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Bruxelles, Roosevelt Ave. 50, 1050 Brussels, Belgium

?Biobased Materials, Faculty of Humanities and Sciences, Maastricht University,
P.O. Box 616, 6200 MD Maastricht, The Netherlands

Abstract

Bioinformatics tools that predict protein stability changes upon point
mutations have made a lot of progress in the last decades and have be-
come accurate and fast enough to make computational mutagenesis ex-
periments feasible, even on a proteome scale. Despite these achievements,
they still suffer from important issues that must be solved to allow further
improving their performances and utilizing them to deepen our insights
into protein folding and stability mechanisms. One of these problems is
their bias towards the learning datasets which, being dominated by desta-
bilizing mutations, causes predictions to be better for destabilizing than
for stabilizing mutations.
We thoroughly analyzed the biases in the prediction of folding free en-
ergy changes upon point mutations (∆∆G0) and proposed some unbiased
solutions. We started by constructing a dataset Ssym of experimentally
measured ∆∆G0s with an equal number of stabilizing and destabilizing
mutations, by collecting mutations for which the structure of both the
wild type and mutant protein is available. On this balanced dataset, we
assessed the performances of fifteen widely used ∆∆G0 predictors. After
the astonishing observation that almost all these methods are strongly
biased towards destabilizing mutations, especially those that use black-
box machine learning, we proposed an elegant way to solve the bias issue
by imposing physical symmetries under inverse mutations on the model
structure, which we implemented in PoPMuSiCsym. This new predictor
constitutes an efficient trade-off between accuracy and absence of biases.
Some final considerations and suggestions for further improvement of the
predictors are discussed.
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1 Introduction

De novo protein design is well known to be an important challenge in pro-
tein science. Its achievement would have a considerable impact on a wide
series of academic and industrial applications that range from drug design
in medicinal chemistry to the development of multi-component protein
nanomaterials (Zanghellini (2014); Huang et al. (2016); Coluzza (2017)).
This goal is far from being reached, even though valuable developments
have recently been made. Mutational studies with both experimental and
computational techniques have thoroughly deepened our understanding
of the mechanisms that drive the folding process. In particular, a lot of
computational methods have been developed in the last decades to pre-
dict in an efficient way how an amino acid substitution impacts protein
stability (Dehouck et al (2009, 2011); Guerois et al (2002); Quan et al.
(2016); Capriotti et al (2005); Pires et al. (2014a,b); Pandurangan et al.
(2017); Laimer et al. (2016); Parthiban et al. (2006); Kellog et al. (2011);
Alford et al. (2017); Chen et al. (2013); Giollo et al. (2014); Cheng et al.
(2006); Masso and Vaisman (2008, 2014)). They allow limiting extensive
mutagenesis experiments and thus save time and money.

The most accurate methods among these are structure-based. They
use the three-dimensional (3D) structure of the wild type protein as in-
put for predicting how the folding free energy ∆G0 gets modified upon
point mutations (∆∆G0). All these methods are based on a large vari-
ety of models that range from pure machine learning algorithms to more
biophysics-oriented approaches where the energetic contributions are ap-
propriately combined. Their average performances, measured by the root
mean square deviation between experimental and predicted ∆∆G0 val-
ues for datasets that contain on the order of two thousand entries, are
reported to be between 1.0 and 1.5 kcal/mol (for previous comparisons of
the methods’ performances, see Potapov et al. (2009) and Khan and Vi-
hinen (2010)). These results are astonishing if one considers that, despite
the complexity of the problem, some of the above mentioned tools predict
the ∆∆G0 of one mutation in less than a minute. This opens the way to
perform computational mutagenesis experiments at the proteomic scale
with reasonable accuracy.

Unfortunately, these methods suffer from different drawbacks. Like
all machine learning approaches, they are prone to overfitting problems
(Hawkins (2004); Cawley and Talbot (2010)), and their results therefore
tend to be biased toward the training datasets. The analysis and the
correction of biases are of primary importance to get more accurate and
reliable methods. However, it is a non-trivial task since biases are usu-
ally hidden and require careful work on the model structures and on the
cleaning of the training datasets.

A known bias in protein stability prediction comes from the fact that
the ensemble of experimentally characterized mutations and as a conse-
quence, the training datasets, are dominated by destabilizing mutations.
This implies that the predictors tend to be more accurate for destabiliz-
ing than for stabilizing mutations, which is a crucial issue given that the
latter are the focus of protein design applications. This issue has been
reported in a few investigations (Thiltgen and Goldstein (2012); Fariselli
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et al. (2015); Pucci et al. (2015)), but there is not yet a common, gener-
ally accepted, way to overcome it. Moreover, biases are not limited to this
feature but can involve other characteristics such as the kind of protein or
the type of wild type and mutant amino acids, since not all substitutions
are sufficiently sampled in the training dataset.

In this paper, we go further into this investigation, and assess the
performances of different predictors on a new dataset of mutations with
experimentally characterized ∆∆G0 values and with known 3D structures
of both the wild type and mutant proteins. This dataset is by construc-
tion balanced with respect to stabilizing and destabilizing mutations. We
showed that imposing physical symmetries to the model structures is an
efficient and elegant way to solve the bias problem, as already suggested
in a preliminary study (Pucci et al. (2015)).

2 Methods

2.1 Folding stability changes upon mutations

Under the assumption that the protein folding process is a reversible,
two-state transition – and thus that the protein does not precipitate or
aggregate – the thermodynamic stability of a protein can be measured by
its folding free energy ∆G0, i.e. the Gibbs free energy difference between
the unfolded and folded states:

∆G0 = G0(unfolded)−G0(folded) (1)

The impact of an amino acid substitution on the protein stability is char-
acterized by the change of ∆G0 upon mutation

∆∆G0
dir = ∆G0(mutant)−∆G0(wildtype) (2)

With these conventions, negative values of ∆∆G0
dir indicate destabilizing

mutations while positive ∆∆G0
dir values are associated with stabilizing

substitutions. These quantities depend on different thermodynamic and
environmental variables such as the temperature and the pH. They are
often defined either at room temperature Tr = 25◦C or at the melting
temperature Tm of the wild type protein. Sometimes, they are not di-
rectly measured but derived from ∆Tm measures in differential scanning
calorimetry (DSC) experiments, by utilizing the fact that these two quan-
tities are correlated, even though this is only true in a first approximation
(see Pucci et al. (2016) and Watson et al. (2016) for further details). All
these dependencies and approximations make the datasets of the exper-
imentally annotated mutations quite noisy, which in turn impacts the
accuracy of the predictors that are trained on them.

2.2 Assessing predictors through bias evaluation

The change in folding free energy upon mutations is by definition anti-
symmetric with respect to the exchange between the mutant and wild
type residues, assuming that the folding of both the wild type and mu-
tant proteins is a reversible two-state process. This means that the folding
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free energy ∆∆G0
inv of an inverse mutation, from mutant to wild-type, is

equal to minus that of the direct substitution, from wild-type to mutant:

∆∆G0
inv = −∆∆G0

dir (3)

Predictions obtained by computational methods usually do not satisfy
this equality, since they are trained on experimental datasets dominated
by destabilizing mutations. For example, two of the widely used mutation
datasets for model training, S2648 (Dehouck et al (2009)) and Q3421
(Quan et al. (2016)), exhibit an average ∆∆G0 value of -1.01 kcal/mol
and -1.13 kcal/mol, respectively. This distortion is learnt by the model
and then reproduced in the prediction phase. Note that Eq. (3) cannot be
satisfied exactly by the predictors that only consider the wild type and not
the mutant structure, but this approximation has usually a small impact
when coarse-grained structural representations are used, except in the rare
cases where single-site mutations cause large structural rearrangements.

In this paper we constructed a new mutation dataset Ssym which is
balanced with respect to stabilizing and destabilizing mutations (see sec-
tion 2.3), and used it for assessing the performance of fifteen prediction
methods (section 2.4) and for quantifying their bias that tends to favor
destabilizing mutations. We used the following measures, the former two
to estimate the predictors’ accuracy and the latter two the bias:

• σdir and rdir are the root mean square deviation and the linear cor-
relation coefficient between the predicted and experimental ∆∆G0

values for the direct mutations in Ssym, from wild type to mutant.
Note that these mutations belong to the training dataset of the meth-
ods tested, so that the predictions are likely to be overfitted and σdir

and rdir to be underestimated and overestimated, respectively.

• σinv and rinv are the root mean square deviation and the linear cor-
relation coefficient between the predicted and experimental ∆∆G0

values for the inverse mutations in Ssym, from mutant to wild type.
These mutations do not belong to the training datasets and thus
constitute an independent test set.

• rdir,inv is the linear correlation coefficient between the predicted
∆∆G0 values of the direct and the inverse mutations. A non-biased
prediction that satisfies Eq. (3) has rdir,inv equal to -1.

• A previously used criterion to estimate the bias is the parameter δ
defined as (Thiltgen and Goldstein (2012)):

δ = ∆∆G0
inv + ∆∆G0

dir (4)

A perfectly non-biased tool should have δ = 0 for every mutation.
We used here its average value 〈δ〉 taken over all mutations that
belong to Ssym.

2.3 Dataset construction

We created a manually curated dataset Ssym, by selecting mutations from
the Protherm database (Bava et al. (2004)) and checking them on the ba-
sis of the original literature. It contains mutations with experimental
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∆∆G0 values for which the 3D structures of both the wild type and mu-
tant proteins are solved by X-ray crystallography with a resolution of 2.5
Å atmost.

Sometimes, different ∆∆G0 values are available for the same muta-
tion. We selected the ∆∆G0 measured under the environmental condi-
tions closest to the standard conditions (pH=7, T=25◦C). Note that they
are frequently measured at the melting temperature of the wild type pro-
tein.

We ended up with a dataset of 684 mutations, half of which are direct
mutations inserted in 15 wild type proteins, while the remaining half are
inverse mutations inserted in 342 different mutant proteins.

2.4 Prediction methods analyzed

We selected the ∆∆G0 predictors that are among the most renowned in
terms of speed and accuracy. We list them below and briefly explain their
characteristics.
(1) PoPMuSiC v2.1 (Dehouck et al (2009)): based on standard sta-
tistical potentials, combined with sigmoidal weights that depend on the
solvent accessibility of the mutated residues.
(2) SDM (Pandurangan et al. (2017)): uses conformationally constrained
environment-specific substitution tables to calculate the change in ther-
modynamic stability between the wild type and the mutant proteins.
(3) CUPSAT (Parthiban et al. (2006)): uses torsion angle potentials and
structural environment-specific atom potentials.
(4) Rosetta (Kellog et al. (2011)): generates a 3D structural model of the
mutated protein from the wild type structure, and computes the difference
in energy between them, with as energy function the sum of a large series
of empirical physics-based energy contributions (Coulomb electrostatic,
Lennard-Jones atomic interactions, ...(Alford et al. (2017))).
(5) FoldX v3.0 (Guerois et al (2002)): uses a full atomistic description
of the protein structure and is based on FOLDEF, an empirical force field
developed as a linear combination of different empirical energy terms (van
der Waals, solvation, electrostatic, hydrogen bonds ...).
(6) I-Mutant v3.0 (Capriotti et al (2005)): a tool based on a support
vector machine (SVM) that combines protein sequence and structure in-
formation.
(7) iSTABLE (Chen et al. (2013)): an integrated predictor, that com-
bines, using an SVM algorithm, sequence information with predictions
from different methods (I-Mutant, AUTOMUTE, MUPRO, PoPMuSiC
and CUPSAT).
(8) NeEMO (Giollo et al. (2014)): uses an effective representation of
proteins based on residue interaction networks (RINs) and combines the
extracted information through a neural network.
(9) AUTO-MUTE (Masso and Vaisman (2008)): uses as main ingre-
dient four-body, knowledge-based, statistical contact potentials that are
combined through machine learning tools (random forest and SVM).
(10) STRUM (Quan et al. (2016)): combines physics- and knowledge-
based energy functions derived from protein structure models obtained by
I-TASSER (Roy et al. (2010)), through gradient boosting regression.
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(11) MAESTRO (Laimer et al. (2016)): uses statistical energy functions
as main features, and combines them with a multi-agent method that
includes a linear regression, an artificial neural network and an SVM.
(12) mCSM (Pires et al. (2014b)): a machine learning method that uti-
lizes graph-based distance patterns between atoms as well as the residue
type.
(13) DUET (Pires et al. (2014a)): a consensus prediction method ob-
tained by combining mCSM and SDM using a SVM algorithm.
(14) MUPRO (Cheng et al. (2006)): uses an SVM approach that takes
into account sequence information only.

All the tools in this list utilize the 3D structure of the wild type pro-
tein as input, except the last one which is based on the protein sequence
only. The first five predictors are based on combinations of energy con-
tributions and do not use machine learning, or use machine learning just
to identify the parameters of a pre-established model structure. The last
nine predictors are true machine learning methods.

Some predictors require as input the pH at which the change in folding
free energy is computed (Method 11) or both the pH and the temperature
(Methods 5-10), while the others do not ask for the specification of the
environmental conditions, assuming standard conditions.

2.5 Designing unbiased prediction models

Two approaches can be devised to solve the bias problem and recover
predictions that satisfy Eq. (3). One solution is to train the model on
a balanced dataset that contains, for each mutation, both the direct and
inverse versions, from wild type to mutant and from mutant to wild type.
However, this requires knowing the 3D structure of the mutant proteins,
which is only available for a subset of mutations: our dataset Ssym con-
tains 684 mutations, whereas the training datasets for which only the wild
type structure is requested contain about 3,000 mutations. The datasets
can be increased by including mutant structures obtained through com-
parative modeling, but this introduces noise into the data. Note that this
is the only solution in the case of pure machine learning approaches where
the model structure is not established a priori.

When the prediction model is pre-established and not obtained through
a black-box machine learning technique, it is possible to identify the terms
in the model structure that are responsible for the symmetry breaking and
appropriately correct them. This is exactly what we did in Pucci et al.
(2015), where the PoPMuSiCsym model, a symmetrized version of PoP-
MuSiC v2.1, was presented.

The model structure of the original PoPMuSiC v2.1 is a combination
of sixteen contributions:

∆∆G =

13∑
n=1

αn(A)∆∆Wn +

α14(A)∆V+ + α15(A)∆V− + α16(A), (5)

6

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 25, 2018. ; https://doi.org/10.1101/308239doi: bioRxiv preprint 

https://doi.org/10.1101/308239


The thirteen terms ∆∆Wi are changes in folding free energy upon muta-
tion computed using different knowledge-based statistical potentials (see
Dehouck et al (2009) for details), αi (i=1..16) are sigmoidal coefficients
that depend on the solvent accessibility A of the mutated residues, and
∆V± are volume terms defined as:

∆V± = ±∆V θ(V ). (6)

where θ(V ) is the Heaviside function. These two terms represent, respec-
tively, the positive and negative difference in volume between the mutant
and wild type amino acids. They provide a description of the impact of
the creation of a cavity or the accommodation of stress inside the protein
structure. The last term in Eq. (5) is an energy-independent term.

Now, imposing that the model structure satisfies the symmetry rela-
tion of Eq. (3) yields the two constraints:

α14(A) = −α15(A) , α16(A) = 0 (7)

These constraints were introduced into the model structure Eq. (5) and
defined a new version of the PoPMuSiC predictor, in which the four-
teen remaining αi(A) parameters were optimized on PoPMuSiC’s original
S2648 training dataset. This new version is called PoPMuSiCsym (Pucci
et al. (2015)).

3 Results

We tested fifteen ∆∆G0 predictors on a common, balanced, dataset Ssym

of 684 single-site mutations, in order to evaluate their performances and,
more importantly, their degree of bias with respect to the ∆∆G0 sym-
metry between direct and inverse mutations (Eq. (3)). Table 1 contains
the values of the root mean square deviations σ and the linear correlation
coefficients r, reported separately for the direct and inverse mutations.
The importance of the bias is evaluated by two parameters, the correla-
tion coefficient rdir−inv between the direct and inverse mutations and the
δ parameter defined in Eq. (4).

As clearly seen in Table 1 and Fig. 1, all the tested methods are
biased towards the training dataset, except PoPMuSiCsym which has been
explicitly designed to avoid this bias. If we focus on direct mutations, the
best performing method is MUPRO, a sequence-based machine learning
method, with a σdir of 0.95 and a rdir of about 0.8. Remember, however,
that all the direct mutations are part of the methods’ training datasets,
and these results are thus likely to be affected by overfitting problems. In
contrast, the inverse mutations do not belong to the methods’ training sets
and can thus be considered as constituting an independent test set. The
best performing predictors on the inverse mutations are PoPMuSiCsym,
MAESTRO, FoldX and PoPMuSiC v2.1.

It is important to note that the black-box machine learning tech-
niques suffer in general more from the bias issue than the other methods
that use a more physics-based approach. For example, if one overlooks
PoPMuSiCsym, the least biased predictor is SDM, which belongs to the
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Figure 1: ∆∆G0 values (in kcal/mol) of all the mutations in S predicted by
the fifteen tools analyzed. The ∆∆G0

dir values of the direct mutations (wild
type → mutant) are given on the x-axes, and the ∆∆G0

inv values of the associ-
ated inverse mutations (mutant → wild type) are reported on the y-axis. The
lines represents the bisectors of the second and fourth quadrants; the perfectly
symmetric predictions are on that line.
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Figure 2: ∆∆G0 values (in kcal/mol) of all the mutations in S predicted by
PoPMuSiCsym. The outliers with respect to the symmetric prediction fall in
the (green) ellipsoid. They correspond to the four pairs of direct and inverse
mutations: (1EY0 K116G; 1KAB G116K), (1EY0 P117A; 1SYG A117P), (1EY0
P117G; 1SYC G117P), (1EY0 P117G; 1SYC G117P), (1EY0 P117T; 1SYE
T117P).

physics-based class of predictors, with a correlation coefficient rdir−inv of
about -0.8 and a 〈δ〉 value of about -0.3 .

However, some physics-based methods are also strongly biased. The
point is that such methods can avoid biases only if their model structure
is adequately constrained to avoid them. More specifically, the current
PoPMuSiC v2.1 version already shows a good performance compared to
other predictors, but the implementation of the physical constraints of
Eq. (7) in PoPMuSiCsym spectacularly improves σinv by more than 25%
and yields a zero 〈δ〉 value.

Note that despite the symmetry constraints there are still some out-
liers in PoPMuSiCsym with respect to the expected ∆∆G0 symmetry
between direct and inverse mutations, as shown in Fig. 2. These outliers
actually correspond to mutations that cannot be predicted simply from
the wild type structure. Indeed, they provoke significant structural rear-
rangements to avoid steric clashes, empty cavities, or other unfavorable
conformations. In these cases, both the wild type and mutant structures
should be considered in the ∆∆G0 estimation. These issues explain why
PoPMuSiCsym does not perfectly satisfy the symmetry relation of Eq. (3)
despite its symmetric model structure; the rdir−inv correlation is indeed
equal to −0.77 rather than −1.0.

We also analyzed the bias effect separately for core and surface residues.
Table 2 reports the results for the best performing methods. In general,
the predictions are biased for both surface and core mutations. To cor-
rectly interpret these results, we have to remember that mutations in the
core have on the average a larger effect on the protein structure and sta-
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Method σdir rdir σinv rinv rdir−inv 〈δ〉

PoPMuSiCsym 1.58 0.48 1.62 0.48 -0.77 0.03
MAESTRO 1.36 0.52 2.09 0.32 -0.34 -0.58

FoldX 1.56 0.63 2.13 0.39 -0.38 -0.47
PoPMuSiC v2.1 1.21 0.63 2.18 0.25 -0.29 -0.71

SDM 1.74 0.51 2.28 0.32 -0.75 -0.32
iSTABLE 1.10 0.72 2.28 -0.08 -0.05 -0.60

I-Mutant v3.0 1.23 0.62 2.32 -0.04 0.02 -0.68
NeEMO 1.08 0.72 2.35 0.02 0.09 -0.60
DUET 1.20 0.63 2.38 0.13 -0.21 -0.84
mCSM 1.23 0.61 2.43 0.14 -0.26 -0.91

MUPRO 0.94 0.79 2.51 0.07 -0.02 -0.97
STRUM 1.05 0.75 2.51 -0.15 0.34 -0.87
Rosetta 2.31 0.69 2.61 0.43 -0.41 -0.69

AUTOMUTE 1.07 0.73 2.61 -0.01 -0.06 -0.99
CUPSAT 1.71 0.39 2.88 0.05 -0.54 -0.72

Table 1: Bias analysis of all the mutations belonging to the dataset Ssym. The
standard deviations σdir and σinv and the values of 〈δ〉 are in kcal/mol. The
methods are ranked according to their performance on the independent test set
of inverse mutations, more specifically on the basis of σinv.

bility. In the Ssym dataset for example, the mean of the absolute values of
the ∆∆G0s is equal to 1.75 kcal/mol for core mutations and approxima-
tively half (0.96 kcal/mol) for surface mutations. As a consequence, the
〈δ〉 values of the different methods tend to be worse in the core whereas
the rdir−inv correlations tend to be worse on the surface.

According to our results, the least biased predictors are PoPMuSiCsym

and SDM, for both core and surface mutations. But the performance of
PoPMuSiCsym is generally better than that of SDM, especially when it
is evaluated on the inverse mutation set which does not overlap with the
methods’ training sets. The second best performing predictors on the set
of inverse mutations is FoldX on core mutations and PoPMuSiC v2.1 on
surface mutations.

The bias was also compared between mutations in which an amino acid
is replaced by a much larger or a much smaller amino acid, and mutations
in which the wild type and mutant amino acids have roughly the same size
(Table 3). The volume differences can indeed be another source of bias
for some of the prediction methods. Here also, PoPMuSiCsym is the least
biased predictor and the best performing on the set of inverse mutations,
both for mutations with and without significant size difference. The next
least biased predictor is SDM, and the next best performing predictors
are MAESTRO and SDM for substitutions with large volume changes,
and MAESTRO and FoldX for small volume changes.
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Method σdir rdir σinv rinv rdir−inv 〈δ〉
Core Residues

PoPMuSiCsym 1.92 0.56 1.99 0.52 -0.89 0.03
FoldX 1.50 0.64 2.27 0.52 -0.37 -0.60
SDM 1.75 0.62 2.52 0.49 -0.90 -0.56

MAESTRO 1.55 0.49 2.57 0.47 -0.58 -0.82
PoPMuSiC v2.1 1.31 0.65 2.74 0.51 -0.79 -1.09

Surface Residues
PoPMuSiCsym 1.16 0.42 1.15 0.48 -0.62 0.03

PoPMuSiC v2.1 1.09 0.45 1.42 0.29 -0.27 -0.35
MAESTRO 1.14 0.39 1.50 0.25 -0.14 -0.35

FoldX 1.61 0.60 2.00 0.18 -0.39 -0.35
SDM 1.72 0.18 2.02 0.16 -0.63 -0.08

Table 2: Bias analysis for the 5 best predictors according to the residue lo-
calization (core vs surface). The standard deviations σdir and σinv and the
values of 〈δ〉 are in kcal/mol. The predictors are ranked according to the small-
est σinv scores, computed on the set of inverse mutations which constitutes an
independent test set, with no overlap with the methods’ training datasets.

Method σdir rdir σinv rinv rdir−inv 〈δ〉
Large Volume Changes

PoPMuSiCsym 2.04 0.53 2.13 0.52 -0.73 0.07
SDM 1.78 0.59 2.77 0.36 -0.67 -0.60

MAESTRO 1.63 0.61 2.77 0.47 -0.54 -0.72
FoldX 1.89 0.60 2.90 0.41 -0.27 -0.84

PoPMuSiC v2.1 1.33 0.70 2.90 0.32 -0.51 -1.02
Small Volume Changes

PoPMuSiCsym 1.40 0.42 1.41 0.40 -0.78 0.02
MAESTRO 1.26 0.40 1.82 0.25 -0.22 -0.53

FoldX 1.44 0.60 1.83 0.36 -0.46 -0.35
PoPMuSiC v2.1 1.17 0.51 1.90 0.20 -0.08 -0.61

SDM 1.72 0.40 2.10 0.28 -0.80 -0.22

Table 3: Bias analysis for the 5 best predictors according to the difference in
volume between wild type and mutant residues. The standard deviations σdir
and σinv and the values of 〈δ〉 are in kcal/mol. The predictors are ranked
according to the smallest σinv scores, computed on the set of inverse mutations
which constitutes an independent test set, with no overlap with the methods’
training datasets.
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4 Discussion

In this paper, we thoroughly investigated the ∆∆G0 symmetry breaking
issue and extensively discussed the fact that computational methods tend
to predict the mutations more often as destabilizing than as stabilizing
since the training datasets are dominated by destabilizing residue substi-
tutions. Even though this problem was already described in the literature
(Thiltgen and Goldstein (2012); Fariselli et al. (2015); Pucci et al. (2015)),
a quantitative measure of the violation of the symmetry between the di-
rect and the inverse substitutions by existing predictors was lacking. This
gap has been filled in this paper, in which we quantified and discussed the
performance and biases of fifteen of the most efficient available tools. Our
results can be summarized as follows:

• All tested methods are biased towards destabilizing mutations. As
a proof of this statement, we observed a prediction error on the set
of direct mutations (dominated by destabilizing mutations, repre-
senting 75% of the dataset entries) which is larger by a factor of
about two than the prediction error on the set of inverse mutations
(dominated by 75% stabilizing mutations). Indeed, σdir is equal to
0.94-1.75 kcal/mol, and σinv to 2.09-2.88 kcal/mol. This effect is
amplified for the substitutions in the core with respect to surface
mutations.

• Predictions that use black-box machine learning techniques tend to
be more biased than the others. Indeed, four of the top five pre-
diction tools, PoPMuSiCsym, PoPMuSiC v2.1, FoldX and SDM, use
biophysics oriented models that combine energy contributions in a
coherent way. In contrast, the fifth tool, MAESTRO, uses statistical
potentials and other biophysical features combined through several
kinds of machine learning methods.

• Imposing biophysical constraints on the model structure (when ac-
cessible) is an elegant and simple way to solve completely the bias
problem. Indeed, from the analysis of the different folding free en-
ergy contributions, it is quite simple to avoid all the terms that
violate the symmetry. Relying on symmetry principles in the con-
struction of a model is a common and well known strategy used
in physics, which also pays off here, as shown by the spectacular
improvement of the δ and rdir−inv values of PoPMuSiCsym.

Besides the necessity of getting rid of the ∆∆G0 symmetry biases,
other issues need to be tackled to improve the protein stability prediction
methods:

• We would like to draw the attention on the training datasets. Most
∆∆G0 predictors use S2648 (Dehouck et al (2009)) or Q3421 (Quan
et al. (2016)) as training sets. These sets are manually curated and
based on data coming from the ProTherm database (Bava et al.
(2004)), which has not been updated since more than five years.
As many experimental data have been published since then, es-
pecially from deep mutagenesis scanning experiments (Fowler and
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Fields (2014)), it would be extremely useful to collect them into a
new, extended and manually curated database.

• The bias towards destabilizing mutations in the usual learning sets
should be taken into account in the evaluation of the methods’ per-
formances. A possibility is to systematically test new methods on
Ssym, the dataset described in this paper that contains both the di-
rect and inverse versions of each mutation and is thus by construction
balanced with respect to stabilizing and destabilizing mutations.

• The predictors possibly also suffer from other hidden biases. For
example, some types of mutations could be insufficiently sampled
in the learning set, with the consequence that the predictor could
learn incorrect trends. We would like to stress once more that testing
predictors in cross validation is insufficient to correctly evaluate them
with respect to the learning dataset biases.

• We would also like to underline the issues related to the addition of
more and more features to the predictors. From one side, it allows
taking into account the huge complexity of the problem, but from the
other side it increases the risk of overfitting and biasing. Moreover,
when features are added on top of other features, for example in the
case of metapredictors, the performances are difficult to evaluate in
genuine cross validation and should be carefully analyzed.

The improvement that the above analyses are expected to bring is cru-
cial in view of addressing even more challenging issues such as the predic-
tion of the changes in folding free energy upon multiple mutations. Indeed,
even though it remains costly, the wide screening of single site mutations
can be performed experimentally in a reasonable time, via techniques such
as deep mutational scanning (Fowler and Fields (2014)). Computational
methods capable of predicting only point mutations could thus become
less impacting in the protein design field in the near future and the at-
tention should be more focused on the development of predictors that are
able to predict the effect of multiple mutations. Such predictions would
moreover be more likely to fulfill the requirements of improving protein
stability in biotechnological applications, which are frequently impossi-
ble to satisfy by single point mutations only, but require combinations
of mutations to achieve, for example, high energetic stabilization while
maintaining the solubility and activity of the protein unaltered.
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