcec-, C. fumiferana anionic 61 

cecropins; PAA, C-terminal poly-L-aspartic acid; AMPs, antimicrobial peptides; 62 

CAMPs, cationic antimicrobial peptides; ACPs, anticancer-peptides; APD, Antimicrobial 63 

Peptide Database; LPS, lipopolysaccharides;  Pxcec+, cationic Papilio Xuthus cecropin; 64 

HccecA, H. cecropina cecropin-A; Pxcec-, anionic P. Xuthus cecropin; CED-9, cell-death 65 

abnormal 9; Bcl-2, B-cell lymphoma 2; APC15, subunit anaphase-promoting complex 66 

15; MCC, the mitotic checkpoint complex; SAC, spindle assembly checkpoint; hepG-2, 67 

human liver hepatocellular carcinoma cell line. 68 

  69 
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1. Introduction 70 

Antimicrobial peptides (AMPs) constitute an important component of the innate immune 71 

system of insects and, as such, may have played a role in the evolutionary success of this 72 

highly speciose taxon, whose members occupy almost all habitats in nature. To date, over 73 

150 insect AMPs have been identified (Yi et al., 2014), with cecropin being the first one 74 

to have been purified, in 1980, from pupae of the cecropia moth, Hyalophora cecropia 75 

(Hultmark et al., 1980; Steiner et al., 1981). Cecropins are now known to form a family 76 

of amphipathic α-helical peptides containing 34–39 amino acid residues. They display a 77 

broad spectrum of antibacterial properties and act as modulator of the innate immune 78 

system. They also show potent anticancer activity (Suttmann et al., 2008; Hoskin and 79 

Ramamoorthy, 2008; Huang et al., 2015). 80 

Cecropins characterized to date fall in the category of cationic antimicrobial 81 

peptides (CAMPs), whose distinguishing feature is an excess in basic amino acids 82 

(positive charge, cationic; Otvos, 2000). Their amphipathic properties allow interactions 83 

with membranes (Lee et al., 2013) and their toxicity toward bacteria is considered to be 84 

primarily due to an initial electrostatic interaction between the peptide and the anionic 85 

phospholipid head groups in the outer layer of the bacterial cytoplasmic membrane, 86 

ultimately causing membrane disruption (Zasloff, 2002). 87 

For the present work, we took advantage of genomic and transcriptomic resources 88 

recently developed by our group for the spruce budworm, Choristoneura fumiferana, to 89 

identify and characterize the repertoire of cecropins in this important lepidopteran conifer 90 

pest. Our analyses led to the identification of novel, anionic cecropins (Cfcec-) featuring a 91 

poly-L-aspartic acid (PAA) C-terminus. We used in silico approaches to compare the 92 

physico-chemical properties of the anionic peptides with those of the more conventional 93 

cationic cecropins, some of which were also found in the C. fumiferana genome (Cfcec+). 94 

In addition, we compared C. fumiferana cecropins with other bioactive peptides whose 95 

biochemical properties have been well characterized; in the process, we identified some 96 

peptides that share features with cecropins, including motifs that could explain why the 97 

latter can induce apoptosis.   98 

  99 
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2. Materials and Methods 100 

2.1. C. fumiferana genomic and transcriptomic resources  101 

To identify spruce budworm cecropins, we queried a draft assembly of the C. fumiferana 102 

genome, generated from Roche 454 (GS-FLX+) whole genome shotgun reads, assembled 103 

using the Newbler software (Roche); sequencing was performed using DNA extracted 104 

from a single male pupa (Cusson et al. unpublished).  Similar searches were conducted by 105 

querying a C. fumiferana transcriptome. The latter was generated using both Illumina and 106 

Roche 454 (GS-FLX+) reads following sequencing of a normalized cDNA library, 107 

generated from a pool of mRNAs collected from all C. fumiferana life stages. Contig 108 

assembly was carried out using the MIRA (Chevreux et al. 2004) assembler (Brandão et 109 

al. unpublished). 110 

 111 

2.2. Blast 112 

Similarity searches in our genomic and transcriptomic databases were performed locally 113 

using the tblastn algorithm (http://www.ncbi.nlm.-nih.gov/blast) and the sequence of the 114 

H. cecropia cecropin-A (HccecA; Uniprot: P01507) as query. We also conducted similar 115 

tblastn searches against a public C. fumiferana EST database (NCBI). To determine if 116 

other cecropin homolog sequences with PAA exist in other species, we searched in all 117 

sequenced genomes in GenBank using BLASTp, tBLASTn and HMM profiles. 118 

 119 

2.3. Chemical properties of cecropins 120 

The chemical structures and properties of cecropin peptides were investigated in silico 121 

using PepDraw (http://www.tulane.edu/~biochem/WW/PepDraw/index.html). 122 

Hydrophobicity, as determined by PepDraw, is the free energy associated with 123 

transitioning a peptide from an aqueous environment to a hydrophobic environment such 124 

as octanol. The scale used is the Wimley-White scale, an experimentally determined 125 

scale, where the hydrophobicity of the peptide is the sum of Wimley-White 126 

hydrophobicities and measured in Kcal/mol (White and Wimley, 1998). Neutral pH is 127 

assumed. 128 

 129 

130 
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2.4. Structure predictions and molecular dynamics simulations 131 

The secondary structures of cecropins and lunasin were predicted using Psipred software 132 

(Jones, 1999), while helical wheel projections for the same peptides were performed 133 

using the tool available at http://rzlab.ucr.edu/scripts/wheel/wheel.cgi. 134 

3D homology models of C. fumiferana cecropins and lunasin were built using the 135 

crystal structures of papiliocin of Papilio xuthus (PDB id: 2LA2) and allergen Arah6 of 136 

Arachis hypogaea (PDB id: 1W2Q) as templates, respectively, using the modeling 137 

software Modeller (Webb and Sali, 2014). Model quality was assessed by Ramachandran 138 

plot analysis through PROCHECK (Laskowski et al., 1993). Structure images were 139 

generated using PyMOL (http://www.pymol.org). 140 

In order to evaluate conformational changes of cecropins, molecular dynamics 141 

(MD) simulations were performed in GROMACS (v5.1.4) using the OPLS-AA/L all-142 

atom force field (Kaminski et al. 2001). Cecropins were solvated in a cubic box as the 143 

unit cell, using SPC/E water model with the box edge distance from the molecule set to 144 

1.0 nm. The system was neutralized by replacing solvent molecules with Cl- and Na+ 145 

ions.  Energy minimization was conducted using the steepest descent method to ensure 146 

that the system has no steric clashes or inappropriate geometry. Equilibration of the 147 

solvent and ions around the peptide was conducted under NVT (300 K) and NPT (1.0 148 

bar) ensembles for 100 ps. Cecropin MD simulations were conducted for  1 ns.  149 

 150 

2.5. Phylogenetic analysis 151 

We used the amino acid sequences of cationic and anionic cecropins to search by BlastP 152 

for close homologs in insects. To assess phylogenetic relationships among cecropins of 153 

C. fumiferana and those of Diptera, Coleoptera and other Lepidoptera, sequences were 154 

aligned using Muscle (Edgar, 2004) and a phylogenetic tree was constructed using the 155 

Neighbor-Joining method (Saitou and Nei, 1987). Evolutionary distances were computed 156 

using the Equal Input method (Tajima and Nei, 1984) and are shown as the number of 157 

amino acid substitutions per site. All positions displaying less than 95% site coverage 158 

were eliminated. Phylogenetic analyses were conducted in MEGA6 (Tamura et al., 159 

2013).  160 
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 161 

3. Results and discussion 162 

 163 

3.1. Search for C. fumiferana cecropins in genomic and transcriptomic resources 164 

To identify cecropin orthologs in the sequenced genome and transcriptome of C. 165 

fumiferana (unpublished data), we conducted tblastn searches using cecropin-A of H. 166 

cecropina (Uniprot: P01507) as query. We found two types of cecropin genes that were 167 

designated Cfcec+ (cationic cecropins) and Cfcec- (anionic cecropins). Cfcec+ and Cfcec- 168 

peptides were again used as queries to carry out tblastn iteratively until no new hit 169 

occurred. Two Cfcec+ and two Cfcec- genes were found in the genome and transcriptome 170 

of C. fumiferana. These genes were designated Cfcec+1, Cfcec+2 and Cfcec-1, Cfcec-2, 171 

for cationic and anionic cecropins, respectively (Table 1; Fig. 1). Cecropin genes are 172 

composed of two exons and one intron (Fig. 1A, B). In the draft assembly of the C. 173 

fumiferana genome, the Cfcec+1 and Cfcec-1 genes were localized on the same scaffold 174 

with an interval of 3588 bp, whereas the Cfcec+2 and Cfcec-2 genes were found on 175 

distinct scaffolds. Interestingly, another scaffold contains the exon 1 of Cfcec+2 and the 176 

C-terminal poly-L-aspartic acid (PAA) of Cfcec-1 (Fig. 1B). It is tempting to speculate 177 

that the ancestor of Cfcec- acquired the PAA C-terminus through exon shuffling.  178 

To confirm that Cfcec+ and Cfcec- are actually transcribed, we searched C. 179 

fumiferana transcriptomic and EST databases, where we found the corresponding 180 

transcripts. In addition, NCBI”s EST database revealed that Cfcec+ and some anionic 181 

cecropins of Lepidoptera (Fig. S1) were expressed in frontline defense tissues such as the 182 

fat body, epidermis and midgut, as shown for Plutella xylostella (Jin et al., 2012).  183 

 184 

3.2. Peptide analysis 185 

3.2.1. Sequence analysis 186 

Alignment of Cfcec+ and Cfcec- showed that the major differences between these two 187 

peptides are found at the N- and C-termini of the mature peptides (Fig. 1D). Cfcec+2 188 

displays characteristics similar to those of other cecropins of moths where the first 189 

residue, preceding the conserved Trp2, is a Lys or an Arg (Otvos, 2000). This is not the 190 

case for Cfcec- where these amino acid residues are absent (Fig. 1D). The Trp2 residue of 191 
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HccecA was shown to be important for activity against all tested bacteria (Andreu et al., 192 

1985). Trp2 and Phe5 of Papilio xuthus cecropin (Pxcec+) were also shown to interact 193 

with LPS (Kim et al., 2011). These two amino acid residues are conserved in Cfcec+ but 194 

not in Cfcec- (Fig.1D). In addition, the hinge region  of cecropins (Gly-Pro) is conserved 195 

in Cfcec+2 and Cfcec-2 as described by Efimova et al. (2014) and provides 196 

conformational flexibility (Oh et al., 2000) (Fig.1D). Analysis of amino acid residues of 197 

both types of C. fumiferana cecropins suggests that Cfcec+ shares many characteristics 198 

with HccecA (Table 1).  199 

Blast searches were conducted to determine whether anionic cecropins such as 200 

Cfcec- were present in other insects. Not surprisingly, we found a few cecropins bearing 201 

three or four acidic amino acid residues at their C-termini, conferring a negative net 202 

charge (-2 to -4) to the peptides (Fig. S1). The characteristics of anionic P. xuthus 203 

cecropin (Pxcec-) are presented in Table 1; this peptide shares several characteristics with 204 

Cfcec-, including a similar length, a negative net charge, and comparable pI and 205 

hydrophobicity values. To our knowledge, the activity and structure of these anionic 206 

cecropins has never been examined experimentally. Finally, it is worth noting that the 207 

PAA of Cfcec- ends with a lysine residue (Fig. 2). Interestingly, a lysine residue was 208 

similarly found at the end of the poly-L-aspartic acid peptides (VDDDDK, APDDDDK 209 

and TDDDK) studied by Brogden et al. (1997). It is conceivable that the role of this 210 

positively charged residue is to interact with negative charges on membrane. Indeed, the 211 

long nonpolar region of the side chain of lysine was shown to extend or snorkel into the 212 

hydrophobic core of the target membrane (Li et al., 2013). 213 

 214 

3.2.2. Structure and molecular dynamics simulation 215 

2D and 3D structures of Cfcec+ and Cfcec- were estimated using Psipred and  homology 216 

modeling (Fig. 1C), respectively. For both types of peptides, the structure comprises two 217 

helices, as shown by NMR for other cecropins (PDB id: 2LA2 and 2MMM). To illustrate 218 

the properties of α-helices in these peptides, we constructed helical wheel diagrams. 219 

Thus, the N-terminal helices of Cfcec+ and Cfcec- both display amphipathic properties 220 

(amino acids 1-21 of Cfcec+ and 1-17 of Cfcec-), whereas their C-terminal helices (amino 221 
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acids 25–37 of Cfcec+ and 21-34 of Cfcec-) are hydrophobic and amphipathic, 222 

respectively (Fig. S2). In comparison, lunasin, a peptide of plant origins that shares some 223 

characteristics with Cfcec- (Table 1), has N- and C-terminal helices that are hydrophilic 224 

and amphipathic, respectively (Fig. S2). The high antibacterial activity of cecropin-like 225 

model peptides has been shown to require a basic, amphipathic N-terminal helix and a 226 

hydrophobic C-terminal helix, connected by a flexible hinge region (Fink et al., 1989). 227 

Cfcec+ possesses these characteristics and can therefore be classified as a CAMP. 228 

However, Cfcec- does not fit this pattern, with its amphipathic C-terminal helix, a feature 229 

shared with lunasin (Dia and de Mejia, 2011), which displays anti-cancer activity. 230 

Molecular dynamics simulations showed that Cfcec- peptides have less 231 

conformational flexibility at their N- and C-termini than Cfcec+ (Fig. S3), with only the 232 

PAA of Cfcec- displaying significant flexibility. Flexibility appears to be provided 233 

primarily by glycine residues (Fig. S3). Since CAMP activity is dependent upon the 234 

presence of conformational flexibility (Amos et al. 2016), differences in this variable 235 

between the Cfcec+ and Cfcec- peptides, in addition to the different physico-chemical 236 

properties of their C-termini, suggests that Cfcec+ and Cfcec- could have different 237 

biological activities. 238 

 239 

3.3. Phylogeny 240 

To infer phylogenetic relationships among cecropins of C. fumiferana and those of other 241 

Lepidoptera, Diptera, and Coleoptera, sequences reported here and others gleaned from 242 

public databases were aligned using Muscle (Edgar, 2004), and a phylogenetic tree was 243 

constructed using the Neighbor-Joining method (Saitou and Nei, 1987). The branching 244 

pattern obtained suggests that Cfcec+ peptides are more closely related to their H. 245 

cecropia and D. plexipus CecA and CecB orthologs than to their C. fumiferana paralogs 246 

(Cfcec-; Fig. 2B). Again, this observation suggests that anionic cecropins could have 247 

arisen following an ancient duplication event within the Lepidoptera. Not surprisingly, 248 

lepidopteran cecropins with negative and positive net charges formed two separate clades 249 

(Figure 2B). It has been observed that the net charge of α-helical ACPs has an effect on 250 

the anticancer activity of the peptide, with an increase in the net charge enhancing 251 

anticancer activity (Huang et al., 2015).  252 
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 253 

3.4. Peptides that display similarity to Cfcec+ and Cfcec- 254 

In recent years, AMPs have become promising molecules to fight cancer (Hoskin and 255 

Ramamoorthy, 2008; Riedl et al., 2011). The Antimicrobial Peptide Database (APD, 256 

http://aps.unmc.edu/AP/main.php) currently contains 193 peptides that are identified as 257 

anticancer-peptides (ACPs). These peptides, however, are from different sources and 258 

display limited similarity to one another. Nonetheless, they share some characteristics, 259 

including a positive charge and an amphipathic helix, and they exhibit a large spectrum 260 

of anticancer activity (Gaspar et al., 2013; Lu et al., 2016). 261 

BLAST searches against the AMP database using Cfcec- as query revealed that 262 

the PAA of mature lunasin (amino acids 56-64) is similar to that of Cfcec-. Moreover, 263 

lunasin  shares other features with Cfcec-, including net charge, pI, hydrophobicity and 264 

secondary structure (Table 1). Lunasin has antimitotic properties attributed to the binding 265 

of its PAA C-terminus to regions of hypoacetylated chromatin (Galvez and de Lumen, 266 

1999; Galvez et al., 2001). In the AMP database, we also found other short peptides 267 

containing mostly aspartic acid residues, including the peptide DEDDD, which shows 268 

inhibitory activity against breast cancer cells (Li et al., 2016), as well as three other 269 

AMPs: DDDDDDD, GDDDDDD and GADDDDD (Brogden et al., 1996). To refine our 270 

search for peptides displaying amino acid patterns similar to those of Cfcec-, we turned 271 

our attention to profile-profile alignment methods (Xu et al., 2014), which are more 272 

accurate and more sensitive than sequence-sequence and sequence-profile alignment 273 

methods. In this way, we identified HBx, a hepatitis B virus protein whose C-terminus is 274 

similar to the N-terminus of Cfcec- (Fig. 3A). HBx contains a BH3-like motif that folds 275 

to form an amphipathic α-helix that binds to the conserved BH3-binding groove of Bcl-2, 276 

an anti-apoptotic protein (Ma et al., 2008; Jiang et al., 2016). The BH3-like motif may 277 

inhibit the anti-apoptotic action of Bcl-2 through interactions with its conserved BH3-278 

binding groove. Glu125 and Arg128 of HBx (Fig. 3C) each makes a pair of charge-279 

stabilized hydrogen bonds to residues Arg100 and Asp101 in Bcl-2 (Jiang et al., 2016). 280 

The amino acids corresponding to Glu125 and Arg128 in the N-terminus of Cfcec- are 281 

Gln9 and Arg12 (Fig. 3A and C). To determine if Cfcec- could interact with Bcl-2, we 282 

superimposed the 3D model of Cfcec-1 onto the crystal structure of the HBx-Bcl-2 283 
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complex (PDBid: 5FCG). Indeed, the N-terminus of Cfcec-1 superimposed well onto 284 

HBx (Fig. 3C) and the amino acids Gln9 and Arg12 could form hydrogen bonds with 285 

Arg100 and Asp101 of Bcl-2. Interestingly, a G124L/I127A double mutation (conserved 286 

in cecropins; Fig. 3A) in HBx abolished interactions between HBx and CED-9, the 287 

functional ortholog of Bcl-2 in C. elegans (Geng et al., 2012), pointing to an important 288 

functional role of these two residues in HBx, and possibly in cecropins too. 289 

Alignment of cecropins from different species showed that BH3-like motifs are 290 

also present at their N-termini. In addition, we found this motif to be present in other 291 

AMPs that have been shown to induce apoptosis (Table 2). Interestingly, Choi and Lee 292 

(2013) showed that when the first six amino acid residues (GWGSFF) of pleurocidin 293 

(Table 2) were truncated, the peptide lost its effect on ROS production (apoptosis), 294 

apparently because the N-terminus of pleurocidin contains a BH3-like motif (Table 2, 295 

underlined amino acids). Similarly, cecropin-P17 (Table 2) was shown to suppress the 296 

proliferation of HepG-2 cells by inducing apoptosis, which was dependent (among other 297 

things) on inhibiting Bcl-2 (Wu et al., 2015).  298 

An intensive search for proteins displaying similarity to Cfcec’s led to the finding 299 

of entericidins A (EcnA) and B (EcnB) (Fig. 3B), two interesting peptides from bacteria. 300 

Entericidins are small lipoproteins encoded by tandem genes whose products function as 301 

toxin/antidote in programmed cell death in bacteria. EcnA inhibits the apoptotic action of 302 

EcnB by a mechanism that is not yet understood (Bishop et al., 1998). Amino acid 303 

sequences of EcnA and EcnB display similarities to AMPs. They have a signal peptide, 304 

adopt amphipathic α-helical structures and reciprocally modulate membrane stability 305 

(Fig. 3B). Moreover, EcnA and EcnB, like many AMPs, contain a BH3-like motif (Table 306 

2). This supports the hypothesis that programmed cell death genes may have originated in 307 

bacteria from a pool of antibiotic genes (Ameisen, 1996). 308 

Lastly, we found that Cfcec- displays sequence similarity to the subunit anaphase-309 

promoting complex 15 (APC15), which plays a role in the release of the mitotic 310 

checkpoint complex (MCC) from the APC/C (Fig. 3D). The function of APC15 in human 311 

cells seems to be primarily linked to the spindle assembly checkpoint (SAC), and its 312 

depletion prevents mitotic slippage (Mansfeld et al., 2011). 313 
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 314 

3.5. Prospective function of PAA 315 

The number of aspartic acid residues differs between the PAA of Cfcec-1 and Cfcec-2, 316 

with five in the latter and eight in the former. This variation changes the net charge of 317 

these peptides. It has been reported that variation in the net charge of α-helical ACPs has 318 

an effect on the anticancer activity of the peptide (Huang et al., 2015). Moreover, 319 

Brogden et al. (1996) showed that the antimicrobial activity of Asp homopolymers 320 

increases with the number of Asp residues in the peptide. In addition, lunasin contains a 321 

unique Arg-Gly-Asp (RGD) cell adhesion motif just upstream its PAA (Dia and de 322 

Mejia, 2011). Peptides with an RGD motif bind integrins with high specificity, leading to 323 

antiangiogenic and anti-inflammatory effects (Kuphal et al., 2005). Cfcec-1 has an NGD 324 

motif at the corresponding position (Fig. 1D); as we are now set to assess the putative 325 

anticancer activity of C. fumiferana anionic cecropins, it will be interesting to examine 326 

the impact of mutating Asn60 to Arg in order to generate the RGD motif found in 327 

lunasin.  328 
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Figure legends 527 

 528 

Figure 1. (A) Comparison of Cfcec+1 and (B) Cfcec-1genes. The genes are composed of 529 

two exons and one intron. Amino acids sequence of prepeptides are indicated below each 530 

gene. SP, signal peptide; PP, propeptide. The figure was generated with DOG 1.0 (Ren et 531 

al. 2009). (C) 3D model of anionic cecropin Cfcec-2. (D) Alignment of Cfcec+ and Cfcec- 532 

peptides. Green and blue arrows identify the C-terminal residue of the signal peptide (SP) 533 

and the propeptide (PP), respectively. Black stars represent functionally important amino 534 

acids. Muscle (Edgar 2004) was used to create multiple alignments. The figure was 535 

prepared with ESPript (http://espript.ibcp.fr). 536 

 537 

 538 

Figure 2. (A) Multiple sequence alignment and (B) phylogenetic relationship among 539 

cecropins (based on amino acid sequences). Green letters: Coleoptera (represented by 540 

Acalolepta luxuriosa (ACALU); blue letters: Diptera (represented by Drosophila 541 

melanogaster (DROME), Hermetia illucens (HERIL) and Culex quinquefasciatus 542 

(CULQU). Black letters: Lepidoptera (represented by Antheraea pernyi (ANTPE), 543 

Bombyx mori (BOMMO), Danaus plexippus (DANPL), Hyalophora cecropia (HYACE) 544 

Manduca sexta (MANSE), and the C. fumiferana cecropins identified in this work. Net 545 

charge of each mature peptide is in brackets. The distinct anionic and cationic cecropin 546 

clades are highlighted. The evolutionary history was inferred using the Neighbor-Joining 547 

method. The percentage of replicate trees in which the associated cecropins clustered 548 

together in the bootstrap test (1000 replicates) are shown next to the branches. The tree 549 

was rooted using a coleopteran cecropin as outgroup. Evolutionary analyses were 550 

conducted in MEGA6 (Tamura et al. 2013).The multiple alignment figure was prepared 551 

with ESPript (http://espript.ibcp.fr).  552 

 553 

Figure 3. HBx (hepatitis B virus protein), entericidins and APC15 (subunit anaphase-554 

promoting complex 15) sequences display similarities to Cfcec peptides. (A) Alignment 555 

of Cfcec+ and Cfcec- with HBx. The HBx-like motif is indicated by black stars. (B)  556 

Alignment of Cfcec+ and Cfcec- with entericidin A and B of  Thalassospira mesophila 557 

(Uniprot: A0A1Y2L2K6 and A0A1Y2L5A4). Green arrow identifies the C-terminal 558 

residue of the signal peptide (SP). (C) A close-up of the superposition of 3D models of 559 

the N-terminus of Cfcec- and the complex HBx-Bcl-2 (PDBid: 5FCG). N-termini of 560 

Cfcec-, HBx and Bcl-2 are colored in orange, cyan and green, respectively. (D) 561 

Alignment of Cfcec- and APC15. Highly conserved amino acid residues are shown in red 562 

and boxed in blue. The sequence alignments and the image of 3D model were prepared 563 

with ESPript (http://espript.ibcp.fr) and PyMol (www.pymol.org), respectively. 564 

  565 
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Tableau 1. Physico-chemical characteristics of HccecA, Cfcec+, Cfcec-, Pxcec- and lunasin. 566 
 

Mature peptide Length Net charge pI Hydrophobicity 

(Kcal/mol) 

 Structure 

HccecA 

Cfcec+1 

KWKLFKKIEKVGQNIRDGIIKAGPAVAVVGQATQIAK 

RWNPFKKLERVGQNIRDGIIKAAPAVAVVGQAAAIAKG 

37 

38 

+6 

+5 

10.39 

11.59 

34.74 

32.55 

α-helix 

α-helix 

Cfcec+2 RWKPFKKLERVGQHIRDGIIKAGPAVQVVGQAATIAKG 38 +7 11.12 36.65 α-helix 

Cfcec-1 

Cfcec-2 

GRELERIGQQIRDGIISARPALDVIRDAQKIYNGDDDDDDDDK 

GRELEKIGQNVRDGIIKAGPAIEVIQKAQRIYHGKYDDDDDK 

43 

42 

-6 

-1 

4.0 

5.54 

69.32 

62.63 

α-helix 

α-helix 

Pxcec- WNPFKELERAGQNIRDAIISAGPAVDVVARAQKIARGEDVDEDE 44 -4 4.17 56.65 α-helix 

Lunasin SKWQHQQDSCRKQLQGVNLTPCEKHIMEKIQGRGDDDDDDDDD 43 -6 4.23 73.27 α-helix 

 567 

Tableau 2. AMPs with shared (G-[KQR]-[HKQNR]-[IV]-[KQR]) motif known to induce apoptosis. 568 

Peptides Source sequences References 

Cecropin Musca domestica GWLKKIGKKIERVGQHTRDATIQTIGVAQQAANVAATLKG Jin et al. 2010 

Cecropin-P17 Hyalophora cecropia  FKKIKKVGRNIRNGIIK Wu et al. 2015 

Papiliocin Papilio xuthus WKIFKKIEKVGRNVRDGIIKAGPAVAVVGQAATVVKG Hwang et al. 2011 

Melittin Apis mellifera GIGAVLKVLTTGLPALISWIK RKRQQ Park et al. 2010 

Arenicin-1 Arinicola marina RWCVYAYVRVRGVLVRYRRCW Cho and Lee 2011 

Coprisin Copris tripartitus VTCDVLSFEAKGIAVNHSACALHCIALRKKGGSCQNGVCVRN Lee et al. 2012 

Pleurocidin Pleuronectes americanus GWGSFFKKAAHVGKHVGKAALTHYL Choi and Lee 2013 

plant defensin RsAFP2 Raphanus sativus QKLCQRPSGTWSGVCGNNNACKNQCIRLEKARHGSC Aerts et al. 2009 

Psacotheasin Psacothea hilaris CIAKGNGCQPSGVQGNCCSGHCHKEPGWVAGYCK Hwang et al. 2011b 

Cathelicidin LL-37 Homo sapiens LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES Ren et al. 2012 

Magainin 2  Xenopus laevis GIGKFLHSAKKFGKAFVGEIMNS Lee and Lee 2014 

Tachyplesin I  Tachypleus tridentatus KWCFRVCYRGICYRRCR Zhang et al. 2006 

Buforin II  Bufo gargarizans TRSSRAGLQFPVGRVHRLLRK  Wang et al. 2013 

Chrysophsin-1 Chrysophrys major FFGWLIKGAIHAGKAIHGLIHRRRH  Hsu et al. 2011 

Penaeidin-2a  Penaeus vannamei YRGGYTGPIPRPPPIGRPPFRPVCNACYRLSVSDARNCCIKFGSCCHLVK Meng et al. 2014 

Piscidin 1  Perca saxatilis FFHHIFRGIVHVGKTIHRLVTG Lin et al. 2012 

Epinecidin-1  Epinephelus coioides GFIFHIIKGLFHAGKMIHGLV  Chen et al. 2009 
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 585 

 586 

Figure S1. Lepidopteran cecropins with C-terminal poly-L-aspartate/glutamate. 587 
Accession number, species name and net charge (in brackets) are at the beginning of 588 

entry. Green and blue arrows identify the C-terminal amino acid of the signal peptide 589 
(SP) and the propetide (PP), respectively. 590 
  591 
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 592 

Figure S2. Helical-wheel diagram to illustrate the amphipathic properties of alpha helices 593 
in Cfcec+, Cfcec- and lunasin.  The plot reveals whether hydrophobic amino acids are 594 
concentrated on one side of the helix, usually with polar or hydrophilic amino acids on 595 
the other side. The hydrophobic residues as diamonds, hydrophilic residues as red circles, 596 
potentially negatively charged as triangles, and potentially positively charged as 597 
pentagons. The value in the centre of each helix represents the mean amphipathic 598 
moment <µH>.The length and the direction of the <µH> vector depend on the 599 

hydrophobicity and the position of the side chain along the helix axis. A large <µH> 600 
value means that the helix is amphipathic perpendicular to its axis. 601 
http://rzlab.ucr.edu/scripts/wheel/wheel.cgi. 602 
 603 

 604 
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 606 

Figure S3. Snapshots of molecular dynamics (MD) simulation of the Cfcec+ and Cfcec- 607 

peptides. These figures show that the flexible regions of peptides are situated at the Gly 608 

and Ala residues. (A) Cfcec+1, (B) Cfcec+2, (C) Cfcec-1 and (C) Cfcec-2. Simulation time 609 

of 0 ns (green structure) and 1 ns (cyan structure). 610 
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