
Benchmarking tree and ancestral sequence

inference for B cell receptor sequences

Kristian Davidsen & Frederick A. Matsen IV†

Fred Hutchinson Cancer Research Center
†corresponding author: matsen@fredhutch.org

April 24, 2018

Abstract

B cell receptor sequences evolve during affinity maturation according
to a Darwinian process of mutation and selection. Phylogenetic tools are
used extensively to reconstruct ancestral sequences and phylogenetic trees
from affinity-matured sequences. In addition to using general-purpose
phylogenetic methods, researchers have developed new tools to accommo-
date the special features of B cell sequence evolution. However, the perfor-
mance of classical phylogenetic techniques in the presence of B cell-specific
features is not well understood, nor how much the newer generation of B
cell specific tools represent an improvement over classical methods. In
this paper we benchmark the performance of classical phylogenetic and
new B cell-specific tools when applied to B cell receptor sequences sim-
ulated from a forward-time model of B cell receptor affinity maturation
towards a mature receptor. We show that the currently used tools vary
substantially in terms of tree structure and ancestral sequence inference
accuracy. Furthermore, we show that there are still large performance
gains to be achieved by modeling the special mutation process of B cell
receptors. These conclusions are further strengthened with real data us-
ing the rules of isotype switching to count possible violations within each
inferred phylogeny.

Introduction

B cells play a key role in adaptive immunity. After successful VDJ gene recom-
bination of the variable part of the B cell receptor (BCR), and various selection
steps, mature B cells are exported from the bone marrow. At this stage the
mature B cells have not yet bound antigen and they are therefore referred to as
naive. Upon infection some cells from this repertoire of naive BCRs will bind
the infectious agent, initializing a cascade of events called affinity maturation
leading to pathogen neutralization.

Affinity maturation is a micro-evolutionary process consisting of coupled mu-
tation and selection. This essential process takes place in specialized anatomic
compartments called germinal centers (GCs), with the objective of improving
antigen binding of the BCR (1). Affinity maturation results in clonal families
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of thousands of B cells for each of the naive ancestors. Sequences in a fam-
ily are related to a common naive B cell but with higher affinity BCRs and
accumulation of mutations in their sequences.

The study of B cell evolution in the GCs is an important and active field
of research including response to infections, mechanisms of vaccines (2) and
immunological memory (3). Furthermore, the field has experienced a boost
of interest and capability in recent years due to the advancements of high-
throughput sequencing of BCR repertoires (Rep-Seq) (4). Rep-Seq now enables
sequencing of BCRs on massive scale (millions of cells) and is being increasingly
applied in different areas from vaccine studies (5, 6) to antibody engineering
(7, 8). Following Rep-Seq, computational methods can be used to group the
BCRs into “clonal families”, each consisting of the descendants of a single naive
cell (9).

The events of the affinity maturation process can be interrogated by in-
ferring the phylogenies of sequences within each such clonal family, as well as
inferring ancestral sequences on the phylogenies. Phylogenetic methods have
given great insight into the long and complex development process of broadly-
neutralizing antibodies (10, 11). Phylogenetic methods are equally important
for shorter-time-scale investigations of affinity maturation, such as of the re-
sponse to vaccination (12). One may also use trees equipped with ancestral
sequences to make statements about the strength of natural selection (13).

Given the importance of these methods to understanding affinity matura-
tion, there has been surprisingly little validation of their performance in the
parameter regime relevant to the study of affinity maturation. Although dozens
of studies benchmarking phylogenetic methods via simulation in the general
phylogenetic case have appeared since (14), methods for BCR sequences de-
serve special treatment because of special aspects of the evolutionary process of
affinity maturation. These include:

1. The somatic hypermutation (SHM) process in affinity maturation is driven
by purpose-built molecular machinery (15) that results in a highly context-
dependent process with local sequence contexts that either favor (“hotspots”)
or disfavor (“coldspots”) mutation (16, 17). The complexity of this pro-
cess is at odds with both the usual phylogenetic assumption of indepen-
dent and identical processes between sites and with the assumptions of
commonly-used sequence simulators (18, 19) used for benchmarking.

2. Sampling and sequencing, especially for direct sequencing of GCs (20),
is dense compared to divergence between sequences. Because the result-
ing sequences will have limited divergence between them, it raises the
possibility that simpler methods with fewer free parameters such as parsi-
mony would be an appropriate choice (21). Also, because of the resulting
distribution of short branch lengths, zero-length branches and multifur-
cations representing simultaneous divergence are common. When these
zero-length branches lead to a leaf, they represent a “sampled ancestor”
– a sequence with an identical genotype to an ancestral cell. Because of
these differences, previous conclusions about performance of phylogenetic
estimators in the classical regime of millions of years of divergence need
not hold here.

3. Rep-Seq typically sequences the coding sequence of antibodies, which are
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under very strong selective constraint in GCs. This contrasts strongly
with the neutral evolution assumptions of most phylogenetic algorithms,
as well as the neutral assumptions of the most common software used for
phylogenetics benchmarks (18, 19).

4. In contrast to typical phylogenetic problems where the root sequence is
unknown, one has significant information about the root sequence for BCR
sequences. Even our current imperfect knowledge of germline genes greatly
constrains the space of possible ancestral sequences compared to the typ-
ical phylogenetic case where the ancestor is completely unknown. Evolu-
tion of BCR sequences happens in a directed fashion from this ancestral
sequence.

For these reasons, we believe that BCR-specific validation of phylogenetic tools
is an essential prerequisite to their use.

Practitioners frequently use standard phylogenetic tools for BCR sequences.
Many studies performing phylogenetic reconstruction on BCR sequences have
used the PHYLIP package (22) such as the maximum likelihood (ML) tool
dnaml (11, 23–25) or the maximum parsimony (MP) implementation dnapars
(26–28). For general phylogenetics use, PHYLIP’s dnaml is now less frequently
used compared to faster or more feature-rich programs such as RAxML (29),
PhyML (30), FastTree2 (31), and the most recent popular ML program, IQ-
TREE (32). However, not all of these programs return ancestral sequence esti-
mates so are less interesting for antibody researchers.

Four tools have been developed specifically for inferring BCR phylogenies:
IgTree (33), ARPP (34), IgPhyML (35), and GCtree (36). IgTree aims to find
the minimal sequence of events that could have led to the observed sequences
(i.e. a maximum parsimony criterion), allowing a known root and sampled ances-
tors. ARPP is an implementation of a BCR specific ML model to infer ancestral
sequences on trees produced by PHYLIP’s dnaml. Both IgTree and ARPP have
limited availability: IgTree is not available for download at all, while ARPP is
only available for Windows. ARPP cannot be run from a script, thus we could
not include it in this large-scale benchmark. IgPhyML adapts the Goldman-
Yang (GY94) codon substitution model (37) by adding parameters to model
the motif dependent mutation rate. However, to achieve a tractable likelihood
the motif contribution is marginalized across codons to achieve a independent-
across-codon likelihood function that works well with the usual ML setup. Ig-
PhyML is built on codonPhyML (38) which is used for tree sampling and like-
lihood calculations, ancestral sequence reconstruction can be done in a post
processing step using an auxiliary script (provided in the supplement of (35)).
GCtree ranks equally parsimonious trees found by PHYLIP’s dnapars according
to a likelihood function derived from a Galton-Watson branching process (39).
In this branching process, the cellular abundance of a given genotype is used
and therefore single cell data is a necessary requirement for optimal ranking
with GCtree. Both IgPhyML and GCtree are freely available through GitHub.
Additionally, we have implemented an alternative method, called SAMM v0.2,
for ranking equally parsimonious trees based on the sum of log likelihoods of the
observed mutations between nodes on a tree given a substitution model based
on SHM motifs. This ranking is implemented using the SAMM package (40).

To benchmark phylogenetic methods for BCRs, we desired a simulator for
full-length BCR sequences that modeled context-sensitive mutation, natural
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selection on amino acids, and had publicly available source code. Many inter-
esting simulators have different goals. Detailed mechanistic models have been
proposed to model all cells and all interactions in a GC using first principles
from biophysics (41–43). Others have suggested probabilistic frameworks mod-
eling summary statistics of SHM (44, 45) and, as a middle ground between ultra
fine grained models and plain summary statistics, models attempting to explain
population level trends using systems of differential equations have been sug-
gested (46). Even simulators that use a notion of sequence don’t necessarily
use nucleotides or model mutation in an accurate way. For example, (41) uses a
reduced-size alphabet to obtain an appropriately rugged fitness landscape, while
(47) use uniform per-site nucleotide mutation in the complementarity determin-
ing region and selection based on a subset of key residues.

No existing simulator fit our needs and so we designed a simple model of
affinity maturation of BCR sequences in a clonal family. In this model, sequence
fitness is solely a function of the amount of antigen bound by the BCR at equi-
librium. Antigen binding is calculated using standard binding kinetics applied
to a GC with B cells carrying BCRs with different sequences and affinities, com-
peting to bind a limited amount of antigen. Our simple design is motivated by
the observation that antigen binding is the main driver and limiting factor of
affinity maturation (48). By modularizing the simulation code we have one mod-
ule preforming mutation and proliferation as a neutral branching process and
an optional module to change the birth/death rate through affinity selection.

This simulator has enabled a primary goal of our work: to benchmark meth-
ods for ancestral sequence reconstruction. Such methods infer sequences at
ancestral nodes of a phylogenetic tree according to some optimality criterion.
Ancestral sequence reconstruction is heavily used in BCR sequence analysis,
in which it is common to synthesize and test ancestral sequences in order to
understand the impact of historical substitutions on binding (49, 50).

A recent and independent effort by (51) did a benchmarking study using
simulated BCR sequences without selection and compared phylogenetic method
performance, including ML and MP tools. Our study has the following differ-
ences with this previous work:

• we simulate sequences under selection using an affinity-based model, which
we show makes the inferential problem significantly more difficult,

• we compare accuracy of ancestral sequence inference,

• we include additional software tools, several of which are BCR-specific,

• we provide evidence that our simulations have similar characteristics to
real data,

• and we use isotype data as a further non-simulation means of benchmark-
ing methods.

This previous work also worked to understand the results of phylogenetic infer-
ence using a “toy” clonal family inference method with necessarily bad perfor-
mance, whereas here we assume that clonal families have been properly inferred.

In this paper we attempt to answer some of the unresolved questions about
BCR phylogenetic inference, including a benchmark of the performance of rele-
vant phylogenetic tools (dnaml, dnapars, IgPhyML, IQ-TREE, GCtree and an
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undescribed SHM motif based tree ranking method), an investigation of the
influence of SHM motifs; and a comparison between simulations with neutral
or selection-based evolution (Figure 1). We apply our proposed sequence simu-
lation framework to simulate under different realistic models that include SHM
motifs and affinity selection. Finally, we show how the biological mechanism of
isotype switching can be used to empirically test phylogenetic inference.

All simulation code is open source and can be found on our GitHub reposi-
tory together with sequence data for the isotype validation (https://github.
com/matsengrp/bcr-phylo-benchmark). All simulation data is organized to
reproduce figures and is available for download on Zenodo (https://doi.org/
10.5281/zenodo.1218140).

Simulation Inference

N (AAA)

L (TTT)

A2t (ATT)

A1t (AAT)

L (TTT)

N (AAA)

True Inferred

A1i (TAT)

Performance Comparison

Method A

Method B

Method X

.  . .

Figure 1: Graphical abstract summarizing the work presented in this paper.
We use sequence simulation to establish a ground truth phylogeny from which a
sample of sequences is used to infer the phylogeny using different inference meth-
ods. The inferred tree is then compared to the simulated true tree to measure
inference performance. Lastly, the different inference methods are compared.

Methods

Although statisticians have made substantial strides in proving identifiability
(52, 53) of phylogenetic models and consistency (54) of inferential procedures,
proving consistency of phylogenetic methods under context-sensitive BCR evo-
lution models with selection is out of reach because no likelihood function is
available. Therefore, we chose the general approach of simulating phylogenies,
and benchmark tools based on their inference on samples from these known
trees. As ancestral sequence reconstruction is of special interest among the
users of BCR phylogenetics (11, 50, 55) we developed a metric to measure an-
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cestral sequence reconstruction performance. In the following subsections we
present these simulations and performance metrics, as well as a method to use
empirical data to assess performance via the principle of irreversibility of isotype
switching.

Simulation

We devised two simulation strategies for BCR evolution: 1) a neutrally evolving
branching process, and 2) a branching process with a birth/death rate controlled
by BCR antigen binding. Both simulations start with a single naive sequence as
a starting point for the tree simulation; this is evolved a number of generations
to a population of BCR sequences from which a sample is drawn and used for
inference. To get realistic starting sequences for the simulations we created
a set of 288 naive sequences inferred by partis (56) from the healthy donor
human single cell dataset in (57) and selected to be of high confidence. When a
simulation run is initialized a naive sequence is drawn randomly from this set.

Our neutral model is controlled by two parameters which are used to control
two Poisson distributions determining the simulation: the progeny distribution
(λ) and the mutation generating distribution (λmut). Each evolving sequence
has its own λ which expresses the fitness of that sequence in comparison to
the other sequences in the population (details below). All sequences have the
same mutation probability i.e. λmut is the same for all sequences and constant
throughout the simulation. The simulation starts with a single cell carrying the
naive sequence; a draw from Pois(λ) will yield the number of progeny cells
in the first generation. If a zero is drawn the cell dies, if one is drawn it
propagates without division, if two is drawn it splits into two cells, etc. Next, for
each progeny cell a draw from Pois(λmut) will determine how many mutations
to introduce into its sequence. Mutations are drawn either from a uniform
distribution over both sites and substitutions, or using a context sensitive motif
model (e.g. S5F (16)). Multiple mutations are introduced stepwise, one at a
time, and if a context sensitive mutation model is chosen the sequence context
is updated between each introduced mutation. The simulation process can be
terminated in three ways: 1) when all cells have died, 2) at fixed time point T ,
or 3) when a fixed number of cells, N , has been reached.

As mentioned above, birth and death rates are controlled through the Pois-
son rate λ. One can think of this as measuring the level of T helper cell signal,
in which lots of signal promotes proliferation while insufficient signal leads to
death (1). In our neutral simulations, λ is held constant and is the same for
all cells. For simulations with selection we use a very simplistic view of the
maturation process, in which selection is purely driven by T helper cell signal
which is strong for BCRs binding a lot of antigen and weak for BCRs binding
little antigen. To translate this into selection in our simulation framework we
devise a simple model to transform a BCR sequence into an affinity value, solve
for its antigen binding and then use this to control λ, thus making it sequence
dependent. In essence, this “affinity selection” is just a mapping between a
BCR sequence and a λ; this enables us to use the same simulation framework
for both neutral and affinity simulations.

Here we review the basics of fitness assignment; a detailed description of the
model as well as model choices can be found in the supplementary. For any BCR
sequence indexed by i, its fitness is λ(i) = Y (x), where Y is a transformation
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of some information, x, specified in the simulation. For a neutral simulation
Y (x) is constant and independent of x, while for the affinity simulation Y is
variable with respect to x. To model BCR sequence affinity we introduce the
concept of a “mature sequence” which is the sequence with the highest attainable
fitness in the simulation run. Once the simulation starts the mature sequence
acts as an attractor to which evolution tends to converge by rewarding amino
acid sequences closer to the attractor with higher λ. The choice of mature
sequence is arbitrary so we chose to simulate it by randomly mutating the naive
sequence until it accumulates a predefined number of amino acid substitutions.
Next, the naive and mature sequence are assigned their own affinity values and
the span between these define the affinity gain during affinity maturation. To
calculate the affinity of a BCR sequence we calculate its amino acid Hamming
distance to the mature sequence and transform this into an affinity value using
an appropriate power function calibrated on the naive and mature sequences.
We then model the BCR binding kinetics by defining a total GC volume with a
constant concentration of antigen and solve for the B cells’ antigen occupancy
at equilibrium. Antigen occupancy is mapped to B cell fitness (λ(i)) using a
logistic function returning a value between 0 and 2. These steps describe the
general setup of calculating Y (x) for the affinity simulation.

Inspection of the simulation runs confirm that affinity simulation recapitu-
late a number of desired properties (Figure 2: 1) sequence evolution is converg-
ing towards the mature sequence, 2) cells are competing for the limited supply
of antigen establishing a “carrying capacity”, and 3) favorable mutations are
rapidly fixed through selective sweeps (58) analogous to clonal bursts (1, 20).

We set the expected number of mutations, introduced into the sequence at
each mutation step, to be approximately 0.365. This corresponds to the fre-
quently cited SHM rate at around 10−3 (60) given the average length of our
naive BCR sequences of 365 nucleotides. We define λmut = 0.365 as the “nor-
mal” mutation rate, but because the estimates of SHM rate vary in the literature
we also include half and double of this rate (λmut ∈ {0.1825, 0.365, 0.73}) in all
our simulations. We observe high correlation between the method performance
across all three λmut (Figure S2 and Figure S3), showing that our conclusions
are robust to differences in mutation rate. For neutral simulations the branching
parameter (λ) and the population size termination criterion (N) are adjusted
(λ = 1.5 and N = 75) to recapitulate summary statistics of the single cell
GC experiment in (20), following a similar procedure as (36). For the affinity
simulations the branching parameter is cell-specific and adjusts dynamically, in
the range between 0 and 2, according to antigen competition. Each affinity
simulation is initialized with 100 mature sequences generated by randomly in-
troducing 5 amino acid substitutions to the naive sequence. Affinity simulations
are run with an antigen concentration sufficient to maintain a cell population
of approximately 1000 cells, and after 35 generations a random sample of 60
cells is recovered for inference. We also performed intermediate sampling for
the affinity simulation: in such cases 30 cells are sampled at generation 15, 30
and 45 and pooled to a total of 90 cells. Neutral simulations were run with 1000
replicates and affinity simulations were run with 500.
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Figure 2: (a) Time series of the distribution of cells at different distances from
the mature sequence (Dist 1, 2, ..., 8) as the appear in a typical affinity simu-
lation. The simulation is started from a single naive sequence, five amino acid
substitutions away from the mature sequence (Dist 5), and simulated sequences
converge toward the mature sequence as generations progress. (b) A collapsed
tree made from 60 sequences sampled from GC generation 35 of the cell popula-
tion in (a). Nodes are labeled with numbers indicating the number of collapsed
tips (genotype abundance) and node size is proportional to this number. Branch
lengths are Hamming distance between nucleotide sequences with dashed lines
indicating purely synonymous mutations and solid lines indicating one or more
non-synonymous mutations. Branch thickness is proportional to the number of
non-synonymous mutations. The tree was rendered with ETE3 (59). Both (a)
and (b) are colored according to distance from the mature sequence.

Inference methods

From each simulation run a subset of sequences was sampled and used for phy-
logenetic inference along with the correct naive sequence which was used as an
outgroup. We tested a number of relevant tools either previously used in the
context of BCR phylogenetic inference or with potential use in this field:

• dnaml v3.696: PHYLIP’s implementation of ML using the F84 model (22)

• dnapars v3.696: PHYLIP’s implementation of MP (22)

• GCtree v1.0: Branching process likelihood ranking of MP trees (36)

• SAMM v0.2: Mutation motif based likelihood ranking of MP trees (40)

• IgPhyML v0.99: GY94 codon model with hot/cold spot motif parameters
(35)

• IQ-TREE v1.6.beta5 (IQT): Fast ML inference with many substitution
models (32)

For all methods the naive sequence was used as an outgroup, furthermore,
the naive sequence was used to reroot the tree after inference. IQ-TREE was
run using either JC, HKY or GTR nucleotide substitution models and using
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the “ASR” flag, but otherwise with default settings. IgPhyML was run as
described in (35) and using the “-o tlr -s” flags to optimize both branch
lengths and topology under the HLP17 model. dnaml was run using gamma
distributed rates, a coefficient of variation of substitution rate among sites of
1.41, four rate categories and otherwise default parameters. dnapars was run
using default settings. In the case of dnapars it is common to observe many
equally parsimonious trees, and in those cases a random tree was drawn. GCtree
was run as described in (36), passing both sequences and their abundances to
the program. Both GCtree and SAMM use the equally parsimonious trees
generated with dnapars for likelihood ranking, hence in the case when only a
single MP tree is found, dnapars, GCtree and SAMM will by definition yield
the same result.

The use of all the above methods has been described previously, except
SAMM which is part of a statical framework to infer DNA mutation motifs using
survival analysis (40). As it is well known that SHM is context sensitive (16, 17,
61) we attempted to use the idea from (36) but ranking equally parsimonious
trees according to their SHM motif likelihood rather than a branching process
likelihood. Using SAMM we calculate the likelihood of the observed mutations
given a tree equipped with ancestral sequences at the internal nodes (in this
application from parsimony) and a motif model by using Chib’s method (62) to
integrate out event orders on the branches.

We would like to make it very clear that we use the same motif model for both
simulating mutations and calculating SAMM likelihoods. This gives SAMM an
unfair advantage, however, the selection process is not modeled as part of the
motif model. We are not formally proposing SAMM ranking as a competing
inference method, but rather as a yardstick with which to measure how much
improvement would be possible taking a fully context-sensitive mutation process
into account. On the other hand, SAMM has no inherent advantage on the
isotype scoring experiment, and it is limited to the MP trees.

Genotype collapsing

Due to our focus on ancestral sequence inference we have adopted the use of
genotype collapsed trees from (36) throughout this work. Briefly, a genotype
collapsed tree is made by inferring a phylogenetic tree, inferring ancestral se-
quences at the internal nodes and recalculating the branch lengths as Hamming
distances between the node sequences. In the branch length recalculation step
nodes are “collapsed” if their sequences are identical, thereby collapsing tips
upwards and adding observations to internal nodes (Figure 2, b). Genotype
collapsing deals conveniently with the very short branch lengths, typically ob-
served in binary trees for BCR sequences, since these most often collapse into
a single node.

Tree metrics

We scored trees both in terms of tree structure and in terms of ancestral sequence
inference. For tree structure, we used the commonly used Robinson-Foulds (RF)
distance (63), which is half the size of the symmetric difference between the sets
of bipartitions obtained by cutting each edge. We define bipartitions using
both tips and sampled internal nodes, as opposed to standard RF using only
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tips. Because we perform RF on genotype-collapsed trees, this measure in fact
combines accuracy estimation of ancestral sequences and tree topology.

We also used several means to more directly compare ancestral sequence
reconstructions: the “most recent common ancestor” (MRCA) metric, and the
“correctness of ancestral reconstruction” (COAR) metric. The MRCA metric
compares ancestral sequences on the true vs. the inferred phylogeny in a way
that does not depend on agreement between the two topologies. Specifically, the
MRCA distance is calculated by iterating through all pairs of leaves. For each
such pair there is a well defined MRCA node on the tree. The MRCA metric
is the average Hamming distance between the inferred and the true ancestral
sequence for these pairs. Using i and j (i 6= j) to iterate over all combinations
of pairs of leaves to find their true (Ti,j) and inferred (Ii,j) most recent common
ancestor, this can be written as:

N∑

i=1

N∑

j=i+1

dH(Ti,j , Ii,j)
/

(N(N − 1)/2)L.

HereN is the number of leaves and L is the length of the sequence. Thus, MRCA
gives an overall view of how ancestral sequence reconstruction is performing.

There is also a special interest in benchmarking tools to reconstruct a lineage
of ancestral sequences going from the root (the naive sequence) to a tip of
interest (11, 55). Hence, we developed the COAR metric which is measuring
the average number of sequence mismatches across all true vs. inferred lineages
going from the root to any tip. It is not initially obvious how to compute such a
distance if the true and inferred lineage contains a different number of nodes. We
solve this problem by finding the node to node comparison that minimizes the
distance while maintaining the root-to-tip order. Please see the Supplementary
Information for details on COAR metric calculation.

We chose COAR as our principal metric for comparison because it was
well correlated with other metrics (see Results) and because it reflects how
researchers use ancestral sequence reconstruction of BCRs.

Isotype scoring

We used sequences with isotype information as another means of character-
izing phylogenetic accuracy. The isotype-determining constant region is lo-
cated downstream of the heavy chain BCR variable region, and isotype changes
through a process called class-switch recombination. In mice the isotype con-
stant regions are ordered, from closest to furthest to the J gene: IgM, IgG, IgE,
then IgA. Naive BCRs use IgM, but during affinity maturation isotype switch-
ing can occur by looping out one or more of the constant regions. For instance
if IgM is looped out the resulting BCR is IgG and if IgM, IgG and IgE is looped
out the resulting BCR is IgA. Because the isotype is physically removed from
the chromosome this process is irreversible, hence a parent cell with an IgA
BCR can never give rise to a child cell of IgM isotype.

We use the irreversible nature of isotype switching to measure the perfor-
mance of tree inference by mapping back isotype labels to the nodes on the
inferred tree and counting the number of nodes with an edge to a child that
violate the rules of isotype switching. We use the BCR data from (64) which
is generated with UMI technology and primers targeting the isotype region on
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splenocyte whole mRNA from five outbred mice undergoing an immunization
campaign. After extensive quality filtering using pRESTO (65) we ran partis
(9) to partition sequences into clonal families. These clonal families were fil-
tered based on having minimum 10 and maximum 200 unique sequences and
containing at least two different isotypes. Furthermore, we discarded all clonal
families where inference exceeded 24 hours of compute time for any single tool
on a single core. This left 697 clonal families to do isotype validation.

We defined an isotype mismatch as an observed violation of the isotype
switching order (namely the order IgM, IgG, IgE, IgA). That is, an edge con-
necting a parent and a child node is an isotype mismatch if the isotype order of
the parent is farther along the order than its child (Figure S13). To calculate the
“isotype score” we iterate over all the tips and use each tip as a starting point
to collect the list of isotypes between this tip and the root. This list is made by
progressing from a tip to the root and collecting isotypes sequentially, however,
unobserved internal nodes will not have an associated isotype and therefore they
“reverse inherit” the isotype from their child. Once this list has been filled, each
edge is evaluated and if an isotype mismatch is encountered the parent node is
marked as a violator. The number of isotype switching violations is found by
counting all the violator nodes.

This sum is dependent upon the shape of the inferred tree, potentially leading
to a bias associated with each inference tool. To address this, for each inferred
tree we created 10,000 samples of trees with the same topology but shuffled
labels and from these we calculated a “baseline” isotype score to be expected
given this topology. We divided the violation count by the baseline to obtain
the final isotype score.

Boxplot layout

Tool performance is plotted in boxplots. Colored boxes cover from lower to
upper quartiles, with the median marked by grey vertical lines and whiskers
extending to 1.5 times the interquartile range. Points beyond the range of the
whiskers (outliers) are hidden for clarity. Red triangles mark the mean metric
value of all simulations, with 1000 replicates for neutral and 500 replicates for
affinity simulations, with an overlapping horizontal red line showing the 95%
confidence interval of the mean. Confidence intervals were computed using non-
parametric bootstrapping, using sampling with replacement to generate 10,000
bootstrap replicates (66). Tools are ordered according to their mean metric
values.

Results

Metrics are correlated

The RF, MRCA and COAR metrics are highly correlated, with COAR being
the most central metric (Figure 3). We checked this for both neutral and affinity
simulation and over a range of mutation parameters (Figure S1) and conclude
that the high correlation between metrics is robust over many parameter choices.
To reduce the number of comparisons we chose COAR as our principal metric
because this was the most central metric as well as being interpretable as the ex-
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pected number of per-site errors per reconstructed lineage. However, all metrics
have been run on all simulations (see supplementary figures), except RF dis-
tance which does not deal well with reoccurring sequences that appear multiple
times in the affinity simulation.
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Figure 3: Correlation between metrics for the neutral simulation across the three
mutation rates described in Results. Same trend is true for affinity simulation
(Figure S1).

Methods differ in performance consistently across simula-
tions

We observe similar trends across varying simulation methods, performance met-
rics and mutation rates. A higher mutation burden (λmut) leads to more complex
trees resulting in decreased inference performance, and this is true for all meth-
ods and performance metrics (Figure S4 to Figure S10). Tools perform better
on neutral simulation compared to affinity simulations (Figure 4), which is to
be expected due to the added complexity of the affinity simulation. Overall, the
distributions of performance metrics are heavy tailed with several outliers far
outside of the interquartile range. We have chosen to hide such outliers for the
interpretability of our boxplots but their impact can be observed in the means
(red triangles) and their confidence intervals.

We find that SAMM and GCtree, which rank equally-parsimonious trees,
perform better than a uniformly-selected equally parsimonious tree from dna-
pars. For all 15 tests across mutation rates, performance metrics and simulation
methods SAMM is better than dnapars while GCtree is better than dnapars
13/15 times (Figure S4 to Figure S10). SAMM is the best ranked tool 12/15
times and often with a substantial margin to the second best. Thus the equally-
parsimonious tree set contains better and worse trees, and the likelihood ranking
of these is effective at distinguishing between them. However, given that SAMM
were using the S5F model for likelihood calculations on simulated mutations also
drawn from an S5F motif model, it should be not surprise to see that SAMM
consistently outperforms all other tools.

Because SAMM is constrained by dnapars and the criterion of only ranking
equally parsimonious trees, we consider the performance of SAMM compared
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to other tools as a conservative estimate of the potential improvement available
when correctly modeling SHM motif bias. As a control, we note that when
mutations are drawn from a uniform distribution over sites and substitutions,
SAMM is not any better than dnapars (Figure S11 and Figure S12) showing that
SAMM’s performance can be ascribed to the mutational context bias. Thus,
we can use the performance difference between SAMM and dnapars to measure
how much inference performance can improve by incorporating SHM motif bias.

Simulated datasets include information on sequence abundance, which en-
ables good performance of the GCtree method. Normally, phylogenetic trees
are made from a set of unique sequences while the cellular abundance of each
sequence, referred to as genotype abundance, is discarded. GCtree, on the
other hand, utilizes this genotype abundance information by ranking equally
parsimonious trees via a likelihood using abundances. Our results show that
GCtree is the second best performing tool, and consistently better than picking
a random equally parsimonious tree, indicating that the integration of genotype
abundance information does improve tree inference. Here GCtree is given the
correct abundances, giving an upper bound on the performance gain obtainable
by incorporating abundance information. In a situation with real data GC-
tree would rely on single cell data to gain estimates of genotype abundances;
while single cell data is becoming more widespread (57, 67–69) the majority of
Rep-Seq studies are still based on bulk RNA sequencing resulting in unknown
genotype abundances.

Performing third best after SAMM and GCtree comes dnaml and dnapars,
both with similar performance, after that IgPhyML and lastly the three muta-
tion models implemented in IQ-TREE which are all performing very similarly
(Figure 4). dnapars performs slightly better than dnaml in neutral simulations
while the opposite is true in affinity simulations. Practically, the difference be-
tween the two programs is so small that we suggest users to choose whichever
program they find to be fastest or most convenient to use for their application.

Surprisingly, on simulated sequences IgPhyML performs consistently worse
than the simpler dnaml or dnapars alternatives. Although, it is clear from the
SAMM results that SHM motifs are present and provide useful information for
inference, it does not seem to improve IgPhyML performance beyond SHM naive
methods such as MP. IgPhyML’s model was preferred (by likelihood ratio test)
in the examples provided in the paper introducing it, which were large trees
of long-term broadly-neutralizing anti-HIV antibodies (35). We suspect that
IgPhyML’s model is too rich for the less complex data provided here.

All three IQ-TREE methods, using different mutation models, perform con-
sistently worse than any other tool tested in this study. We find it surprising
that IQ-TREE using the HKY model is so far off dnaml using F84 despite the
high similarity between the two substitution models. We therefore conclude that
implementation differences e.g. tree space search, convergence criteria etc. must
be the reason for this discrepancy, which is in concordance with our observation
that IQ-TREE is much faster than dnaml.

Isotype data confirms that raw parsimony is worse than
likelihood models

The results of our investigation using isotype were somewhat inconclusive. This
measure had an extraordinarily large variance observed in both the confidence
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Figure 4: COAR performance for different tools under neutral and affinity sim-
ulation using normal SHM rate (λmut = 0.365) and mutations drawn from the
S5F motif model. Colored boxes cover the lower to the upper quartiles, with the
median marked by grey vertical lines and whiskers extending to 1.5 times the
interquartile range. Points beyond the whiskers (outliers) are hidden for clarity.
Red triangles mark the mean COAR value of all simulations (1000 replicates for
neutral and 500 replicates for affinity simulations) with the overlying red lines
showing the 95% confidence interval found by bootstrapping with 10,000 repli-
cates. Black dashed lines mark highest and lowest mean COAR values. Tools
are ordered according to their mean COAR value.

intervals and the changed rankings upon rerunning the analysis (Figure S14).
Although SAMM did perform best among all tools when using a custom motif
model fitted on the whole isotype dataset, the difference to other tools was
small relative to the variance. Despite this, SAMM is significantly better than
dnapars (Figure 5), again confirming the notion that the SHM mutation process
is important and contains residual information not captured by the parsimony
objective. Notably, the parsimony ranking of GCtree is also significantly better
than dnapars (Figure S14) despite the fact that this dataset did not contain
genotype abundance information. This indicates that the branching process
prior used by GCtree can also yield useful results using the tree topology alone.
Testing the full potential of GCtree would require a single cell dataset and this
may also result in even better performance.

Discussion

In this work we have benchmarked the performance of phylogenetic algorithms
for use in B cell sequence analysis, with a special emphasis on ancestral se-
quence reconstruction. Our sequence simulation deviates from the standard
independent-across-nucleotides models, often used in such benchmarking, by
both introducing mutations using a realistic SHM motif model and rewarding
convergent mutations via an affinity model of the binding equilibrium between
BCRs and antigen. To our knowledge this is the first simulation method to
model affinity maturation using BCRs represented as DNA sequences such that
selection is based on the corresponding amino acid sequences. Inference based
on affinity simulated sequences is more challenging, resulting in ∼10 fold higher
COAR values (Figure 4), underlining the importance of considering selection
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Figure 5: Isotype score difference to SAMM for 697 clonal families with isotype
information. Positive differences mean higher (worse) isotype score than SAMM
and vice versa for negative values. The 95% confidence interval of the mean dif-
ference to dnapars is positive and non-zero showing that SAMM is significantly
better than dnapars.

to get realistic error estimates on BCR phylogenetic reconstruction. Still, the
average COAR values for affinity simulation is 0.0003-0.0005 which translates
to an expectation of 1-2 total nucleotide errors in a lineage with 5 heavy+light
chain BCR sequences reconstructed (∼3600 nucleotides). With the added ben-
efit that about 1/3 of these expected mutations will be silent, reconstruction of
BCR affinity matured lineages using ancestral sequence reconstruction in this
parameter regime appears to be of high fidelity. However, this estimate should
be tempered with the fact that the correct naive sequence was provided to the
algorithm, and the general fact that complex processes happening in real data
can make the problem significantly harder.

Looking at the more subtle differences between tools two observations stand
out: first, accounting for SHM motifs is the biggest contributor to accuracy,
and second, implementation matters. The performance of SAMM on simula-
tions clearly shows how SHM motifs leave a useful trace that can be integrated
into an inference method. One such method is the HLP17 model used by Ig-
PhyML (35), but it may suffer from noisy parameter estimates in cases with
relatively few sequences per clonal family. An extension to IgPhyML may alle-
viate these problems by either fixing the hot/cold spot parameters with a pre-
determined motif model, or the means of combining information across clonal
families. Yet, there are still reasons to attempt other ways of integrating SHM
motifs, as well as other affinity maturation specific information like genotype
abundances, into inference methods in more principled ways than mean field
approximations or likelihood ranking of MP trees. Our benchmark also gives
a reminder that implementation matters. Under otherwise similar substitution
models two different implementations (dnaml and IQ-TREE) vary substantially
and consistently in performance. We do not know what causes these differences,
but we speculate that tree space sampling could be a critical point as this ap-
pears to be the most important difference between these two implementations,
and because IQ-TREE experiences the same pathologies with multiple differ-
ent substitution models. IQ-TREE’s heuristics were probably tuned with the
traditional phylogenetic case (of deeply diverging sequences) in mind, which is
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different from our use case.
BCR isotype switching is an irreversible event and contains useful informa-

tion about the phylogenetic relationship among BCR sequences in the same
clonal family. We observed that the two MP tree ranking methods (SAMM and
GCtree) did significantly decrease the isotype score compared to picking a ran-
dom equally parsimonious tree, thus confirming our simulations. Despite this it
appears to be very difficult to use the isotype score as an empirical performance
metric because of its high variance. We believe that this is in part due to sparse
sampling of the clonal families (only few tens of sequences out of the thousands
evolved in a GC). With better sampling and more clonal families we expect the
isotype score to be better resolved, with lower variance, and then it may be a
more useful metric for assessing the performance of BCR phylogenetic inference,
or simply used as a constraint in the inference model itself (70).

In this work we provided phylogenetic algorithms with the correct naive se-
quence. The impact of naive sequence uncertainty was in a way benchmarked
by (51), in which they used a coarse method for clonal family inference and
then asked if phylogenetic methods could later disentangle the families. Both
our study and (51) leave open the question of the performance of phylogenetic
methods when supplied with a potentially noisy estimate of the naive sequence
supplied by current clonal family inference tools. We will perform the appro-
priate benchmarking as part of our future development of methods to perform
phylogenetic reconstruction and naive sequence estimation simultaneously.

In this work we also have not tested the impact of insertion-deletion (in-
del) mutations, which do happen in BCR phylogenies (61, 71, 72). Current
tools leave a lot to be desired for ancestral sequence inference in the presence
of indels, as in our experience they “fill in” nucleotides at every site of an an-
cestral sequence inference, even if a gap is clearly the right choice. In addition,
indels are not treated as the informative characters they are in mainstream
phylogenetics software; rather, they are treated as missing data. Benchmarking
phylogenetic tools would also require benchmarking the alignment step, which
has an effect on ancestral sequence reconstruction accuracy (73). Nevertheless,
this will be another important focus for future tool development and ancestral
sequence reconstruction benchmarking within the field of BCR phylogenetic re-
construction.
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Supplementary Materials

Metrics are correlated in affinity simulations

(a) (b)

Figure S1: Metric correlations for affinity simulations across three different
mutations rates (∀λmut ∈ {0.1825, 0.365, 0.73}). a) Single sample. b) Three
samples, with two intermediate sampling times.
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Metrics are robust across different mutation ratesNeutral simulation

Figure S2: Correlation between the average performance of the methods tested
at different mutation rates for neutral simulations over all three performance
metrics.
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Affinity simulation

Figure S3: Correlation between the average performance of the methods tested
at different mutation rates for affinity simulations over the two performance
metrics (RF distance excluded because of recurring sequences in the simulated
phylogeny).
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Benchmarking results using COAR

Figure S4: Neutral simulation showing COAR metric for mutation rates: “x1/2”
= 0.1825, “Normal” = 0.365, and “x2” = 0.73.

Figure S5: Affinity simulation showing COAR metric for mutation rates: “x1/2”
= 0.1825, “Normal” = 0.365, and “x2” = 0.73.
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Figure S6: Affinity simulation with intermediate sampling (GC generation 15, 30
and 45) showing COAR metric for mutation rates: “x1/2” = 0.1825, “Normal”
= 0.365, and “x2” = 0.73.
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Benchmarking results using MRCA

Figure S7: Neutral simulation showing MRCA metric for mutation rates:
“x1/2” = 0.1825, “Normal” = 0.365, and “x2” = 0.73.

Figure S8: Affinity simulation showing MRCA metric for mutation rates: “x1/2”
= 0.1825, “Normal” = 0.365, and “x2” = 0.73.
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Figure S9: Affinity simulation with intermediate sampling (GC generation 15, 30
and 45) showing MRCA metric for mutation rates: “x1/2” = 0.1825, “Normal”
= 0.365, and “x2” = 0.73.
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Benchmarking results using RF

Figure S10: Neutral simulation showing RF metric for mutation rates: “x1/2”
= 0.1825, “Normal” = 0.365, and “x2” = 0.73.
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Benchmarking results using COAR and uniform mutation
model

Figure S11: Neutral simulation showing COAR metric. Mutations were drawn
from a uniform distribution over sites and substitutions using mutation rates:
“x1/2” = 0.1825, “Normal” = 0.365, and “x2” = 0.73.

Figure S12: Affinity simulation showing COAR metric. Mutations were drawn
from a uniform distribution over sites and substitutions using mutation rates:
“x1/2” = 0.1825, “Normal” = 0.365, and “x2” = 0.73.
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Isotype score calculationIsotype clade misplacements

AA
A

A

A

A

A
AA

A
AA

G

G
G

Misplaced clade

Violation of 
switching order

AA
A

A

A

A

AG

G

G

AA

A
AA

OK

Misplacement 
count 1 0

Method dnaml GCtree

Baseline 0.672
Normalized 

score 1.488 0

0.691

Switch order: IgM, IgG, IgE, IgA

Figure S13: Example calculation of the isotype score. On the left: a tree
inferred by dnaml where one clade has been misplaced resulting in a violation
in the isotype switching order. One the right: a tree inferred by GCtree, on
the same sequences, does not have any violations in the isotype switching order.
The misplacement count is normalized by dividing it by a baseline score, found
by taking the average misplacement score of 10,000 label shuffled trees of the
same topology. The normalized score is also referred to as the “isotype score”.
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Isotype score comparison

The isotype score distribution was computed over 697 selected clonal families.
The isotype score has a very high variance as can be observed in the 95%
bootstrap confidence interval (10,000 replicates of sampling with replacement)
of the mean. The comparison was run twice: once using the S5F motif model
for SAMM ranking and another using SAMM’s own 5-mer motif model fitted
on the mutations in the 697 selected clonal families. For all other tools these
represent replicate runs. The replicated runs clearly exemplifies the uncertainty
of the mean estimates e.g. IQ-TREE under the JC model was ranked 4th in the
S5F replicate and 7th in the SAMM replicate. The only consistent feature is
that IgPhyML ranks high (second best).

Since the data is paired a “significant” difference between two compared
tools should be calculated using a paired statistical test. One way of showing
the comparison between paired data is to subtract it pairwise and compute
confidence intervals on the differences. We do this by treating the best tool as a
reference point and finding the distribution of differences to other tools. From
the 95% confidence intervals of these differences one can accept/reject the null
hypothesis of no difference in the means. This hypothesis test shows that both
the SAMM and GCtree parsimony ranking strategies are significantly better
than dnapars.

SAMMS5F

Figure S14: Isotype score distribution on 697 selected clonal families. In the
left column: SAMM ranking uses the S5F model. In the right column: SAMM
ranking uses its own motif model fitted on the mutations in the input data.
Upper row shows the isotype score distribution, lower row shows the isotype
score distributions after subtracting the isotype scores of the best ranked tool.
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Simulating affinity maturation

In this section we will describe our BCR sequence simulation framework in
depth, first by introducing the neutral process which is the foundation of all our
simulations, and then going on to motivate and derive a model that incorporates
BCR affinity and antigen competition to define sequence fitness.

Neutral model

The neutral process can be viewed as a model of cell divisions, where at each
cycle through the GC a cell can either die or produce a number of offspring,
and each offspring has some probability of carrying mutations. Offspring num-
bers larger than two are used to approximate multiple cell divisions in a single
GC cycle. The root sequence (naive BCR) is given at the simulation initializa-
tion as a starting point from where the tree is evolved until the simulation is
stopped. Cell division is controlled by a Pois(λ) progeny distribution, and at
each GC cycle all progeny cells will undergo a mutation process. The number of
nucleotides to mutate is drawn from another Poisson distribution (Pois(λmut))
and introduced sequentially into the sequence using a substitution model. Se-
quential introduction of mutations allows the possibility of back mutations. We
use the S5F mutation model (17) to introduce mutations, which describes muta-
bility and substitution preferences of the middle base of all 5-mer DNA motifs.
However, a 5-mer mutability cannot be used directly on sites at the start or end
of a sequence because of missing context, therefore we fill in missing context
with the unknown base, N, and average over all possible motifs fitting into this
ambiguous context.

Termination of the neutral branching process is achieved in either of three
ways: 1) by simulating under a subcritical process (λ < 1) (39) and following
it until extinction, 2) by using a stopping time T , or 3) by stopping after a
population of N cells has been reached. Sequences are then sampled from the
tree leaves. In addition we introduced a parameter for down-sampling the cell
population to n cells. Model parameters are tabulated in Table S1.

Parameter Description
λ Pois(λ) progeny distribution
λmut Pois(λmut) mutation distribution
T Stopping time
N Stopping number of sequences
n Down-sampled number of sequences

Table S1: Parameters used in the neutral simulation.

Simulations with affinity selection

To model the affinity maturation process with selection we will use the ex-
act same framework as described for the neutral process, but now the Pois(λ)
progeny distribution is no longer constant. We consider the magnitude of λ as
the fitness of a cell. In the neutral model λ is a fixed constant resulting in a
completely flat fitness landscape, as opposed to a system with selection where
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the fitness landscape is a more complex and rugged surface. The following sub-
sections will describe a model with the simple purpose of defining a function
to calculate the fitness of any BCR sequence. The fitness is measured in terms
of a single λ(i) associated to each cell and defining a cell specific progeny dis-
tribution. Thus, selection is condensed into a dynamic λ, and this is the only
difference to the neutral process.

Model concept and biological assumptions

Let us make some basic assumptions to keep later definitions simpler. First,
the system we intend to model is the affinity maturation process happening in
the GC, assumed to be driven by the BCR’s affinity towards a single target
antigen. A real GC reaction is seeded by 50-200 naive B cells, however, due
to the extensive competition they often completely “resolve” in later stages of
affinity maturation, resulting in cells with only a single common naive B cell
ancestor i.e. monoclonallity (20). We do not attempt to model this inter-clonal
competition so we make the simplifying assumption that the simulated GC is
seeded by a single naive B cell. In our model it is the BCR amino acid sequence
that is under selection, thus we ignore the possible fitness effects of synonymous
mutations.

The GC is modeled with constant volume and constant total concentration
of antigen. B cells compete for this limited antigen. B cells with high affinity
BCRs will bind more antigen and are more likely to undergo cell division and vice
versa for low affinity BCRs. Binding equilibrium is assumed to be instantaneous
and the progeny distribution for a B cell is evaluated as a function of the BCR
occupancy at this equilibrium. Affinity is a function of the BCR sequence and
its amino acid sequence distance from the best BCR (here called the mature
sequence). Once a new cell has been created this changes the binding equilibrium
which then needs to be updated. A GC cycle in the simulation is defined by one
iteration through all the cells to evaluates their progeny distributions. Cartoon
overview in Figure S15.

Kinetic model of BCRs binding antigen

In the following we derive the fraction of a B cell’s BCRs bound to the antigen
in a GC (BCR occupancy). This is then extended to a situation with multiple
B cells with different BCR affinities.

First, consider the BCRs of a single B cell as free molecules with a total
concentration of [Btotal], then the BCR occupancy at equilibrium is:

Bbound =
[AB]

[Btotal]

Where [AB] is the concentration of BCRs bound to antigen. We need to derive
a solution to calculate Bbound.
The binding equilibrium between free antigen ([A]), free BCRs ([B]) and BCR
bound antigen ([AB]) is:

[A] + [B]
kon

koff

[AB] (1)
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Name Sequence Distance

Mature GGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVIWYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAGGGSYDGDYW
GGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVIWYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAGGGSYDGDYW 0
GGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVIWYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAGGGSYDGDYW 2
GGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVIWYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAGGGSYDGDYW 5
GGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVIWYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAGGGSYDGDYW 7
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Figure S15: Simulation overview. The system is considered as a closed envi-
ronment with free floating antigen and a number of B cells presenting BCRs
on their surface, (top panel). Different colors correspond to different affinity
BCR sequences. In the middle panel a sequence alignment shows the distance
between BCR sequences and the mature BCR. Bottom panel shows first how
distance from the mature BCR is converted to affinity, then how the fraction of
bound BCRs is transformed to a λ defining the progeny distribution. Rightmost
of the bottom panel shows the lineage tree with an ellipse marking the B cells
of the current generation also displayed in the top panel.

The on- and off-rate of binding is expressed as constants kon and koff. Affinity
can then be expressed as:

Kd ≡
koff

kon
=

[A][B]

[AB]
(2)

Isolating [AB]:

[AB] = [B]
[A]

Kd

Substituting [B] for its expression from mass conservation, [Btotal] = [B]+[AB]:

[AB] = ([Btotal]− [AB])
[A]

Kd

Which rearranges to the result:

[AB] =
[Btotal]

1 + Kd

[A]

Then extending the model for binding equilibrium of a single BCR sequence to

S-14

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 25, 2018. ; https://doi.org/10.1101/307736doi: bioRxiv preprint 

https://doi.org/10.1101/307736
http://creativecommons.org/licenses/by/4.0/


one with multiple BCR sequences just requires indexing:

[A] + [B(1)]
k
(1)
on

k
(1)
off

[AB(1)]

[A] + [B(2)]
k
(2)
on

k
(2)
off

[AB(2)]

...

[A] + [B(n)]
k
(n)
on

k
(n)
off

[AB(n)]

The same solution applied and because all B cells compete for the same antigen,
each [AB(i)] is dependent through the concentration of unbound antigen:

[AB(1)] =
[B

(1)
total]

1+
K

(1)
d

[A]

[AB(2)] =
[B

(2)
total]

1+
K

(2)
d

[A]

...

[AB(n)] =
[B

(n)
total]

1+
K

(n)
d
[A]

(3)

Now introducing mass conservation for the antigen A:

Atotal = [A] +

n∑

i=1

[AB(i)] ≡ [A] +

n∑

i=1

[B
(i)
total]

1 +
K

(i)
d

[A]

(4)

By rearranging to a polynomial form the system can be solved by root finding to
calculate [A] which is then used to find all the [AB(i)]’s and transformed them

to B
(i)
bound’s.

This is a solution to a model of BCR competition in the GC but to make this
work we also need a definition of BCR affinity as well as a way of transforming
BCR occupancy to fitness in the sequence simulation.

Defining affinity for a sequence

Here we describe how to define the affinity (K
(i)
d ) of each BCR. A numer-

ical affinity value can be generated by transforming a BCR sequence (S(i))
into a number that represents affinity. Formally, this would be a function:

f(S(i)) = K
(i)
d . Consider that the BCRs in a GC are evolving towards a specific

mature sequence, denoted SM . A mature sequence is the sequence with the
highest affinity and fitness. We will define a fitness landscape around this ma-
ture sequence using Hamming distance between amino acid sequences: dH(·, ·).

Let us define the affinity of the naive input sequence as KN
d and corre-

spondingly the affinity for the mature sequence as KM
d . Now, we can define
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an arbitrary function with reference points in KN
d and KM

d , that transforms a
distance between S(i) and SM to an affinity:

f(S(i), d0, S
M ,KN

d ,K
M
d ) = K

(i)
d

Where d0 = dH(SN , SM ) is the distance between the naive and mature se-
quences. There are two constraints we want to impose. If the BCR sequence
is: 1) equal to the naive sequence (SN ) it takes the affinity of the naive BCR
(KN

d ), and 2) equal to the mature sequence (SM ) it takes the affinity of the
mature BCR (KM

d ):

f(SN , d0, S
M ,KN

d ,K
M
d ) = KN

d

f(SM , d0, S
M ,KN

d ,K
M
d ) = KM

d

(5)

A flexible function for transforming distance to affinity is the family of power
transformations which we define with the two conditions satisfied as:

f(S(i), d0, S
M ,KN

d ,K
M
d ) = KM

d +

(
d

d0

)k

(KN
d −KM

d ) (6)

Where d = dH(S(i), SM ) is the distance between the input and mature se-
quences. The exponent, k, can be chosen to adjust the mapping between dis-
tance and affinity, with the restriction that 0 < k <∞ ( Figure S16).
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Figure S16: Varying the exponent k in (6) to achieve different mappings between
distance and affinity. Naive and mature affinity is held constant, KN

d = 100nM
and KM

d = 1nM .

In a real affinity maturation process there may be many different BCR se-
quences that are practically equally fit e.g. this will happen when multiple amino
acids are equally fit on a given position, and it will also happen if there are mul-
tiple distinct maturation paths that end up with equally fit BCRs. Our model
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deals with this by allowing multiple mature sequences and then determining the
affinity based on the shortest distance to any of these:

d = argmin
SM∈mature sequences

dH(S(i), SM )

Transforming BCR occupancy to fitness

Equipped with a sequence to affinity mapping and a method to solve the bind-
ing equilibrium in a population of BCRs the last element necessary is to couple
BCR occupancy to fitness. This is achieved through the progeny distribution;

if B
(i)
bound is small the progeny distribution should favor terminating the B cell

and opposite, if B
(i)
bound is large the progeny distribution should favor cell di-

vision. The Poisson distribution will reflect this behavior by setting λ(i) small

when B
(i)
bound is small and λ(i) large when B

(i)
bound is large. However, it is un-

realistic that there should be a one-to-one mapping between B
(i)
bound and λ(i)

and therefore we need a function for transformation: Y (B
(i)
bound) = λ(i). The

function should allow specification of lower and upper bounds on λ(i), a thresh-

old (ffull) on B
(i)
bound when more bound antigen does not have any fitness effects

(Figure S17) and another threshold ( ffull
U ) defining B

(i)
bound when the progeny dis-

tribution transitions between a subcritical and a supercritical process (λ(i) = 1)
(39) (Figure S18). These requirements can be accommodated by the generalized
logistic function:

λ(i) = Y (B
(i)
bound) = α+

K − α
G+Q exp(−βB(i)

bound)
(7)

G is chosen to be the typical logistic function value of 1. K is the upper bound
on λ(i) and is set to 2 (slightly larger than the λ = 1.5 fitted for the neutral
branching process). α, β and Q are found using three conditions:

Y (0) = 0, Y

(
ffull

U

)
= 1, Y (ffull) = 2− ε (8)

The solution is undefined in Y (ffull) = 2 because the function is asymptotically
growing towards 2, therefore ε can be regarded as a small value (e.g. 10−3) so
that Y (ffull) ≈ 2. The constant U in condition 2 can be adjusted to set the

value of B
(i)
bound resulting in λ(i) = 1. Using these conditions α, β and Q can

be found and the logistic function is fully defined. α can be interpreted as the
lower asymptote of the function. β is the steepness of the function and it is
coupled to the Q parameter and follows it according to the three conditions in
(8).

Parameter choices

We define the maximum fitness to be attained at 100% BCR binding, hence we
fix ffull = 1. The infliction point parameter U is chosen to reflect our expectation
that initially, when only a few BCRs are bound and stimulation is low, there
will be a linear increase of the stimulus when antigen binding increase, and at
some point close to ffull the increase in stimulus levels out. This expected shape
is recapitulated by a choosing U = 5 (Figure S18).
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Figure S17: Using a constant U = 5, changing the ffull parameter in the
conditions in (8) to change the point where Bbound reaches the λ plateau.
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Figure S18: Using a constant ffull = 1, changing the U parameter in the
conditions in (8) to achieve a shift of the inflection point at λ = 1 on the Bbound

axis.

The total concentration of antigen (Atotal) needs to be defined to solve the
binding equilibrium. To do this we need to introduce the concept of a carrying
capacity of the simulated GC, which is defined as the number cells a GC is
able to support in its micro environment. The carrying capacity is determined
mainly by the total concentration of antigen since binding to antigen controls
the progeny distribution. BCR affinity is also influencing antigen binding and
therefore must influence the carrying capacity, but at high affinity nearly all
antigens are bound and hence the total antigen concentration is the most influ-
ential determinant of GC carrying capacity. At Pois(1) the progeny distribution
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is only just sustaining the population size of the GC, and given condition 2 in
(8) this happens at ffull

U . Then, under the assumption that the population of B
cells all have identical BCR sequences, the maximum carrying capacity is:

C([Atotal]) =
U

ffull

Atotal − [A]

Btotal
≈ U

ffull

Atotal

Btotal
(9)

Using a carrying capacity of 1000 (41, 74) we can calculate Atotal. We note
that simulations are generally robust to different parameter choices (Figure S19).

(a) (b) (c)

Figure S19: Simulation with affinity selection for varying magnitudes of ffull.
(a) ffull = 1, (b) ffull = 0.5 and (c) ffull = 0.05. Simulations with d0 = 10, U = 5
and [Atotal] adjusted to obtain a carrying capacity of 1000 cells. Each simulation
was run for 100 generations and the composition of sequence distances to their
closest mature sequence are plotted for each generation.

In the transformation from distance to affinity in (6), we have to make
a choice about which exponent to use. We would like to disallow sequences
drifting far away from the mature sequence by enforcing a positive exponent.
Furthermore, we require that each Hamming distance step between the naive
and mature sequences has a substantial affinity effect, and therefore k = 2 is
used.

The amino acid sequence distance between the naive and mature sequences,
d0, is set to 5. The Kd for a naive sequence is likely in the low micro molar range
range of 10−6−10−7M , while the mature affinity is in the nano or subnano molar
range of 10−8 − 10−10M (75–78) (M is used to denote molar concentration).
We choose the naive sequence to be Knaive

d = 10−7M (100nM) and the mature
to be Kmature

d = 10−9M (1nM), giving a large span in affinity to select on.
Based on approximating the GC as spheric, and using the experimental data
for average GC diameter and BCRs per B cell, the model is fully defined in
nanomolar concentrations. All necessary constants are tabulated in Table S2.
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Constant Value Description Reference
Btotal 1× 104 Number of BCRs on each B cell (79, 80)
nt 1000 B cells per GC (41, 74)
dim 10−4m GC diameter (81)
1
U

1
5 Fraction of ffull necessary to sustain the population See text

d0 5 Distance between the naive and mature sequences See text
k 2 Exponent of affinity transformation See text
ffull 1 Fraction BCRs bound at full activation See text
Knaive

d 100nM Naive affinity (75–78)
Kmature

d 1nM Mature affinity (75–78)

Table S2: Constants used in the model of affinity simulation.
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Correctness of ancestral reconstruction

In the following section we will introduce a benchmark metric for ancestral se-
quence reconstruction, which we call “correctness of ancestral reconstruction”
(COAR). The correctness of a reconstruction compared to the true evolutionary
history can be measured by multiple similarity measures e.g. topological similar-
ity, branch length similarity and sequence similarity between inferred and real
ancestors. All these measures are inter-dependent e.g. the inferred sequences
are affected by the branch lengths and the topology and the branch lengths
are conditioned on a topology etc. And while inferring correct tree topology is
important in its own right, the correctness of the inferred ancestral sequences
are the foremost important objective of most BCR phylogenies when these se-
quences are used for applications involving DNA synthesis, protein expression
and functional testing. For this reason, the sole purpose of the COAR metric
is to capture the correctness of the inferred ancestral sequences. In particular,
we would like to propose a loss function that does not penalize a phylogeny
when minor parts of the tree topology is incorrect while ancestral sequence
reconstruction is perfect.

The purpose of COAR is to compare two trees built with the same leaves;
let us call these the true and inferred tree. When performing ancestral sequence
reconstruction the desired result is often to reconstruct the internal nodes in
the direct path going from a leaf to the root, as illustrated in Figure S20. This
path is extracted by starting at a leaf node and traversing upwards, parent by
parent, until the root is reached. In the following, this list of sequences will be
referred to as the ancestral lineage. The correct ancestral lineage is the objective
of COAR, and we construct the COAR value so it represents the expected per-
site error in such a reconstruction. Following the example in Figure S20, often
there will be small differences in tree topology between the true and inferred
trees, and these will likely make the number of internal states in the ancestral
lineages differ. This makes comparison difficult because two lists of different
length cannot be element-wise compared. The lists could be made equal length
by adding gaps, but then a systematic way of adding these would be necessary.

The basis of COAR is a list comparison progressing element-wise through
the list i.e. element 1 in list 1 compared to element 1 in list 2, next, element 2
in list 1 compared to element 2 in list 2 etc. For lists of similar length the list
comparison is easy, it will simply be the cumulated distance from list element
comparisons, corresponding to the sum of Hamming distances between inferred
and true ancestors in the lists. When lists are not equally long, one or more
gaps must be introduced into one of the lists; we choose to do so in such a
way that the list similarity is maximized. This is an alignment problem with
matches/mismatches/gaps and it can be efficiently solved using the Needleman-
Wunsch algorithm (82). We define it as a global alignment so that it has to
start at the root and end at the leaf because both states are known for the true
and inferred phylogenies. We further restrict the Needleman-Wunsch algorithm
so that gaps are only allowed to be introduced into the shortest of the two lists
being aligned, this forces the maximum number of node comparisons.

One interpretation of the COAR value is that it is the distance between the
true and inferred mutation histories, as illustrated in in Figure S21. In this
representation of an ancestral lineage the root and the leaf are two fixed states
with a continuous mutation process running between them. The internal nodes
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N (AAA)

L (TTT)

A2t (ATT)

A1t (AAT)

L (TTT)

N (AAA)

True Inferred

A1i (TAT)

Figure S20: True vs. inferred tree with colored leaves and grey ancestral states.
Reconstruction from the light blue leaf is marked by a dashed red line and
annotated with genotypes in parenthesis. N is the naive sequence, L is the
leaf sequence and the As are ancestors 1, 2, . . . , n with either true or inferred
marked by t or i, respectively, appended to the subscript. The inferred tree
has misplaced the branch leading to the light blue node, resulting in a missing
ancestral sequence.

in the ancestral lineage are discrete states in the continuous process, on the true
tree these corresponds to actual cells but on the inferred tree they need not
correspond to actual observed genotypes. Instead we can think about them as
realizations along the continuous mutation process defined by the inferred tree.
The COAR value is then a similarity measured between the true cell genotype
and the inferred realizations, each sampled from the true and inferred mutation
processes respectively, and in the case of a mismatch between the number of
realizations and cells, a gap will be introduced in the alignment to compensate.

Using the aligned ancestral lineages it is now possible to derive a score,
similar to a sequence alignment score. We use negative penalties for mismatches
and zero points for matches, and furthermore normalize the alignment score to
the smallest possible score (all mismatches) for that lineage, yielding the COAR
value for a single lineage i:

COARi =
alignscore(leafi)

alignscoremin(leafi)

Where alignscore is the score of the alignment between the true and inferred
ancestral lineages and alignscoremin is the smallest possible score given the
number and length of the sequences in the ancestral lineages. The alignment
score is defined in terms of penalties, so all values are less than or equal to
zero. Since both numerator and denominator are negative the COAR value is
positive.

COAR is defined in the range from 0 to 1, where 0 is a perfect ancestral
sequence reconstruction and 1 is the worst. The COAR value is comparable
across different trees, methods and datasets because of this normalization. Its
value can be interpreted as the average per-site error across all the inferred an-
cestral lineage sequences. COAR for a single ancestral lineage can be expanded
to the tree level by calculating the mean COAR value for the whole tree:

mean(COAR) =

NL∑

i=1

alignscore(leafi)

alignscoremin(leafi)

/
NL
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(CCC)

(GGG)
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Continuous mutation process

root

internal node

leaf

Observed

(CCC)

unobserved intermediate
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branch length

Figure S21: One interpretation of the COAR value is that it is the distance
between the true and inferred mutation histories, here shown by the true and
inferred ancestral lineage nodes of an example phylogeny. The true ancestral
lineage (left side) represents actual observed cells where the genotype is a known
constant. The inferred ancestral lineage (right side) represents the estimated
genotypes at branching points along the inferred topology. In some cases there
is a mis-correspondence between observed cells in the true phylogeny and the
branching points in the inferred tree. These are treated as missing realizations
and ignored in the alignment of the two mutation histories.

Where NL is the number of leaves on the tree.

Calculating COAR values - example with a known root

As an example of how the COAR metric works we will present a small example,
summarized in Figure S20 with the light blue leaf chosen for lineage reconstruc-
tion and the true and inferred ancestral lineages marked in each tree with red
dashed lines. The root sequence is a known state called the naive sequence. As-
sume that the true phylogeny is known with corresponding ancestral sequences.
Now take a leaf sequence on the tree and reconstruct its ancestral lineage by
extracting the parent, the parent’s parent, etc. until the root is reached, tabu-
lated in Table S3. This ordered list of sequences constitute the reconstructed
ancestral lineage for the chosen leaf and it always starts at the root and ends
at the leaf, therefore we are imposing this as a restriction on the alignment.
Furthermore, these two known states they do not count towards the COAR
value.

True Inferred
Naive (N) AAA AAA

A1 AAT TAT

A2 ATT -
Leaf (L) TTT TTT

Table S3: Reconstructed ancestral lineage for true and inferred trees as shown
and marked by red dashed line in Figure S20.
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In the case of a wrongly inferred topology the true and inferred list of ances-
tral lineage sequences can have different length. It is therefore necessary to find
a way of getting the best possible alignment between these two lists. We know
the start and end of this alignment but the sequences in between are free to be
shifted up or down to maximize the alignment fit. We adapt the Needleman and
Wunsch dynamic program solution (82) to solve this as an alignment problem.
A notable difference to the original algorithm is that it was intended to align
two sequences of characters, like DNA or amino acids, while in this application
a list of whole sequences are aligned.

The first step in the alignment algorithm is to calculate a score matrix of
all pairwise sequence comparisons. For this example we use the negative Ham-
ming distance as a score, however, the score function can be extended to reflect
different situations, like imposing a larger penalty for non-synonymous rather
than synonymous mutations. The score matrix is tabulated in Table S4.

N A1t A2t L
N 0 -1 -2 -3
A1i -2 -1 -2 -1
L -3 -2 -1 0

Table S4: Score matrix based on all pairwise distances between the sequence
in Figure S20.

Now we are ready to initializing the alignment grid used in the dynamic
programming solution of the alignment problem. Initialization is started by
inserting the scores of pure gap characters i.e. first row and first column (Ta-
ble S5), and we enforce alignment of the two root sequences by setting these
gap penalties to negative infinity. Similarly, we disallow introduction of gaps in
the longest of the two lists, also by penalizing with negative infinity (Table S6).
Setting certain gap penalties to negative infinity is a simple way of dealing with
disallowed gaps and it also works well for implementations.

- N A1t A2t L
- 0 -Inf -Inf -Inf -Inf
N -Inf _
A1i -Inf
L -Inf

Table S5: The starting alignment grid, initialized with negative infinite gap
penalties to disallow gap opening in the beginning of the alignment. The grid
is filled up from left to right row by row, starting in the cell marked by _.

Then the alignment grid is filled up, starting with the cell marked by _ in
Table S5, progressing to the rightmost cell and continuing in the same fashion
on the next row. Cells are filled up using the following maximization:

Ci,j = max {(Ci−1,j + gpdown); (Ci,j−1 + gpright); (Ci−1,j−1 + Si−1,j−1)}

Where Ci,j is the ith row and jth column cell in the grid, gpdown is the penalty
of making a downwards gap, gpright is the penalty of making a rightwards gap
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and Si−1,j−1 is the score of aligning the ith, jth elements found by look-up in
the score matrix (Table S4) In this example the longest list is that of the true
ancestral lineage so in this list gaps are disallowed. In the inferred lineage gaps
are allowed but not penalized: gpdown = −Inf and gpright = 0.

The grid is filled and the final alignment score is the number in the rightmost
bottom cell (Table S6).

- N A1t A2t L
- 0 -Inf -Inf -Inf -Inf
N -Inf 0 0 0 0
A1i -Inf -Inf -1 -1 -1
L -Inf -Inf -Inf -2 -1

Table S6: The filled alignment grid, ready for tracing back the best alignment.
The rightmost bottom cell contains the score for the best alignment.

The last step is to traceback the best path through the alignment grid and
return this as the list alignment. The traceback starts from the leaf sequence, in
the right bottom corner, and ends with the naive sequence in the left top corner.
A diagonal step is equivalent to a sequence match, a left move is introducing
a gap character in the inferred list and a move up is introducing a gap in the
true list. The best path is found by progressively moving upwards, choosing the
move with:

movei,j = which {Ci,j = [(Ci−1,j + gpdown), (Ci,j−1 + gpright), (Ci−1,j−1 + Si−1,j−1)]}

Notice that this path has already been generated when the alignment grid was
filled up and could be cached. The resulting alignment and the penalty for each
position is tabulated in Table S7.

Lastly the alignment score is normalized by the smallest possible alignment
score i.e. no similarity between sequences in the lists. This normalized number
is the COAR value and it runs between 0 to 1. In the presented example we
only calculated the COAR value for the reconstructed ancestral lineage from
one leaf, but by doing the calculations on all leaves on the tree and taking the
average, the mean COAR value for the whole tree would be computed.

True N A1t A2t L
Inferred N A1i - L
Penalty 0 -1 0 0
Max penalty 0 -3 0 0
COAR -1/-3=0.333

Table S7: The resulting alignment and the penalties for each position.
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