
Name Sequence Distance

Mature GGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVIWYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAGGGSYDGDYW
GGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVIWYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAGGGSYDGDYW 0
GGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVIWYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAGGGSYDGDYW 2
GGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVIWYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAGGGSYDGDYW 5
GGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVIWYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAGGGSYDGDYW 7

0 0.2 0.4 0.6 0.8 1

Antigen bound

0

0.5

1

1.5

2

�

E↵ect of ffull on the T (fBbound) Pois(�)
ffull = 1

0 0.2 0.4 0.6 0.8 1

Fraction BCR bound

0

0.5

1

1.5

2

�

E↵ect of ffull on the T (fBbound)
Pcolors

i=1 ABi

ffull = 1

0 0.2 0.4 0.6 0.8 1

Fraction BCR bound

0

0.5

1

1.5

2

�

E↵ect of ffull on the T (fBbound)
Pcolors

i=1 ABi

ffull = 1

0 2 4 6 8

Hamming distance from mature

0

25

50

75

100

A
�

ni
ty

(n
M

)

Hamming distance to a�nity
k = 2

0 2 4 6 8

Hamming distance from mature

0

25

50

75

100

A
�

ni
ty

(n
M

)

Hamming distance to a�nity
k = 2

0 0.2 0.4 0.6 0.8 1

Antigen bound

0

0.5

1

1.5

2
�

E↵ect of ffull on the T (fBbound)
ffull = 1

0 0.2 0.4 0.6 0.8 1

Antigen bound

0

0.5

1

1.5

2

�

E↵ect of ffull on the T (fBbound)
Pcolors

i=1 ABi

ffull = 1

0 0.2 0.4 0.6 0.8 1

Antigen bound

0

0.5

1

1.5

2

�

E↵ect of ffull on the T (fBbound)
Pn

i=1 ABi

ffull = 1

0 0.2 0.4 0.6 0.8 1

Antigen bound

0

0.5

1

1.5

2

�

E↵ect of ffull on the T (fBbound)
Pn

i=1 ABi

ffull = 1

Figure S15: Simulation overview. The system is considered as a closed envi-
ronment with free floating antigen and a number of B cells presenting BCRs
on their surface, (top panel). Different colors correspond to different affinity
BCR sequences. In the middle panel a sequence alignment shows the distance
between BCR sequences and the mature BCR. Bottom panel shows first how
distance from the mature BCR is converted to affinity, then how the fraction of
bound BCRs is transformed to a λ defining the progeny distribution. Rightmost
of the bottom panel shows the lineage tree with an ellipse marking the B cells
of the current generation also displayed in the top panel.

The on- and off-rate of binding is expressed as constants kon and koff. Affinity
can then be expressed as:

Kd ≡
koff

kon
=

[A][B]

[AB]
(2)

Isolating [AB]:

[AB] = [B]
[A]

Kd

Substituting [B] for its expression from mass conservation, [Btotal] = [B]+[AB]:

[AB] = ([Btotal]− [AB])
[A]

Kd

Which rearranges to the result:

[AB] =
[Btotal]

1 + Kd

[A]

Then extending the model for binding equilibrium of a single BCR sequence to

S-14

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted April 25, 2018. ; https://doi.org/10.1101/307736doi: bioRxiv preprint

one with multiple BCR sequences just requires indexing:

[A] + [B(1)]
k
(1)
on

k
(1)
off

[AB(1)]

[A] + [B(2)]
k
(2)
on

k
(2)
off

[AB(2)]

...

[A] + [B(n)]
k
(n)
on

k
(n)
off

[AB(n)]

The same solution applied and because all B cells compete for the same antigen,
each [AB(i)] is dependent through the concentration of unbound antigen:

[AB(1)] =
[B

(1)
total]

1+
K

(1)
d

[A]

[AB(2)] =
[B

(2)
total]

1+
K

(2)
d

[A]

...

[AB(n)] =
[B

(n)
total]

1+
K

(n)
d
[A]

(3)

Now introducing mass conservation for the antigen A:

Atotal = [A] +

n∑

i=1

[AB(i)] ≡ [A] +

n∑

i=1

[B
(i)
total]

1 +
K

(i)
d

[A]

(4)

By rearranging to a polynomial form the system can be solved by root finding to
calculate [A] which is then used to find all the [AB(i)]’s and transformed them

to B
(i)
bound’s.

This is a solution to a model of BCR competition in the GC but to make this
work we also need a definition of BCR affinity as well as a way of transforming
BCR occupancy to fitness in the sequence simulation.

Defining affinity for a sequence

Here we describe how to define the affinity (K
(i)
d) of each BCR. A numer-

ical affinity value can be generated by transforming a BCR sequence (S(i))
into a number that represents affinity. Formally, this would be a function:

f(S(i)) = K
(i)
d . Consider that the BCRs in a GC are evolving towards a specific

mature sequence, denoted SM . A mature sequence is the sequence with the
highest affinity and fitness. We will define a fitness landscape around this ma-
ture sequence using Hamming distance between amino acid sequences: dH(·, ·).

Let us define the affinity of the naive input sequence as KN
d and corre-

spondingly the affinity for the mature sequence as KM
d . Now, we can define

S-15

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted April 25, 2018. ; https://doi.org/10.1101/307736doi: bioRxiv preprint

https://doi.org/10.1101/307736
http://creativecommons.org/licenses/by/4.0/

an arbitrary function with reference points in KN
d and KM

d , that transforms a
distance between S(i) and SM to an affinity:

f(S(i), d0, S
M ,KN

d ,K
M
d) = K

(i)
d

Where d0 = dH(SN , SM) is the distance between the naive and mature se-
quences. There are two constraints we want to impose. If the BCR sequence
is: 1) equal to the naive sequence (SN) it takes the affinity of the naive BCR
(KN

d), and 2) equal to the mature sequence (SM) it takes the affinity of the
mature BCR (KM

d):

f(SN , d0, S
M ,KN

d ,K
M
d) = KN

d

f(SM , d0, S
M ,KN

d ,K
M
d) = KM

d

(5)

A flexible function for transforming distance to affinity is the family of power
transformations which we define with the two conditions satisfied as:

f(S(i), d0, S
M ,KN

d ,K
M
d) = KM

d +

(
d

d0

)k

(KN
d −KM

d) (6)

Where d = dH(S(i), SM) is the distance between the input and mature se-
quences. The exponent, k, can be chosen to adjust the mapping between dis-
tance and affinity, with the restriction that 0 < k <∞ (Figure S16).

0 2 4 6 8
Hamming distance from mature

0

25

50

75

100

A
ffi

ni
ty

(n
M

)

Hamming distance to affinity
k = 0.1

k = 0.2

k = 0.4

k = 1

k = 2

k = 5

k = 10

Figure S16: Varying the exponent k in (6) to achieve different mappings between
distance and affinity. Naive and mature affinity is held constant, KN

d = 100nM
and KM

d = 1nM .

In a real affinity maturation process there may be many different BCR se-
quences that are practically equally fit e.g. this will happen when multiple amino
acids are equally fit on a given position, and it will also happen if there are mul-
tiple distinct maturation paths that end up with equally fit BCRs. Our model

S-16

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted April 25, 2018. ; https://doi.org/10.1101/307736doi: bioRxiv preprint

https://doi.org/10.1101/307736
http://creativecommons.org/licenses/by/4.0/

deals with this by allowing multiple mature sequences and then determining the
affinity based on the shortest distance to any of these:

d = argmin
SM∈mature sequences

dH(S(i), SM)

Transforming BCR occupancy to fitness

Equipped with a sequence to affinity mapping and a method to solve the bind-
ing equilibrium in a population of BCRs the last element necessary is to couple
BCR occupancy to fitness. This is achieved through the progeny distribution;

if B
(i)
bound is small the progeny distribution should favor terminating the B cell

and opposite, if B
(i)
bound is large the progeny distribution should favor cell di-

vision. The Poisson distribution will reflect this behavior by setting λ(i) small

when B
(i)
bound is small and λ(i) large when B

(i)
bound is large. However, it is un-

realistic that there should be a one-to-one mapping between B
(i)
bound and λ(i)

and therefore we need a function for transformation: Y (B
(i)
bound) = λ(i). The

function should allow specification of lower and upper bounds on λ(i), a thresh-

old (ffull) on B
(i)
bound when more bound antigen does not have any fitness effects

(Figure S17) and another threshold (ffull
U) defining B

(i)
bound when the progeny dis-

tribution transitions between a subcritical and a supercritical process (λ(i) = 1)
(39) (Figure S18). These requirements can be accommodated by the generalized
logistic function:

λ(i) = Y (B
(i)
bound) = α+

K − α
G+Q exp(−βB(i)

bound)
(7)

G is chosen to be the typical logistic function value of 1. K is the upper bound
on λ(i) and is set to 2 (slightly larger than the λ = 1.5 fitted for the neutral
branching process). α, β and Q are found using three conditions:

Y (0) = 0, Y

(
ffull

U

)
= 1, Y (ffull) = 2− ε (8)

The solution is undefined in Y (ffull) = 2 because the function is asymptotically
growing towards 2, therefore ε can be regarded as a small value (e.g. 10−3) so
that Y (ffull) ≈ 2. The constant U in condition 2 can be adjusted to set the

value of B
(i)
bound resulting in λ(i) = 1. Using these conditions α, β and Q can

be found and the logistic function is fully defined. α can be interpreted as the
lower asymptote of the function. β is the steepness of the function and it is
coupled to the Q parameter and follows it according to the three conditions in
(8).

Parameter choices

We define the maximum fitness to be attained at 100% BCR binding, hence we
fix ffull = 1. The infliction point parameter U is chosen to reflect our expectation
that initially, when only a few BCRs are bound and stimulation is low, there
will be a linear increase of the stimulus when antigen binding increase, and at
some point close to ffull the increase in stimulus levels out. This expected shape
is recapitulated by a choosing U = 5 (Figure S18).

S-17

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted April 25, 2018. ; https://doi.org/10.1101/307736doi: bioRxiv preprint

https://doi.org/10.1101/307736
http://creativecommons.org/licenses/by/4.0/

0 0.2 0.4 0.6 0.8 1
Bbound

0

0.5

1

1.5

2

λ

Effect of ffull
ffull = 0.1

ffull = 0.2

ffull = 0.5

ffull = 0.8

ffull = 1

Figure S17: Using a constant U = 5, changing the ffull parameter in the
conditions in (8) to change the point where Bbound reaches the λ plateau.

0.0 0.2 0.4 0.6 0.8 1.0

Bbound

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

λ

Effect of U
U = 10

U = 5

U = 3

U = 2

U = 1.5

U = 1.2

Figure S18: Using a constant ffull = 1, changing the U parameter in the
conditions in (8) to achieve a shift of the inflection point at λ = 1 on the Bbound

axis.

The total concentration of antigen (Atotal) needs to be defined to solve the
binding equilibrium. To do this we need to introduce the concept of a carrying
capacity of the simulated GC, which is defined as the number cells a GC is
able to support in its micro environment. The carrying capacity is determined
mainly by the total concentration of antigen since binding to antigen controls
the progeny distribution. BCR affinity is also influencing antigen binding and
therefore must influence the carrying capacity, but at high affinity nearly all
antigens are bound and hence the total antigen concentration is the most influ-
ential determinant of GC carrying capacity. At Pois(1) the progeny distribution

S-18

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted April 25, 2018. ; https://doi.org/10.1101/307736doi: bioRxiv preprint

https://doi.org/10.1101/307736
http://creativecommons.org/licenses/by/4.0/

is only just sustaining the population size of the GC, and given condition 2 in
(8) this happens at ffull

U . Then, under the assumption that the population of B
cells all have identical BCR sequences, the maximum carrying capacity is:

C([Atotal]) =
U

ffull

Atotal − [A]

Btotal
≈ U

ffull

Atotal

Btotal
(9)

Using a carrying capacity of 1000 (41, 74) we can calculate Atotal. We note
that simulations are generally robust to different parameter choices (Figure S19).

(a) (b) (c)

Figure S19: Simulation with affinity selection for varying magnitudes of ffull.
(a) ffull = 1, (b) ffull = 0.5 and (c) ffull = 0.05. Simulations with d0 = 10, U = 5
and [Atotal] adjusted to obtain a carrying capacity of 1000 cells. Each simulation
was run for 100 generations and the composition of sequence distances to their
closest mature sequence are plotted for each generation.

In the transformation from distance to affinity in (6), we have to make
a choice about which exponent to use. We would like to disallow sequences
drifting far away from the mature sequence by enforcing a positive exponent.
Furthermore, we require that each Hamming distance step between the naive
and mature sequences has a substantial affinity effect, and therefore k = 2 is
used.

The amino acid sequence distance between the naive and mature sequences,
d0, is set to 5. The Kd for a naive sequence is likely in the low micro molar range
range of 10−6−10−7M , while the mature affinity is in the nano or subnano molar
range of 10−8 − 10−10M (75–78) (M is used to denote molar concentration).
We choose the naive sequence to be Knaive

d = 10−7M (100nM) and the mature
to be Kmature

d = 10−9M (1nM), giving a large span in affinity to select on.
Based on approximating the GC as spheric, and using the experimental data
for average GC diameter and BCRs per B cell, the model is fully defined in
nanomolar concentrations. All necessary constants are tabulated in Table S2.

S-19

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted April 25, 2018. ; https://doi.org/10.1101/307736doi: bioRxiv preprint

https://doi.org/10.1101/307736
http://creativecommons.org/licenses/by/4.0/

Constant Value Description Reference
Btotal 1× 104 Number of BCRs on each B cell (79, 80)
nt 1000 B cells per GC (41, 74)
dim 10−4m GC diameter (81)
1
U

1
5 Fraction of ffull necessary to sustain the population See text

d0 5 Distance between the naive and mature sequences See text
k 2 Exponent of affinity transformation See text
ffull 1 Fraction BCRs bound at full activation See text
Knaive

d 100nM Naive affinity (75–78)
Kmature

d 1nM Mature affinity (75–78)

Table S2: Constants used in the model of affinity simulation.

S-20

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted April 25, 2018. ; https://doi.org/10.1101/307736doi: bioRxiv preprint

https://doi.org/10.1101/307736
http://creativecommons.org/licenses/by/4.0/

Correctness of ancestral reconstruction

In the following section we will introduce a benchmark metric for ancestral se-
quence reconstruction, which we call “correctness of ancestral reconstruction”
(COAR). The correctness of a reconstruction compared to the true evolutionary
history can be measured by multiple similarity measures e.g. topological similar-
ity, branch length similarity and sequence similarity between inferred and real
ancestors. All these measures are inter-dependent e.g. the inferred sequences
are affected by the branch lengths and the topology and the branch lengths
are conditioned on a topology etc. And while inferring correct tree topology is
important in its own right, the correctness of the inferred ancestral sequences
are the foremost important objective of most BCR phylogenies when these se-
quences are used for applications involving DNA synthesis, protein expression
and functional testing. For this reason, the sole purpose of the COAR metric
is to capture the correctness of the inferred ancestral sequences. In particular,
we would like to propose a loss function that does not penalize a phylogeny
when minor parts of the tree topology is incorrect while ancestral sequence
reconstruction is perfect.

The purpose of COAR is to compare two trees built with the same leaves;
let us call these the true and inferred tree. When performing ancestral sequence
reconstruction the desired result is often to reconstruct the internal nodes in
the direct path going from a leaf to the root, as illustrated in Figure S20. This
path is extracted by starting at a leaf node and traversing upwards, parent by
parent, until the root is reached. In the following, this list of sequences will be
referred to as the ancestral lineage. The correct ancestral lineage is the objective
of COAR, and we construct the COAR value so it represents the expected per-
site error in such a reconstruction. Following the example in Figure S20, often
there will be small differences in tree topology between the true and inferred
trees, and these will likely make the number of internal states in the ancestral
lineages differ. This makes comparison difficult because two lists of different
length cannot be element-wise compared. The lists could be made equal length
by adding gaps, but then a systematic way of adding these would be necessary.

The basis of COAR is a list comparison progressing element-wise through
the list i.e. element 1 in list 1 compared to element 1 in list 2, next, element 2
in list 1 compared to element 2 in list 2 etc. For lists of similar length the list
comparison is easy, it will simply be the cumulated distance from list element
comparisons, corresponding to the sum of Hamming distances between inferred
and true ancestors in the lists. When lists are not equally long, one or more
gaps must be introduced into one of the lists; we choose to do so in such a
way that the list similarity is maximized. This is an alignment problem with
matches/mismatches/gaps and it can be efficiently solved using the Needleman-
Wunsch algorithm (82). We define it as a global alignment so that it has to
start at the root and end at the leaf because both states are known for the true
and inferred phylogenies. We further restrict the Needleman-Wunsch algorithm
so that gaps are only allowed to be introduced into the shortest of the two lists
being aligned, this forces the maximum number of node comparisons.

One interpretation of the COAR value is that it is the distance between the
true and inferred mutation histories, as illustrated in in Figure S21. In this
representation of an ancestral lineage the root and the leaf are two fixed states
with a continuous mutation process running between them. The internal nodes

S-21

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted April 25, 2018. ; https://doi.org/10.1101/307736doi: bioRxiv preprint

https://doi.org/10.1101/307736
http://creativecommons.org/licenses/by/4.0/

N (AAA)

L (TTT)

A2t (ATT)

A1t (AAT)

L (TTT)

N (AAA)

True Inferred

A1i (TAT)

Figure S20: True vs. inferred tree with colored leaves and grey ancestral states.
Reconstruction from the light blue leaf is marked by a dashed red line and
annotated with genotypes in parenthesis. N is the naive sequence, L is the
leaf sequence and the As are ancestors 1, 2, . . . , n with either true or inferred
marked by t or i, respectively, appended to the subscript. The inferred tree
has misplaced the branch leading to the light blue node, resulting in a missing
ancestral sequence.

in the ancestral lineage are discrete states in the continuous process, on the true
tree these corresponds to actual cells but on the inferred tree they need not
correspond to actual observed genotypes. Instead we can think about them as
realizations along the continuous mutation process defined by the inferred tree.
The COAR value is then a similarity measured between the true cell genotype
and the inferred realizations, each sampled from the true and inferred mutation
processes respectively, and in the case of a mismatch between the number of
realizations and cells, a gap will be introduced in the alignment to compensate.

Using the aligned ancestral lineages it is now possible to derive a score,
similar to a sequence alignment score. We use negative penalties for mismatches
and zero points for matches, and furthermore normalize the alignment score to
the smallest possible score (all mismatches) for that lineage, yielding the COAR
value for a single lineage i:

COARi =
alignscore(leafi)

alignscoremin(leafi)

Where alignscore is the score of the alignment between the true and inferred
ancestral lineages and alignscoremin is the smallest possible score given the
number and length of the sequences in the ancestral lineages. The alignment
score is defined in terms of penalties, so all values are less than or equal to
zero. Since both numerator and denominator are negative the COAR value is
positive.

COAR is defined in the range from 0 to 1, where 0 is a perfect ancestral
sequence reconstruction and 1 is the worst. The COAR value is comparable
across different trees, methods and datasets because of this normalization. Its
value can be interpreted as the average per-site error across all the inferred an-
cestral lineage sequences. COAR for a single ancestral lineage can be expanded
to the tree level by calculating the mean COAR value for the whole tree:

mean(COAR) =

NL∑

i=1

alignscore(leafi)

alignscoremin(leafi)

/
NL

S-22

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted April 25, 2018. ; https://doi.org/10.1101/307736doi: bioRxiv preprint

https://doi.org/10.1101/307736
http://creativecommons.org/licenses/by/4.0/

Inferred

(GGG)

(GGC)

(CGC)

(CCC)

(GGG)

(CGC)

Continuous mutation process

root

internal node

leaf

Observed

(CCC)

unobserved intermediate
unobserved intermediate

branch length

Figure S21: One interpretation of the COAR value is that it is the distance
between the true and inferred mutation histories, here shown by the true and
inferred ancestral lineage nodes of an example phylogeny. The true ancestral
lineage (left side) represents actual observed cells where the genotype is a known
constant. The inferred ancestral lineage (right side) represents the estimated
genotypes at branching points along the inferred topology. In some cases there
is a mis-correspondence between observed cells in the true phylogeny and the
branching points in the inferred tree. These are treated as missing realizations
and ignored in the alignment of the two mutation histories.

Where NL is the number of leaves on the tree.

Calculating COAR values - example with a known root

As an example of how the COAR metric works we will present a small example,
summarized in Figure S20 with the light blue leaf chosen for lineage reconstruc-
tion and the true and inferred ancestral lineages marked in each tree with red
dashed lines. The root sequence is a known state called the naive sequence. As-
sume that the true phylogeny is known with corresponding ancestral sequences.
Now take a leaf sequence on the tree and reconstruct its ancestral lineage by
extracting the parent, the parent’s parent, etc. until the root is reached, tabu-
lated in Table S3. This ordered list of sequences constitute the reconstructed
ancestral lineage for the chosen leaf and it always starts at the root and ends
at the leaf, therefore we are imposing this as a restriction on the alignment.
Furthermore, these two known states they do not count towards the COAR
value.

True Inferred
Naive (N) AAA AAA

A1 AAT TAT

A2 ATT -
Leaf (L) TTT TTT

Table S3: Reconstructed ancestral lineage for true and inferred trees as shown
and marked by red dashed line in Figure S20.

S-23

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted April 25, 2018. ; https://doi.org/10.1101/307736doi: bioRxiv preprint

https://doi.org/10.1101/307736
http://creativecommons.org/licenses/by/4.0/

In the case of a wrongly inferred topology the true and inferred list of ances-
tral lineage sequences can have different length. It is therefore necessary to find
a way of getting the best possible alignment between these two lists. We know
the start and end of this alignment but the sequences in between are free to be
shifted up or down to maximize the alignment fit. We adapt the Needleman and
Wunsch dynamic program solution (82) to solve this as an alignment problem.
A notable difference to the original algorithm is that it was intended to align
two sequences of characters, like DNA or amino acids, while in this application
a list of whole sequences are aligned.

The first step in the alignment algorithm is to calculate a score matrix of
all pairwise sequence comparisons. For this example we use the negative Ham-
ming distance as a score, however, the score function can be extended to reflect
different situations, like imposing a larger penalty for non-synonymous rather
than synonymous mutations. The score matrix is tabulated in Table S4.

N A1t A2t L
N 0 -1 -2 -3
A1i -2 -1 -2 -1
L -3 -2 -1 0

Table S4: Score matrix based on all pairwise distances between the sequence
in Figure S20.

Now we are ready to initializing the alignment grid used in the dynamic
programming solution of the alignment problem. Initialization is started by
inserting the scores of pure gap characters i.e. first row and first column (Ta-
ble S5), and we enforce alignment of the two root sequences by setting these
gap penalties to negative infinity. Similarly, we disallow introduction of gaps in
the longest of the two lists, also by penalizing with negative infinity (Table S6).
Setting certain gap penalties to negative infinity is a simple way of dealing with
disallowed gaps and it also works well for implementations.

- N A1t A2t L
- 0 -Inf -Inf -Inf -Inf
N -Inf _
A1i -Inf
L -Inf

Table S5: The starting alignment grid, initialized with negative infinite gap
penalties to disallow gap opening in the beginning of the alignment. The grid
is filled up from left to right row by row, starting in the cell marked by _.

Then the alignment grid is filled up, starting with the cell marked by _ in
Table S5, progressing to the rightmost cell and continuing in the same fashion
on the next row. Cells are filled up using the following maximization:

Ci,j = max {(Ci−1,j + gpdown); (Ci,j−1 + gpright); (Ci−1,j−1 + Si−1,j−1)}

Where Ci,j is the ith row and jth column cell in the grid, gpdown is the penalty
of making a downwards gap, gpright is the penalty of making a rightwards gap

S-24

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted April 25, 2018. ; https://doi.org/10.1101/307736doi: bioRxiv preprint

https://doi.org/10.1101/307736
http://creativecommons.org/licenses/by/4.0/

and Si−1,j−1 is the score of aligning the ith, jth elements found by look-up in
the score matrix (Table S4) In this example the longest list is that of the true
ancestral lineage so in this list gaps are disallowed. In the inferred lineage gaps
are allowed but not penalized: gpdown = −Inf and gpright = 0.

The grid is filled and the final alignment score is the number in the rightmost
bottom cell (Table S6).

- N A1t A2t L
- 0 -Inf -Inf -Inf -Inf
N -Inf 0 0 0 0
A1i -Inf -Inf -1 -1 -1
L -Inf -Inf -Inf -2 -1

Table S6: The filled alignment grid, ready for tracing back the best alignment.
The rightmost bottom cell contains the score for the best alignment.

The last step is to traceback the best path through the alignment grid and
return this as the list alignment. The traceback starts from the leaf sequence, in
the right bottom corner, and ends with the naive sequence in the left top corner.
A diagonal step is equivalent to a sequence match, a left move is introducing
a gap character in the inferred list and a move up is introducing a gap in the
true list. The best path is found by progressively moving upwards, choosing the
move with:

movei,j = which {Ci,j = [(Ci−1,j + gpdown), (Ci,j−1 + gpright), (Ci−1,j−1 + Si−1,j−1)]}

Notice that this path has already been generated when the alignment grid was
filled up and could be cached. The resulting alignment and the penalty for each
position is tabulated in Table S7.

Lastly the alignment score is normalized by the smallest possible alignment
score i.e. no similarity between sequences in the lists. This normalized number
is the COAR value and it runs between 0 to 1. In the presented example we
only calculated the COAR value for the reconstructed ancestral lineage from
one leaf, but by doing the calculations on all leaves on the tree and taking the
average, the mean COAR value for the whole tree would be computed.

True N A1t A2t L
Inferred N A1i - L
Penalty 0 -1 0 0
Max penalty 0 -3 0 0
COAR -1/-3=0.333

Table S7: The resulting alignment and the penalties for each position.

S-25

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted April 25, 2018. ; https://doi.org/10.1101/307736doi: bioRxiv preprint

https://doi.org/10.1101/307736
http://creativecommons.org/licenses/by/4.0/

