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Abstract 5 
An animal’s movements and internal state generate an “internal backdrop” of activity that is dynamically 6 
modulated. During behavior, this internal backdrop interacts with signals arising from incoming sensory 7 
stimuli and may have a substantial impact on task-related computations, like those underlying decision-8 
making. To understand the joint effects of internal backdrop and task-imposed variables, we measured 9 
neural activity across the entire dorsal cortex of task-performing mice. We characterized internal backdrop 10 
using multiple measures of self-generated parameters including pupil diameter, whisking and body motion. 11 
Surprisingly, internal backdrop dominated neural activity across the entire cortex, dwarfing task-related 12 
variables and even sensory stimuli. Single neurons in frontal cortex were likewise dominated by internal 13 
backdrop. A linear model allowed us to account for multiple dimensions of internal backdrop and uncover 14 
hidden signatures of task-related activity. We show that complex, ongoing behavior fundamentally shapes 15 
neural activity throughout cortex and must be accounted for when studying decision-making. 16 

Highlights 17 

1. We imaged cortex-wide neural activity during auditory and visual decisions in mice. 18 
2. Cortical activity was surprisingly similar during sensory-guided versus random decisions.  19 
3. Movement and state variables vastly outperformed task variables in predicting neural activity. 20 
4. A linear model revealed hidden task-related activity in brain areas and single neurons. 21 

 22 

  23 
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Introduction 1 
Complex behaviors are accompanied by dynamic responses across cortical circuits. During decision-2 
making, cortical activity reflects multiple processes including sensory inputs (Freedman and Assad, 2006; 3 
Meister et al., 2013), selection and integration of behaviorally-relevant information (Roitman and Shadlen, 4 
2002), estimation and anticipation of reward (Bouret and Sara, 2004; Pratt and Mizumori, 2001), choice 5 
confidence (Kepecs et al., 2008) and recent trial history (Abrahamyan et al., 2016; Bichot and Schall, 1999; 6 
Manoach et al., 2007; Morcos and Harvey, 2016). 7 

Many decision-making studies have acknowledged the potential impact of decision-related movements on 8 
neural activity. Because neural activity in many decision-making structures is known to reflect movements, 9 
it is essential to separate the impact of movements from that of decision formation. Movements that are 10 
associated with decision reporting, such as head orientation (Erlich et al., 2011), eye movements (Roitman 11 
and Shadlen, 2002) or licking (Allen et al., 2017) are therefore often taken into account to ensure that the 12 
variable of concern cannot fully explain decision-related activity.  13 

Beyond decision-reporting, other movements are known to strongly modulate neural activity. For instance, 14 
active whisking, and not passive touch alone, is critical for texture discrimination and object localization in 15 
mice (Chen et al., 2013; O’Connor et al., 2013). Running modulates the gain of visual inputs (Mineault et 16 
al., 2016; Niell and Stryker, 2010; Polack et al., 2013) and is critical for integration of visual motion (Ayaz 17 
et al., 2013; Saleem et al., 2013) and predictive coding (Keller et al., 2012). These movements are also 18 
known to modulate neural activity in other cortical areas (Ferezou et al., 2007; Shimaoka et al., 2018). A 19 
potential explanation for these widespread effects is that certain movements reflect changes in the animal’s 20 
internal state, like increased arousal during running (Niell and Stryker, 2010). Indeed, internal state can 21 
account for changes in neural activity of different sensory areas that are as strong as responses to sensory 22 
stimuli (Crochet and Petersen, 2006; Okun et al., 2015; Pachitariu et al., 2015). Internal state is also 23 
reflected in pupil dilation, which is associated with increased excitability and desynchronization of cortical 24 
neurons (Reimer et al., 2014). Importantly, movements and pupil dilation have distinct effects on cortical 25 
activity (Vinck et al., 2015), suggesting that internal state is multidimensional and driven by a variety of 26 
internal sources (Harris and Thiele, 2011). The combined effects of movements and internal state 27 
transitions can therefore be thought of as an ‘internal backdrop’ that may be important to consider when 28 
analyzing neural responses. 29 

Broad measures of the internal backdrop are rarely incorporated into analyses of decision-making activity. 30 
This is in part because most studies of cortical modulation due to internal state have been focused on 31 
sensory areas (Niell and Stryker, 2010; Okun et al., 2015; Pachitariu et al., 2015; Polack et al., 2013; Reimer 32 
et al., 2014; Vinck et al., 2015). The impact of internal backdrop on decision-making areas is therefore 33 
poorly understood. Since most studies also use only narrow measures of internal state, like pupil dilation 34 
or running speed, the combined importance of multiple movements on neural activity is also unclear. 35 
Broadening this scope has been challenging because it requires measuring many different movements 36 
together with cortex-wide neural activity in task-performing animals. 37 

To assess the impact of internal backdrop on decision-making, we used widefield imaging to measure 38 
neural activity across the entire dorsal cortex of mice performing auditory or visual decisions, while tracking 39 
a wide array of movements and pupil diameter. To evaluate how cortical activity was affected by task-40 
related or self-generated variables, we built a linear encoding model. Surprisingly, animal movements 41 
captured the majority of signal variability across the cortex, outpacing other variables such as sensory 42 
stimuli, choice and reward. Moreover, task-aligned movements had a significant impact on trial-averaged 43 
data and accounted for features commonly attributed to cognitive task demands, like evidence 44 
accumulation, urgency, or motor planning. Similar results were found for individual neurons measured with 45 
two-photon (2p) imaging. These observations argue that that the internal backdrop has a much larger 46 
impact on neural activity during decision-making than previously appreciated.  47 
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Results 1 

Cortex-wide imaging during auditory and visual decision making 2 

To measure cortex-wide neural dynamics during perceptual decisions, we trained mice to report the spatial 3 
position of an auditory or visual stimulus. Animals interacted with handles to initiate trials and lick spouts to 4 
report choices. Handles and spouts were controlled by servo motors to limit their accessibility to appropriate 5 
epochs in the task (Batista-Brito et al., 2017; Goard et al., 2016) (Fig. 1A-B).  6 

Stimuli were presented 0.875-1.125 s after handle touch and consisted of auditory or visual stimulus 7 
sequences. Each sequence consisted of two 0.6-s long presentations, separated by a 0.5 s gap. After a 1 s 8 
delay, animals could report a decision and receive a water reward when licking the spout that corresponded 9 
to the stimulus presentation side (Fig. 1B). Two distinct cohorts of animals were trained on either auditory 10 
or visual stimuli (but not both) and consequently achieved expert performance in the trained modality (Fig. 11 
1C). Expert mice generalized the task timing, but not contingencies, to the untrained modality. This enabled 12 
us to measure cortical activity during either sensory-guided decisions or random guesses in the same 13 
animals (e.g., vision experts in blue were ~80% correct in visual trials but remained at novice level in 14 
auditory trials). 15 

To study neural activity during decision making, we used a custom-built widefield macroscope (Ratzlaff and 16 
Grinvald, 1991) with a large 12.5 x 10.5 mm field of view (Fig. 1D). Mice were transgenic (Ai93; Emx-Cre; 17 
LSL-tTA; CaMKII-tTA), expressing the Ca2+-indicator GCaMP6f in excitatory neurons. Fluorescence was 18 
measured through the cleared, intact skull (Guo et al., 2014). To avoid contamination from intrinsic signals 19 
(e.g., hemodynamic responses), we used excitation light at 473 nm to record Ca2+-dependent fluorescence 20 
and excitation light at 405 nm to record Ca2+-independent fluorescence (Lerner et al., 2015) on alternating 21 
frames. By rescaling and subtracting Ca2+-independent fluorescence we were then able to isolate a purely 22 
Ca2+-dependent signal (Allen et al., 2017; Wekselblatt et al., 2016). Using a combination of four brain 23 
landmarks, we aligned all data to the Allen Institute Common Coordinate Framework v3 (CCF, Fig. S1). To 24 
confirm accurate CCF alignment, we performed retinotopic visual mapping (Marshel et al., 2011) in each 25 
animal and found high correspondence between functionally identified visual areas and the CCF (Fig. 1E, 26 
Fig. S2). 27 

Baseline-corrected fluorescence (∆F/F) revealed significant modulation of neural activity across dorsal 28 
cortex during different episodes of the task (Fig. 1F, Video S1; average response to visual trials, 22 sessions 29 
from 11 mice). While holding the handles, cortical activity was strongest in the somato-motor areas for hind- 30 
and forepaw (‘Hold’). The first visual stimulus caused robust activation of visual areas in posterior cortex 31 
and weaker responses in secondary motor cortex (M2) (‘Stim 1’). Activity in anterior cortex increased during 32 
stimulus presentation (‘Stim 2’) and the delay period (‘Delay’). When animals were allowed to respond, 33 
neural activity strongly increased throughout dorsal cortex (‘Response’). A comparison of neural activity 34 
across conditions confirmed that neural activity was modulated by whether the stimulus was auditory vs. 35 
visual (Fig. 1G) and whether it was presented on the left vs. right (Fig. 1H). In both cases, differences across 36 
conditions were mainly restricted to primary and secondary visual areas. Activity in more anterior structures 37 
was nearly identical across conditions. This similarity may be because areas for motor planning are less 38 
lateralized (Li et al., 2015) and exhibit mixed tuning for both decision sides and modalities. Surprisingly, a 39 
comparison of neural activity in novice vs. expert decisions revealed almost no difference between the two 40 
trial categories (Fig. 1I). This similarity across the entire dorsal cortex was evident despite markedly different 41 
behavioral performance (Fig. 1C), suggesting that large parts of cortical activity did not distinguish informed 42 
decisions vs. guesses. 43 

  44 
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Figure 1. Widefield calcium imaging during auditory and visual decision making.  
(A) Bottom view of a mouse in the behavioral setup. (B) Single-trial timing of behavior. Mice held the 
handles for ~1 s to trigger the stimulus sequence. After a 1 s delay, water spouts moved in so mice could 
report a choice. (C) Expert vs. novice behavior. Visual experts (blue) had high performance with visual but 
novice performance with auditory stimuli. Auditory experts (green) showed the opposite. Thin lines show 
individual animals, thick show averages. Error bars represent mean ± s.e.m. (D) Schematic of widefield 
macroscope. Alternating blue and violet excitation light was projected on the brain surface. Green emission 
light was captured by an sCMOS camera through two macro lenses. (E) Example visual sign map, aligned 
to Allen CCF. Mapped areas largely agreed with corresponding locations of visual areas in the CCF (white 
lines). (F) Cortical activity during different task episodes averaged over 11 mice. Shown are responses 
when holding the handles (‘Hold’), visual stimulus presentation (‘Stim 1&2'), the subsequent delay (‘Delay’) 
and the response period (‘Response’). In each trial, stimulus onset was pseudo-randomized within a 0.25 
s long time window (inset). (G) Left: Traces show average responses in V1, retrosplenial cortex (RS), 
hindlimb somatosensory cortex (HL) and secondary motor cortex (M2) on the right hemisphere during visual 
(black) or auditory (red) stimulation. Trial averages are double-aligned to the time of trial initiation (left 
dashed line) and stimulus onset (gray bars). Right dashed line indicates response period, shading indicates 
s.e.m. Right: d’ between visual and auditory trials during first visual stimulus (top) and the subsequent delay 
period (bottom). (H) Same as (G) but for correct visual trials on the left versus right side. (I) Same as (G) 
but for expert versus novice modality. 
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5 
 

Movements dominate cortical activity 1 

To better understand how behavior related to neural activity, we built a linear model. The model was 2 
designed to account for the fluorescence of each pixel via any time-varying combination of 23 possible 3 
behavioral variables, while at the same time preventing overfitting of the dataset (see Methods). The 4 
predictor matrix (i.e., the design matrix) was constructed from sets of regressors, where each set was 5 
locked to a different sensory or motor event (Fig 2A, Steps 1-2). The regressors in each set formed a 6 
temporal sequence of pulses to allow the linear reconstruction of neural activity over time, relative to event 7 
onset. For sensory events, each regressor set contained regressors locked to each frame from stimulus 8 
onset until the end of the trial (‘Post-event’, blue). For motor events, regressors spanned a fixed duration 9 
of 0.5 s before until 1 s after event onset (‘Peri-event’, green). To account for cognitive task variables with 10 
no defined event onset, such as animal success in a given trial, we used regressor sets that spanned the 11 
entire trial (‘Whole trial’, black). We also included non-binary regressors, such as data from a piezo sensor 12 
underneath the animal to track hindpaw movements (‘Analog’, orange). Each behavioral variable was thus 13 
represented by a set of specific regressors. The model was fit to the data using ridge regression. Each 14 
regressor was assigned a β-weight, indicating how strongly that single regressor was linearly related to the 15 
neural activity in a given pixel (Fig. 2A, Step 3). To reduce computational cost, we used singular value 16 
decomposition (SVD) on the imaging data and predicted changes in data dimensions instead of individual 17 
pixels. Multiplying the full design matrix with the corresponding β-weights results in a model reconstruction 18 
of the imaging data (Fig. 2A, Step 4). 19 

In addition to traditional behavioral measurements (such as lick times), we leveraged video data from two 20 
cameras, observing the animal’s face and body. These data were used in two ways: first, we used video 21 
data to estimate variables known to modulate neural activity, such as whisking and pupil size (Fig. 2B). 22 
Second, we used SVD to extract the 200 highest-variance video dimensions and used them as analog 23 
regressors to provide additional information on animal movements that we could not track otherwise or had 24 
not previously considered (Powell et al., 2015; Stringer et al., 2018). To capture video motion energy, we 25 
additionally included the top 200 SVD dimensions from the absolute, temporal derivative of the video data. 26 
To ensure that video regressors did not overlap with other model regressors, we used a QR decomposition 27 
to orthogonalize these video regressors from the other model variables. 28 

Cortical maps of β-weights confirmed expected features of the data, matching known roles of visual and 29 
motor cortices. For example, pixel weights located in left V1 were highly positive in response to a rightward 30 
visual stimulus (Fig. 2C, left); pixels located in left somatosensory and primary motor forelimb area were 31 
highly positive when the right handle was grabbed (Fig. 2C, right). To evaluate how well the model captured 32 
neural activity at different cortical locations, we computed the 10-fold cross-validated R2 for the full model 33 
at different epochs during the trial (Fig. 2D). While some areas were particularly well predicted in specific 34 
trial epochs (e.g., V1 during stimulus presentation), there was high predictive power throughout the cortex 35 
during all epochs of the trial. For all data (‘Whole trial’), the model predicted 37.8 ± 1.2% of all variance 36 
across cortex. 37 

We next sought to address which particular model variables were most critical for its success. The simplest 38 
way to do this is to fit a model consisting of a single variable, and ask how well it predicts the data. We 39 
therefore computed cross-validated R2 values, over all data, for each single-variable model separately. As 40 
shown in the light green bars in Fig. 2E, many variables could individually predict a large amount of variance 41 
in the imaging data. However, model variables that were associated with animal movement or internal state 42 
(‘Movement’) contained particularly high predictive power compared to task-related variables (‘Task’). This 43 
suggests that these movement and state variables, which reflect the internal backdrop, are particularly 44 
important for predicting cortical activity. Interestingly, video (‘Video’) and motion energy (‘Video ME’) were 45 
the most predictive model variables, each explaining ~25% of all variance. By projecting β-weights of the 46 
video-dimension regressors back into video pixel space, we found that specific areas in the animal’s face, 47 
especially the jaw, were particularly important for predicting multiple dimensions of cortical activity (Fig. S3). 48 

  49 
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Figure 2. A linear model to reveal behavioral correlates of cortical activity.  
(A) Schematic of the linear model. Behavioral variables were encoded with regressor sets (Step 1) that 
were combined into a design matrix (Step 2). A single-trial example shows regressors for a rightward 
stimulus, animal licks, animal success and hindpaw movement. Each regressor is assigned a β-weight via 
ridge regression, describing its impact on each pixel (Step 3). Multiplying regressors with their respective 
weights allows reconstruction of the imaging data (Step 4). (B) Example image of facial video camera. 
Video data was used to extract pupil diameter, whisker and nose motion. A reduced-dimensionality version 
was also included as a model variable. (C) Maps of β-weights for right visual stimulus or grabbing the right 
handle, 100 ms after event onset. (D) Maps of cross-validated explained variance for different episodes of 
the task. (E) Explained variance for individual model variables. Shown is either all explained variance (light 
green) or unique explained variance (dark green). Values averaged across cortex, bars represent mean ± 
s.e.m over 22 sessions. Y-axis scale differs for all vs. unique variance. Nov.: novice; Exp.: expert; Prev.: 
previous. (F) Maps of unique explained variance for right visual stimulus or grabbing the right handle. (G) 
Explained variance for groups of model variables. Conventions as in (E), white bar indicates explained 
variance of the full model. Exp.: explained. (H) Maps of unique explained variance for groups of model 
variables. Area outlines indicate V1 and HL. (I) Example traces from two visual trials in areas V1 (bottom) 
and HL (top). Gray traces indicate recorded imaging data, purple and orange traces indicate predictions 
from a movement-only or task-only model, respectively. The movement model predicted single trial 
dynamics more accurately than the task model. 
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While many model variables contained high predictive power, it is critical to quantify the amount of unique, 1 
non-redundant information contained in each variable. For instance, while licking had high predictive power, 2 
it could also be strongly correlated to other task variables such as choice, since licking occurs at roughly 3 
the same time in each trial. It might therefore contain little unique information that is not present in other 4 
model variables. In this example, removing lick regressors from the model should not affect the model’s 5 
overall predictive power since other variables could predict the cortical data equally well.  6 

To isolate the predictive power that is unique to each variable, we created reduced models in which we 7 
temporally shuffled the regressor set of a given variable, and compared these reduced models to the full 8 
model. The resulting loss of predictive power (∆R2) with shuffling provides a conservative estimate of the 9 
amount of unique information contained in that variable. Pixel-wise ∆R2 maps showed that unique 10 
information was highly spatially localized (Fig. 2F, see Fig. S4 for other model variables) and matched the 11 
cortical areas where β-weights were highest (Fig. 2C and 2F are highly similar).  12 

This analysis revealed considerable variability in how essential each variable was to the model (Fig. 2E, 13 
dark green bars). A good example is the ‘time’ variable, a regressor set designed to capture signal 14 
deviations that always occur at the same time in each trial (similar to an average over all trials). Although 15 
the time-only model captured considerable variance (light green bar), eliminating this variable had a 16 
negligible effect on the model’s predictive power (dark green bar). This is because other task variables, 17 
such as choice or stimulus regressors, could capture time-varying modulation equally well. In contrast, 18 
movement variables contained large amounts of unique information. Notably, the video-based regressors 19 
contained a high degree of both overall and unique information, substantially outperforming all task-related 20 
model variables (Fig. 2E, both dark and light green bars corresponding to ‘Video’ and ‘Video ME’ are large). 21 

To directly compare the impact of movement and internal state vs. task variables, we assigned each 22 
variable into either a ‘movement’ or ‘task’ category (Fig. 2G). The resulting movement model contained a 23 
very high amount of unique information, more than 5-fold as much as the task model (∆R2Motor = 19.54 ± 24 
0.8% vs. ∆R2Task = 3.43 ± 0.2%; dark green bars). This stark difference was even more pronounced in 25 
cortical maps of unique explained variance. These maps revealed that the movement model was far more 26 
predictive than the task model throughout the entire cortex (Fig. 2H, Video S2). The same result was also 27 
clearly visible when comparing the accuracy of single-trial reconstructions in different cortical areas, 28 
including V1 (Fig. 2I). These results strongly argue that cortical activity is much better explained by the 29 
internal backdrop than by cognitive or sensory task variables. 30 

Accounting for internal backdrop benefits the interpretation of trial-averaged data 31 

Importantly, the large fraction of variance that is uniquely explained by the movement model is, by definition, 32 
orthogonal to the temporal structure of the task. This activity therefore cannot be captured when averaging 33 
over trials. However, there was also a significant amount of explained variance that was shared between 34 
the movement and task model (R2Shared = 14.86 ± 0.9%; Fig. 2G, light green bars same for task and 35 
movement), indicating that many features that are visible in a trial average may be either due to task 36 
variables or to certain movements that are task-aligned (e.g., licking at a specific time in every trial). To 37 
assess which movement variables were task-aligned, for each movement variable we computed how much 38 
explained variance influenced the trial average (‘task shared’ variance) and how much was trial-by-trial 39 
variability that averaged out across trials (‘task independent’ variance). Surprisingly, almost all movement 40 
regressors contained a large amount of explanatory power that was shared with task variables (Fig. 3A, 41 
light blue bars), indicating that each may have a considerable impact on the trial average.  42 

  43 
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Figure 3. Accounting for internal backdrop benefits the interpretation of trial-averaged data. 
(A) Explained variance for individual movement variables. Shown is either unique, task-independent (dark 
blue) or task-shared explained variance (light blue). Values averaged across cortex, bars represent mean 
± s.e.m over 22 sessions. (B) Trial-averaged data for areas V1 and M2. Top row shows averaged imaging 
(black traces) and modeled (red traces) data over all trials. Bottom row shows average reconstructions 
based on either movement or task variables alone, using weights from the full model. Dashed boxes show 
post-stimulus period in M2 that is jointly modulated by movement and task variables. Trial-averages are 
aligned to the time of trial initiation (dashed line) as well as stimulus onset (gray bars). Right dashed line 
indicates response period, shading indicates s.e.m. (C) Cortical maps of task-based reconstructions as 
shown in green in (B). Shown are average modulation during the first and second stimulus and the delay 
period. (D) Absolute modulation of trial averages for either the task or movement model. (E) Cortical map 
of the task modulation index. Dashed circle indicates location of ALM. 
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To better understand how movement and task variables influenced the trial average, we used the full model 1 
to reconstruct the imaging data and computed trial averages for different cortical areas (Fig. 3B, top). As 2 
expected, the model closely reconstructed the imaging data. We then split the model prediction into two 3 
parts, based on movement and task variables, without re-fitting. This provides the best available estimate 4 
of the relative contribution of all movement (blue traces) and task variables (green traces) on the trial 5 
average. In V1 (left), baseline activity was mainly reconstructed with movement variables whereas activity 6 
after visual stimulation was well explained by task variables. In M2 (right), baseline activity was also mostly 7 
explained by movement whereas later activity was explained by a combination of both task and movement. 8 
Separating trial averages into task and movement components therefore allowed us to assess which 9 
features of trial-averaged activity are likely to be truly task-related when taking animal movements and state 10 
into account.  11 

When we reconstructed trial-averaged activity across cortex based on task variables alone, we found 12 
several areas that were substantially task-modulated. Shortly after stimulus onset, task modulation was 13 
highest in the visual areas (Fig. 3C, ‘Stim1’). During subsequent visual stimulation and the delay (‘Stim2’ & 14 
‘Delay’), additional modulation developed along the midline, especially in retrosplenial cortex but also parts 15 
of M2 and facial somatosensory cortex. To summarize these effects, we summed absolute task modulation 16 
over the whole trial duration (Fig. 3D left). We then computed a task modulation index (TI) to identify areas 17 
that were most strongly affected by task vs. movement variables (Fig. 3E). The TI was defined as the 18 
difference between absolute task and movement modulation (Fig. 3D, left minus right) divided by their sum, 19 
rescaled between 0 and 1. High TI values indicate stronger trial-average modulation due to task variables, 20 
while low values indicate a strong movement contribution. The TI revealed multiple cortical areas with 21 
considerable relative task modulation. These areas are potential candidates for involvement in decision-22 
making, and included primary and secondary visual cortex, facial somatosensory cortex and specific sub-23 
areas within medial and anterior M2.  24 

Accounting for internal backdrop benefits the interpretation of single-neuron data 25 

One of these identified areas was the anterior lateral motor cortex (ALM; circled in Fig. 3E). This area was 26 
of particular interest because recent work has identified ALM as causally involved in comparable decision-27 
making tasks (Chen et al., 2017; Li et al., 2015). We therefore used 2p imaging to investigate ALM more 28 
closely and determine whether activity of individual ALM neurons is strongly task-modulated. This was also 29 
particularly important because widefield imaging mainly reflects average activity across many neural 30 
structures in superficial layers (Allen et al., 2017). It was therefore not clear whether the importance of 31 
animal movement and state would be equally strong on a single-cell level. 32 

In agreement with earlier reports (Li et al., 2015), many individual ALM neurons were highly active during 33 
licks to the contralateral spout (d’Lick-Baseline > 1 for 21% of all neurons, Fig. 4A, top). Other neurons exhibited 34 
modulation that was aligned to other task events, such as grabbing the handles, or showed mixed tuning 35 
(middle). Some neurons exhibited no modulation in their trial averages (‘untuned’, bottom). 36 

We then applied the exact same linear model as above to the single-cell 2p data. In the single-cell data, as 37 
in the widefield data, individual movement variables strongly outperformed task variables (Fig. 4B, light 38 
green bars). Given the known causal role of ALM for licking (Li et al., 2015), one might expect that licking 39 
would be a particularly important variable to predict ALM activity. Instead, in agreement with our widefield 40 
results, we found that almost all movement variables contained considerable information and video-based 41 
regressors were far more powerful than any other model variable.  42 

Many movement variables also contained a large amount of unique information (∆R2, dark green bars). In 43 
contrast, task variables explained much less of the overall variance across neurons and contained very 44 
little unique explanatory power. Again, this strong difference between movement and task variables became 45 
clearer still when comparing the variables by group (Fig. 4C). The full model’s predicted variance was 46 
almost entirely matched by the movement model (R2Full = 28.85 ± 0.7%; R2Motor = 28.13 ± 0.7%; both light + 47 
dark green bars), whereas the task model accounted for much less variance and contained very little unique 48 
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information (R2Task = 8.74 ± 0.6%, both bars; ∆R2Task = 0.7 ± 0.003%, dark green bar). These effects were 1 
not driven by outliers but found in almost every recorded neuron. Across all neurons, a movement-only 2 
model performed almost identically to the full model in predicting single-cell variance (Fig. 4D, top: light 3 
blue trace overlies red trace). For all cells, a large portion of variance was also uniquely explained by the 4 
movement model (top, dark blue trace). Conversely, the task model predicted less variance in most neurons 5 
(bottom, light green trace) and accounted for any substantial variance at all in only about half of all cells.  6 

Very few cells contained variance that was uniquely explained by the task model (bottom, dark green 7 
trace). These results demonstrate that the internal backdrop is of key importance for predicting activity of 8 
individual neurons, just as for widefield population data. Moreover, many neurons that would usually be 9 
considered untuned due to their lack of modulation by task variables (Fig 4D, bottom: light green line is 10 
close to 0 for ~50% of neurons) could still be explained and rendered interpretable by movement 11 
variables. 12 

The dominance of the backdrop in single cell activity is also worrying, as it implies that many neural 13 
response features that appear to be task-related might in fact be due to movements or state transitions that 14 
are temporally aligned with the task. It is important to note that this concern is limited to variance that is 15 
shared between movement and task variables (light green bars). The majority of movement-explained 16 
variance is unique to the movement model, and therefore orthogonal to the task. That is, the majority of the 17 
internal backdrop accounts for ‘spontaneous’ trial-by-trial variability that is removed when averaging over 18 
trials.  19 

To determine whether features in the trial average were best explained by task or movement variables, we 20 
repeated the analysis from Fig. 3 and reconstructed trial-averaged data for each neuron based on the full 21 
model. We then computed the absolute sum of all deviations in the trial average that were either due to 22 
movement or task variables. As shown in Fig. 4E, the trial average of many neurons was still appreciably 23 
modulated by task variables. Using the TI described above, we could then isolate neurons that were 24 
strongly modulated by either movement or task variables. For neurons with a low TI, the trial average was 25 
almost exclusively modulated by movement variables, including average features that could easily be 26 
confused with stimulus-evoked responses or evidence integration signals (Fig. 4F, blue box). Conversely, 27 
neurons with a high TI were strongly modulated by task variables, thus identifying individual neurons whose 28 
trial average was strongly affected by the behavioral task instead of animal movement or state (green box). 29 

Importantly, this distinction would not have been visible by examination of the trial average alone. The 30 
movement-driven example cell exhibited many average features that might have appeared to be responses 31 
to the stimuli, and a late rise in firing is reminiscent of decision formation. The model argues that these 32 
explanations are inaccurate. On the other hand, in the task-driven example cell, the rising activity might 33 
have appeared closely linked to licking, but was found to be mainly driven by task variables. Our model-34 
driven approach therefore provided much more detailed insight into each neuron’s tuning preference and 35 
enabled us to isolate single neurons that were truly task-modulated when taking internal backdrop into 36 
account. 37 
  38 
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Figure 4. Accounting for internal backdrop benefits the interpretation of single-neuron data.  
(A) Trial-averaged activity for example neurons. Colors indicate responses to left/right auditory stimuli 
(blue) and left/right visual stimuli (green). (B) Explained variance for individual model variables. Shown is 
either all explained variance (light green) or unique explained variance (dark green). Values are averaged 
across all neurons, mean ± s.e.m over 315 cells. Y-axis scale differs for all vs. unique variance. Nov.: 
novice; Exp.: expert; Prev.: previous. (C) Explained variance for groups of model variables. Conventions 
as in (B), white bar indicates all explained variance of the full model. Exp.: explained. (D) Explained 
variance of individual neurons, sorted by full-model performance (red traces). Light blue trace shows 
explained variance of a movement-only model, dark blue shows the unique explained variance by 
movement (same as light/dark green bars in C). Light/dark green traces show full/unique explained 
variance by the task model. (E) Absolute modulation of single-cell trial averages due to task or movement 
variables. Green bars show average deviations due to task variables, blue bars due to movement 
variables. Neurons are sorted by absolute deviation of the trial average. Bar plots stacked. (F) Linear 
model reveals tuning preference of individual neurons. Blue box: single cell trial average with substantial 
modulation after stimulus onset (gray bars) and increasing activity before the response period, that is 
well-explained by movement variables. Green box: cell with strong modulation that is largely explained by 
task variables. Dashed lines indicate trial initiation, shading is s.e.m over trials.  
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Discussion 1 

Our results demonstrate that activity across dorsal cortex is dominated by the internal backdrop. By 2 
including a wide array of self-generated movements and pupil dilation into our linear model, we were able 3 
to take these variables into account and predict neural activity with high accuracy. The dominance of the 4 
internal backdrop was observed in both cortex-wide population activity and single neuron data. By 5 
quantifying the modulation of trial-averaged data through movement and task variables, we could also 6 
identify cortical areas or individual neurons that were most affected by task variables and thus reveal the 7 
spatiotemporal dynamics of truly task-related activity. 8 

Cortical activity is widely invariant to animal expertise 9 

By training animals on either visual or auditory stimuli but testing them with both modalities, we could 10 
compare neural activity during sensory-guided decisions (expert) versus random guesses (novice) in the 11 
same animal. This allowed us to separate neural activity that was due to stimulus presentation or movement 12 
from informed utilization of sensory inputs. Surprisingly, though animals understood one contingency and 13 
were at chance for the other, cortical responses were highly similar for expert and novice decisions across 14 
the many activated areas in dorsal cortex. This suggests that most trial-averaged activity we observed 15 
across cortex does not reflect the transformation of sensory evidence to guide informed choices, but instead 16 
reflects responses closely related to sensory input, movements and state changes. This might also explain 17 
the discrepancy between studies that have shown widespread task-related activity in many different brain 18 
areas (Allen et al., 2017; Goard et al., 2016; Merre et al., 2017), and studies in which systematic inactivation 19 
of many cortical areas found no behavioral effects (Allen et al., 2017; Guo et al., 2014; Katz et al., 2016). 20 

More subtle decision-related activity might be overshadowed by such cortex-wide modulations. But when 21 
we separated movement- from task-related activity, cortical responses for expert and novice decisions 22 
remained similar (Fig. S5). There are at least two potential reasons for this. Sensory-guided decisions may 23 
be encoded by specific sub-populations of cortical neurons that are intermixed within more diverse local 24 
networks (Li et al., 2015); or, they may exhibit extensive mixed selectivity (Park et al., 2014; Raposo et al., 25 
2014; Rishel et al., 2013). Either scenario would obscure the impact of relevant neurons on the population 26 
average that is reflected in widefield signals. While this issue is best addressed by measuring individual 27 
neurons locally, cell-type-specific widefield imaging could also be used to measure activity of neuronal 28 
subtypes across the cortex (Allen et al., 2017; Chan et al., 2017). By measuring from layer- or projection-29 
specific subpopulations instead of all excitatory neurons, this approach may provide a more detailed view 30 
of large-scale cortical information processing. It may also help to alleviate an important caveat of widefield 31 
imaging: its bias towards superficial layers (Allen et al., 2017), which may obscure more task-related neural 32 
activity in deeper layers. While our 2p imaging results revealed individual neurons with interesting task 33 
modulation, recordings in deeper layers might be even more informative to find decision-related activity that 34 
was not seen with widefield imaging.  35 

Another explanation for the lack of cortical modulation specific to informed decisions could be the behavioral 36 
task design. Our task has several advantages, allowing for fast training (2-4 weeks), robust behavioral 37 
performance and comparison of expert vs. novice decisions. However, some cortical areas may be more 38 
important in a different setting, like during learning of a new behavior (Chen et al., 2013; Kawai et al., 2015; 39 
Merre et al., 2017), during tasks that require temporal accumulation of noisy sensory evidence (Erlich et 40 
al., 2011; Licata et al., 2017) or during spatial navigation (Harvey et al., 2012; Pinto et al., 2018). If true, the 41 
methods and analyses that we describe here might be critical to detect or correctly attribute additional 42 
cortical involvement in other behavioral paradigms. 43 

One of the non-sensory areas that we identified as task-modulated was ALM, which has been shown to be 44 
involved in planning and execution of motor output in comparable tasks to ours (Guo et al., 2014; Li et al., 45 
2015). However, it remains unclear whether ALM is involved in evidence integration, or equally driven by 46 
sensory-guided versus random decisions. Our recordings show that many ALM neurons were mostly driven 47 
by internal backdrop whereas unique task-modulation was present but sparse. Furthermore, neural activity 48 
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in about half of all recorded ALM neurons was modulated by spontaneous movements but completely 1 
orthogonal to the task. The master circuitry for sensory-guided decisions may therefore lie mostly in non-2 
dorsal areas such as orbitofrontal cortex (Kepecs et al., 2008) or subcortical regions like the dorsal striatum 3 
(Wang et al., 2018b), hippocampus (Aronov et al., 2017; Merre et al., 2017) or thalamus (Schmitt et al., 4 
2017) and subsequently be relayed to ALM to create or sustain a motor plan. To address these questions, 5 
future studies should therefore combine more complex paradigms or subcortical recordings with close 6 
monitoring of animal movements and behavioral controls to disentangle differences between sensory-7 
guided versus random decisions. 8 

Cortical activity is dominated by the internal backdrop  9 

Earlier studies that reported a large impact of the internal backdrop on cortical activity mostly focused on 10 
spontaneous behaviors like running on a wheel, where internal states may be particularly variable (Niell 11 
and Stryker, 2010; Vinck et al., 2015). One might assume that the internal state of task-performing animals 12 
is more constrained: animals are well-trained to the timing and contingencies of the task and perform the 13 
same behavior consistently over long periods of time, which might keep them in a less variable, attentive 14 
state (Harris and Thiele, 2011). This view is also supported by a reduction of trial-to-trial variance of cortical 15 
responses over the course of learning as behavioral performance increases (Ni et al., 2018). Our task 16 
design aimed to promote such a stable internal state by allowing mice to self-initiate trials, thereby ensuring 17 
that they were aware of an upcoming trial and willing to perform the task. Despite this, we found that the 18 
large majority of cortical activity was dominated by animal movements and internal state changes instead 19 
of the behavioral task. 20 

The profound impact of the internal backdrop has important implications when analyzing neural dynamics 21 
during decision-making. Although task variables alone explained a considerable amount of variance in 22 
cortical data, only ~3% was uniquely explained by the task. Most neural dynamics that might have been 23 
considered task-related were therefore ambiguous and equally well explained by internal dynamics or 24 
movements. The prevalence of movement modulation across cortex may explain why task-related activity 25 
has been observed in a variety of cortical areas (Allen et al., 2017; Goard et al., 2016; Merre et al., 2017) 26 
and highlights the importance of additional controls like neural inactivation to test the relevance of a given 27 
area for decision-making. 28 

Even in ALM, which had been identified as causal for behavior (Chen et al., 2017; Li et al., 2015), much of 29 
the observed single-cell dynamics may be due to ongoing movements. Many of our ALM neurons were 30 
strongly modulated in their trial average and exhibited dynamics that seemed reminiscent of evidence 31 
accumulation or urgency signals; nonetheless, their activity was often fully explained by movement 32 
variables (Fig. 4F). This argues that even when focusing on areas that have been identified with neural 33 
inactivation, much of the observed single-cell dynamics may be due to internal backdrop. To address this 34 
issue, our linear model could be leveraged to isolate neurons that are best explained by task variables, 35 
when taking movements into account. Careful quantification of animal behavior can therefore be utilized to 36 
uncover previously obscured task-related neural dynamics.  37 

The large and widespread impact of movements may appear to be in contrast with earlier decision-making 38 
studies that mostly found a weak relation between neural activity and movements (Allen et al., 2017; Erlich 39 
et al., 2011). The main difference between these earlier findings and our current study is most likely the 40 
number of parameters used to describe animal behavior. Our model included a wide variety of different 41 
movements and we found that most of them contributed a substantial amount of unique predictive power 42 
(Fig. 2E). This means that each variable had a distinct impact on cortical activity that cannot be inferred 43 
from other movements. While individual movement variables were indeed less informative than the task 44 
model, combining all variables into a larger model led to a pronounced increase in predictive power (Fig. 45 
2G). This highlights the importance of tracking different sources for the internal backdrop when assessing 46 
their cumulative impact on cortical activity. Notably, our results are still a lower bound for how well neural 47 
activity can be predicted from observing animal behavior. Using more sophisticated machine vision analysis 48 
(Mathis et al., 2018) or additional sensors (Bollu et al., 2018) could result in far more detailed information 49 
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on animal movement or state changes. Such information may enable dissociating effects of state change 1 
from specific motor activity, and a deeper understanding of the physiological mechanisms through which 2 
different components of the internal backdrop modulate cortical activity. 3 

Notably, using video data alone captured a significant amount of neural variance. This is in agreement with 4 
recent work that used PCA to extract facial features from video data, explaining large amounts of variance 5 
in dense recordings of many individual neurons in V1 and multiple other brain regions (Stringer et al., 2018). 6 
It is therefore possible to extract a surprisingly large amount of information on the animal’s state by 7 
recording video data and using well-established linear analysis. Given the feasibility of this approach, we 8 
believe it should become standard practice to acquire video data during behavioral experiments. 9 

Finally, the prominence of the internal backdrop raises the question of its role in cortical information 10 
processing. Historically, non-task related activity has often been described as random internal noise that is 11 
reduced when performing a behavioral task. Yet, this view seems largely incompatible with the tight 12 
coupling of ‘spontaneous’ activity to the animal movements and internal state that we describe here. Some 13 
earlier work in sensory areas has hypothesized that integration of specific motor feedback is advantageous 14 
for sensory processing, like the integration of running in visual areas for motion perception or predictive 15 
coding (Ayaz et al., 2013; Keller et al., 2012; Saleem et al., 2013). However, just as auditory and 16 
somatosensory cortices were also found to be modulated by running (Ayaz et al., 2018; Schneider et al., 17 
2014; Shimaoka et al., 2018) our results may indicate that this concept is not specific to sensory processing 18 
but holds true on a much larger scale. It is not yet clear what purpose this large and widespread modulation 19 
serves. As previously speculated, it may relate to cancelling or tracking self-motion (Sommer and Wurtz, 20 
2008), gating of inputs (Schmitt et al., 2017); biasing circuits toward receptive ‘ON’ states (Engel et al., 21 
2016), or permitting distributed associational learning (Engel et al., 2015; Wang et al., 2018a). Every cortical 22 
area, regardless of its specific computation, plays a potentially important role in case of unexpected 23 
feedback. Global transmission of the internal backdrop might therefore be a key component to broadcast 24 
behavioral context and flexibly adapt information processing in local cortical networks. 25 
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Figure Legends 1 

Figure 1. Widefield calcium imaging during auditory and visual decision making.  2 
(A) Bottom view of a mouse in the behavioral setup. (B) Single-trial timing of behavior. Mice held the 3 
handles for ~1 s to trigger the stimulus sequence. After a 1 s delay, water spouts moved in so mice could 4 
report a choice. (C) Expert vs. novice behavior. Visual experts (blue) had high performance with visual but 5 
novice performance with auditory stimuli. Auditory experts (green) showed the opposite. Thin lines show 6 
individual animals, thick show averages. Error bars represent mean ± s.e.m. (D) Schematic of widefield 7 
macroscope. Alternating blue and violet excitation light was projected on the brain surface. Green emission 8 
light was captured by an sCMOS camera through two macro lenses. (E) Example visual sign map, aligned 9 
to Allen CCF. Mapped areas largely agreed with corresponding locations of visual areas in the CCF (white 10 
lines). (F) Cortical activity during different task episodes averaged over 11 mice. Shown are responses 11 
when holding the handles (‘Hold’), visual stimulus presentation (‘Stim 1&2'), the subsequent delay (‘Delay’) 12 
and the response period (‘Response’). In each trial, stimulus onset was pseudo-randomized within a 0.25 13 
s long time window (inset). (G) Left: Traces show average responses in V1, retrosplenial cortex (RS), 14 
hindlimb somatosensory cortex (HL) and secondary motor cortex (M2) on the right hemisphere during visual 15 
(black) or auditory (red) stimulation. Trial averages are double-aligned to the time of trial initiation (left 16 
dashed line) and stimulus onset (gray bars). Right dashed line indicates response period, shading indicates 17 
s.e.m. Right: d’ between visual and auditory trials during first visual stimulus (top) and the subsequent delay 18 
period (bottom). (H) Same as (G) but for correct visual trials on the left versus right side. (I) Same as (G) 19 
but for expert versus novice modality. 20 

 21 

Figure 2. A linear model to reveal behavioral correlates of cortical activity.  22 
(A) Schematic of the linear model. Behavioral variables were encoded with regressor sets (Step 1) that 23 
were combined into a design matrix (Step 2). A single-trial example shows regressors for a rightward 24 
stimulus, animal licks, animal success and hindpaw movement. Each regressor is assigned a β-weight via 25 
ridge regression, describing its impact on each pixel (Step 3). Multiplying regressors with their respective 26 
weights allows reconstruction of the imaging data (Step 4). (B) Example image of facial video camera. 27 
Video data was used to extract pupil diameter, whisker and nose motion. A reduced-dimensionality version 28 
was also included as a model variable. (C) Maps of β-weights for right visual stimulus or grabbing the right 29 
handle, 100 ms after event onset. (D) Maps of cross-validated explained variance for different episodes of 30 
the task. (E) Explained variance for individual model variables. Shown is either all explained variance (light 31 
green) or unique explained variance (dark green). Values averaged across cortex, bars represent mean ± 32 
s.e.m over 22 sessions. Y-axis scale differs for all vs. unique variance. Nov.: novice; Exp.: expert; Prev.: 33 
previous. (F) Maps of unique explained variance for right visual stimulus or grabbing the right handle. (G) 34 
Explained variance for groups of model variables. Conventions as in (E), white bar indicates explained 35 
variance of the full model. Exp.: explained. (H) Maps of unique explained variance for groups of model 36 
variables. Area outlines indicate V1 and HL. (I) Example traces from two visual trials in areas V1 (bottom) 37 
and HL (top). Gray traces indicate recorded imaging data, purple and orange traces indicate predictions 38 
from a movement-only or task-only model, respectively. The movement model predicted single trial 39 
dynamics more accurately than the task model. 40 

 41 

Figure 3. Accounting for internal backdrop benefits the interpretation of trial-averaged data. (A) 42 
Explained variance for individual movement variables. Shown is either unique, task-independent (dark blue) 43 
or task-shared explained variance (light blue). Values averaged across cortex, bars represent mean ± s.e.m 44 
over 22 sessions. (B) Trial-averaged data for areas V1 and M2. Top row shows averaged imaging (black 45 
traces) and modeled (red traces) data over all trials. Bottom row shows average reconstructions based on 46 
either movement or task variables alone, using weights from the full model. Dashed boxes show post-47 
stimulus period in M2 that is jointly modulated by movement and task variables. Trial-averages are aligned 48 
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to the time of trial initiation (dashed line) as well as stimulus onset (gray bars). Right dashed line indicates 1 
response period, shading indicates s.e.m. (C) Cortical maps of task-based reconstructions as shown in 2 
green in (B). Shown are average modulation during the first and second stimulus and the delay period. (D) 3 
Absolute modulation of trial averages for either the task or movement model. (E) Cortical map of the task 4 
modulation index. Dashed circle indicates location of ALM. 5 

 6 

Figure 4. Accounting for internal backdrop benefits the interpretation of single-neuron data. (A) 7 
Trial-averaged activity for example neurons. Colors indicate responses to left/right auditory stimuli (blue) 8 
and left/right visual stimuli (green). (B) Explained variance for individual model variables. Shown is either 9 
all explained variance (light green) or unique explained variance (dark green). Values are averaged across 10 
all neurons, mean ± s.e.m over 315 cells. Y-axis scale differs for all vs. unique variance. Nov.: novice; Exp.: 11 
expert; Prev.: previous. (C) Explained variance for groups of model variables. Conventions as in (B), white 12 
bar indicates all explained variance of the full model. Exp.: explained. (D) Explained variance of individual 13 
neurons, sorted by full-model performance (red traces). Light blue trace shows explained variance of a 14 
movement-only model, dark blue shows the unique explained variance by movement (same as light/dark 15 
green bars in C). Light/dark green traces show full/unique explained variance by the task model. (E) 16 
Absolute modulation of single-cell trial averages due to task or movement variables. Green bars show 17 
average deviations due to task variables, blue bars due to movement variables. Neurons are sorted by 18 
absolute deviation of the trial average. Bar plots stacked. (F) Linear model reveals tuning preference of 19 
individual neurons. Blue box: single cell trial average with substantial modulation after stimulus onset (gray 20 
bars) and increasing activity before the response period, that is well-explained by movement variables. 21 
Green box: cell with strong modulation that is largely explained by task variables. Dashed lines indicate trial 22 
initiation, shading is s.e.m over trials.   23 
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Methods 1 

Animal Subjects 2 

The Cold Spring Harbor Laboratory Animal Care and Use Committee approved all animal procedures and 3 
experiments. Experiments were conducted with male mice from the ages of 6-25 weeks. All mouse strains 4 
were of C57BL/6J background and purchased from Jackson Laboratory. Four transgenic strains were 5 
crossed to create the transgenic mice used for imaging: Emx-Cre (JAX 005628), LSL-tTA (JAX 008600), 6 
CaMK2α-tTA (JAX 003010) and Ai93 (JAX 024103). All trained mice were housed in groups of two or more 7 
under an inverted 12:12-h light-dark regime and trained during their active dark cycle. 8 

Surgical procedures 9 

All surgeries were performed under 1-2% isoflurane in oxygen anesthesia. After induction of anesthesia, 10 
1.2 mg/kg of Meloxicam was injected subcutaneously and Lidocaine ointment was topically applied to the 11 
skin. After making a medial incision, the skin was pushed to the side and fixed in position with tissue 12 
adhesive (Vetbond, 3M). We then created an outer wall using dental cement (Ortho-Jet, Lang Dental) while 13 
leaving as much of the skull exposed as possible. A circular headbar was attached to the dental cement. 14 
For widefield imaging, after carefully cleaning the exposed skull we applied a layer of cyanoacrylate (Zap-15 
A-Gap CA+, Pacer technology) to clear the bone. After the cyanoacrylate was cured, cortical blood vessels 16 
were clearly visible. 17 

For two photon imaging, instead of clearing the skull, we performed a circular craniotomy using a biopsy 18 
punch (diameter: 3 mm), centered 1.5 mm lateral and 1.5 mm anterior to bregma. We then positioned a 19 
circular coverslip window over the cortex and sealed the remaining gap between the bone and glass with 20 
tissue glue. The window was then secured to the skull using C&B Metabond (Parkell) and the remaining 21 
exposed skull was sealed using dental cement. After surgery, animals were kept on a heating mat for 22 
recovery and a daily dose of analgesia (1.2 mg/kg Meloxicam) and antibiotics (2.3 mg/kg Enrofloxacin) 23 
were administered subcutaneously for at least 3 days. 24 

Behavior 25 

The behavioral setup was based on an Arduino-controlled finite state machine (Bpod r0.5, Sanworks) and 26 
custom Matlab code (2015b, Mathworks) running on a linux PC. Servo motors (Turnigy TGY-306G-HV) and 27 
visual stimuli were controlled by microcontrollers (Teensy 3.2, PJRC) running custom code. Eleven mice 28 
were trained on a delayed 2-alternative forced choice (2AFC) spatial discrimination task. Mice initiated trials 29 
by touching either of two handles with their forepaws. Handles were mounted on servo motors and were 30 
moved out of reach between trials. After one second of holding a handle, sensory stimuli were presented. 31 
Sensory stimuli consisted of either a sequence of auditory clicks, or repeated presentation of a visual 32 
moving bar (3 repetitions, 200 ms each). Auditory stimuli were presented from either a left or right speaker, 33 
and visual stimuli were presented on one of two small LED displays on the left or right side. The sensory 34 
stimulus was presented for 600 ms, there was a 500 ms pause with no stimulus, and then the stimulus was 35 
repeated for another 600 ms. The 500 ms inter-stimulus period was added to allow probing neural dynamics 36 
during potential decision formation in the absence of sensory stimuli. After the second stimulus, a 1000 ms 37 
delay was imposed, then servo motors moved two lick spouts into close proximity of the animal’s mouth. If 38 
the animal licked twice to the spout on the same side as the stimulus, he was rewarded with a drop of water. 39 
After one spout was contacted twice, the other spout was moved out of reach to force the animal to commit 40 
to its initial decision. 41 

Animals were trained over the course of approximately 30 days. After 2-3 days of restricted water access, 42 
animals were head-fixed and received water in the setup. Water was given by presenting a sensory 43 
stimulus, subsequently moving the correct spout close to the animal and dispensing water automatically. 44 
After several habituation sessions, animals had to touch the handles to trigger the stimulus presentation. 45 
Once animals reliably reached for the handles, the required touch duration was gradually increased up to 46 
1 second. Lastly, the probability for fully self-performed trials, at which both spouts were moved towards 47 
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the animal after stimulus presentation, was gradually increased until animals reached stable detection 1 
performance levels of 80% or higher. 2 
 3 
Each animal was trained exclusively on a single modality (6 visual animals, 5 auditory). Only during imaging 4 
sessions were trials of the untrained modality presented as well. This allowed us to compare neural activity 5 
on trials where animals performed sensory guided decision-making versus trials where animal decisions 6 
were random. To ensure that detection performance was not overly affected by presentation of the 7 
untrained modality, the trained modality was presented in 75% and the untrained modality in 25% of all 8 
trials. 9 

Behavioral sensors 10 

We used information from several sensors in the behavioral setup to measure different aspects of animal 11 
movement. The handles detected contact with the animal’s forepaws, and the lick spouts detected contact 12 
with the tongue. An additional piezo sensor below the animal’s trunk was used to detect hindpaw and whole-13 
body movements. Sensor data was normalized and thresholded at 2 standard deviations to extract hindpaw 14 
movements. Based on hindpaw events we created a binary peri-event design matrix that was also included 15 
in the linear model (see below). 16 

Video monitoring 17 

Two webcams (C920 and B920, Logitech) were used to monitor animal movements. Cameras were 18 
positioned to capture the animal’s face (side view) and the body (bottom view). To target particular 19 
behavioral variables of interest, we defined subregions of the video which were then examined in more 20 
detail. These included a region surrounding the eye, the whisker pad and the nose. From the eye region 21 
we extracted changes in pupil diameter using custom Matlab code. To analyze whisker movements, we 22 
computed the absolute temporal derivative averaged over the entire whisker pad. The resulting 1-D trace 23 
was then normalized and thresholded at 2 standard deviations to extract whisking events. Based on 24 
whisking events we created a binary peri-event design matrix that was also included in the linear model 25 
(see below). The same approach was used for the nose and pupil diameter. 26 

Widefield imaging 27 

Widefield imaging was done using an inverted tandem-lens macroscope (Grinvald et al., 1991) in 28 
combination with an sCMOS camera (Edge 5.5, PCO) running at 60 fps. The top lens had a focal length of 29 
105 mm (DC-Nikkor, Nikon) and the bottom lens 85 mm (85M-S, Rokinon), resulting in a magnification of 30 
1.24x. The total field of view was 12.5 x 10.5 mm and the image resolution was 640 x 540 pixels after 4x 31 
spatial binning (spatial resolution: ~20μm/pixel). To capture GCaMP fluorescence, a 500 nm long-pass filter 32 
(ET500lp, Chroma) was placed in front of the camera. Excitation light was projected on the cortical surface 33 
using a 495 nm long-pass dichroic mirror (T495lpxr, Chroma) placed between the two macro lenses. The 34 
excitation light was generated by a collimated blue LED (470 nm, M470L3, Thorlabs) and a collimated violet 35 
LED (405 nm, M405L3, Thorlabs) that were coupled into the same excitation path using a dichroic mirror 36 
(#87-063, Edmund optics). We alternated illumination between the two LEDs from frame to frame, resulting 37 
in one set of frames with blue and the other with violet excitation at 30 fps each. Excitation of GCaMP at 38 
405 nm results in non-calcium dependent fluorescence (Lerner et al., 2015), allowing us to isolate the true 39 
calcium-dependent signal by rescaling and subtracting frames with violet illumination from the preceding 40 
frames with blue illumination (Allen et al., 2017). All subsequent analysis was based on this differential 41 
signal at 30 fps. 42 

Two-photon imaging 43 

Two-photon imaging was performed in 2 mice (visual experts) with a resonant-scanning two-photon 44 
microscope (Sutter Instruments, Movable Objective Microscope, configured with the “Janelia” option for 45 
collection optics), a Ti:Sapphire femtosecond pulsed laser (Ultra II, Coherent Inc.), and a 16X 0.8 NA 46 
objective (Nikon Instruments). Images were acquired at 30.9 Hz with an excitation wavelength of 930 nm. 47 
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All focal planes were between 140-150 µm below the pial surface. The objective height was manually 1 
adjusted during recording in 1-2 µm increments as often as necessary to maintain the same focal plane. 2 
Images were processed using Suite2P (Pachitariu et al., 2016) with model-based background subtraction. 3 
Sessions yielded 63-126 neurons each, for 271-529 behavioral trials. 4 

Preprocessing of neural data 5 

To analyze widefield data, we used SVD to compute the 200 highest-variance dimensions. These 6 
dimensions accounted for at least 88% of the total variance in the data. Using 500 dimensions accounted 7 
for little additional variance (~0.15%), indicating that additional dimensions were mostly capturing recording 8 
noise. SVD returns ‘spatial components’ U (of size pixels x components), ‘temporal components’ VT (of size 9 
components x frames) and singular values S (of size components x components) to scale components to 10 
match the original data. To reduce computational cost, all subsequent analysis was performed on the 11 
product SVT. SVT was high-pass filtered above 0.1Hz using a second-order Butterworth filter. Results of 12 
analyses on SVT were later multiplied with U, to recover results for the original pixel space. All widefield 13 
data was rigidly aligned to the Allen Common Coordinate Framework v3, using four anatomical landmarks: 14 
the left, center, and right points where anterior cortex meets the olfactory bulbs and the medial point at the 15 
base of retrosplenial cortex. 16 

To analyze 2p data, Suite2P was used to perform rigid motion correction on the image stack, identify 17 
neurons, extract their fluorescence, and correct for neuropil contamination (Pachitariu et al., 2016). ΔF/F 18 
traces were produced using the method of Jia et al. (Jia et al., 2011), skipping the final filtering step. Using 19 
these traces, we produced a matrix of size neurons x time, and treated this similarly to SVT above. Finally, 20 
we confirmed imaging stability by examining the average firing rate of neurons over trials. If this varied 21 
substantially at the beginning or end of a session, the unstable portion was discarded.  22 

To compute trial-averages, imaging data were double-aligned to the time when animals initiated a trial and 23 
to the stimulus onset. After alignment, single trials consisted of 1.8 s of baseline, 0.83 s of handle touch 24 
and 3.3 s following stimulus onset. The randomized additional interval between initiation and stimulus onset 25 
(0 - 0.25 s) was discarded in each trial and the resulting trials of equal length were averaged together. 26 

Linear model 27 

The linear model was constructed by combining multiple sets of regressors into a design matrix, to capture 28 
signal modulation by different task or motor events (Fig. 2A). Each regressor set (except for ‘analog’ 29 
regressors) was based on a single binary vector that contained a pulse at the time of the relevant event. 30 
To produce the regressor set, we repeated this vector with each copy being shifted in time by one frame 31 
relative to the original. For sensory stimuli, we created post-event regressor sets spanning all frames from 32 
stimulus onset until the end of the trial. For motor events like licking or whisking, we created peri-event 33 
regressor sets that spanned the frames from 0.5 s before until 1 s after each event. Lastly, we created 34 
whole-trial regressors, covering each frame in a given trial. Whole-trial regressors were aligned to stimulus 35 
onset and contained information about decision variables, such as animal choice or whether a given trial 36 
was rewarded. The model also contained several analog (non-binary) regressors, such as 1-D regressors 37 
for pupil diameter. To capture animal movements, we used SVD to compute the 200 highest dimensions of 38 
video information in both cameras. SVD was performed either on the raw video data (‘video’) or the absolute 39 
temporal derivative (‘video ME’). SVD analysis of behavioral video was the same as for the widefield data, 40 
and we used the product SVT of temporal components and singular values as analog regressors in the 41 
linear model. We did not use lagged versions of the analog regressors, including the video regressors. 42 

To use video data regressors, it was important to ensure that they would not contain explanatory power 43 
from other model variables like licking and whisking that can also be inferred from video data. To accomplish 44 
this, we first created a reduced design matrix Xr, containing all movement regressors as well as times when 45 
spouts or handles were moving. Xr was ordered so that the motion energy and video columns were at the 46 
end. We then performed a QR decomposition of Xr (Mumford et al., 2015). The QR decomposition of a 47 
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matrix A is A = QR, where Q is an orthonormal matrix and R is upper triangular. Columns 1 to j of Q therefore 1 
span the same space as columns 1 to j of A for all j, but all the columns are orthogonal to one another. 2 
Finally, we replaced the motion and video columns of the full design matrix X with the corresponding 3 
columns of Q. This allowed the model to improve the fit to the data using any unique contributions of the 4 
motion and video regressors, while ensuring that the weights given to other regressors were not altered. 5 

The following table provides an overview of all model variables and how they were generated: 6 

Variable name Description Regressor type Category 

Hindpaw Piezo sensor below the animal Analog + Peri-event 
matrix 

Movement

Handles (Left / Right) Touch events from handle sensors Peri-event matrix Movement

Licks (Left / Right) Lick events from spout sensors Peri-event matrix Movement

Pupil Pupil diameter, extracted from face 
camera 

Analog + Peri-event 
matrix 

Movement

Nose Nose movements, extracted from face 
camera 

Analog + Peri-event 
matrix 

Movement

Whisking Whisker movements, extracted from 
face camera 

Analog + Peri-event 
matrix 

Movement

Body Average motion energy across all 
body camera pixels 

Analog + Peri-event 
matrix 

Movement

Video Video dimensions from both cameras 
(SVD) 

Analog Movement

Video ME Video dimensions from motion energy 
in both cameras (SVD) 

Analog Movement

Time All trials Whole-trial event matrix Task 

Choice All leftward choice trials Whole-trial event matrix Task 

Previous choice Every trial after a leftward choice trial Whole-trial event matrix Task 

Previous modality Every trial after a visual trial Whole-trial event matrix Task 

Previous success Every trial after a successful trial Whole-trial event matrix Task 

Novice success All successful non-expert trials Whole-trial event matrix Task 

Expert success All successful expert trials Whole-trial event matrix Task 

Water given All frames after a reward was given Post-event matrix Task 

Left audio All frames after a leftward auditory 
stimulus 

Post-event matrix Task 

Right audio All frames after a rightward auditory 
stimulus 

Post-event matrix Task 

Left vision All frames after a leftward visual 
stimulus 

Post-event matrix Task 

Right vision All frames after a rightward visual 
stimulus 

Post-event matrix Task 

 7 
When a design matrix has columns that are close to linearly dependent (multicollinear), model fits are not 8 
reliable. To test for this, we devised a novel method we call “cumulative subspace angles.” The idea is that 9 
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for each column of the design matrix, we wish to know how far it lies from the space spanned by the previous 1 
columns (note that pairwise angles do not suffice to determine multicollinearity). Our method works as 2 
follows: (1) the columns of the matrix were normalized to unit magnitude, (2) a QR decomposition of X was 3 
performed, (3) the absolute value of the elements along the diagonal of R were examined. Each of these 4 
values is the absolute dot product of the original vector with the same vector orthogonalized relative to all 5 
previous vectors. The values range from zero to one, where zero indicates complete degeneracy and one 6 
indicates no multicollinearity at all. Over all experiments, the most collinear regressor received a 0.26, 7 
indicating that it was 15° from the space of all other regressors. The average value was 0.84, corresponding 8 
to a mean angle of 57°. 9 

To avoid overfitting, the model was fit using ridge regression. The regularization penalty was estimated 10 
separately for each column of the widefield data using marginal maximum likelihood estimation 11 
(Karabatsos, 2017) with minor modifications that reduced numerical instability for large regularization 12 
parameters. 13 

Variance analysis 14 

Explained variance (R2) was obtained using 10-fold cross-validation. To compute all explained variance by 15 
individual model variables, we created reduced models where all regressors that did not correspond to a 16 
given variable were shuffled in time. The explained variance by each reduced model revealed the maximum 17 
potential predictive power of the corresponding model variable. 18 

To assess unique explained variance by individual variables, we created reduced models for each variable 19 
where only the corresponding regressor set was shuffled in time. The difference in explained variance 20 
between the full and the reduced model yielded the unique contribution ΔR2 of that model variable. The 21 
same approach was used to compute unique contributions for groups of variables, i.e., ‘movement’ or ‘task’. 22 
Here, all variables that corresponded to a given group were shuffled at once.  23 

To compute the ‘task-shared’ or ‘task-independent’ explained variance for each movement variable, we 24 
created reduced models where all movement variables were shuffled in time. This task-only model was 25 
then compared to other reduced models where all movement variables but one were shuffled. The 26 
difference between the task-only model and this model yielded the task-independent contribution of that 27 
movement variable. The task-shared contribution was the difference between the total variance explained 28 
by a given variable and its task-independent contribution. 29 

Model-based reconstruction of trial-averages 30 

Reconstructed trial averages (Figs. 3 and 4) were produced by fitting the full model and averaging the 31 
reconstructed data over all trials. To split the model into the respective contributions of movement and task 32 
variables, we reconstructed the data based on either the movement or task variables alone (using the 33 
weights as in the full model) and averaging over all trials. To evaluate the relative impact of task variables 34 
on the trial average, we computed a task modulation index (TI), defined as  35 

	 	 	 	 	
	 	 	

 , 36 

where ΔTask and ΔMovement denote the mean absolute deviation of the reconstructed trial average based 37 
on either task or movement variables. The TI ranges from 0 (fully motor related) to 1 (fully task related). 38 
Intermediate values denote a mixed contribution of task and motor regressors to the trial average. 39 

Model-based video reconstruction 40 

To better understand how the video related to the neural data, we analyzed the portion of the β-weight 41 
matrix that corresponded to the video regressors. This portion of the matrix was projected back up into the 42 
original video space. The result was of size p x d, where p is the number of video pixels (153,600) and d is 43 
the number of dimensions of the widefield data (200). We performed PCA on this matrix, reducing the 44 
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number of rows. The top few ‘scores’ (projections onto the principal components) are low-dimensional 1 
representations of the widefield maps that were most strongly influenced by the video. To choose the 2 
dimensionality, we used the number of dimensions required to account for >90% of the variance (Fig. S3A). 3 
To obtain the widefield maps showing how the video was related to neural activity (Fig. S3B), we projected 4 
the scores back into widefield data pixel space and sparsened them using the varimax rotation. To 5 
determine the influence of each video pixel on the widefield (Fig. S3C), we projected the low-dimensional 6 
β-weights into video pixel space, took the magnitude of the β-weights for each pixel, and multiplied by the 7 
standard deviation for that pixel.  8 

Aberrant cortical activity in Ai93 transgenic animals 9 

Mice with both Emx-Cre and Ai93 transgenes can exhibit aberrant, epileptiform cortical activity patterns, 10 
especially when expressing GCaMP6 during development (Steinmetz et al., 2017). To avoid this issue, we 11 
raised most of our mice (6 mice) on a doxycycline-containing diet (DOX), preventing GCaMP6 expression 12 
until they were 6 weeks or older. However, 5 mice were raised on standard diet, raising the concern that 13 
aberrant activity may have affected our results.  14 

To test for presence of epileptiform activity, we used the same comparison as Steinmetz et al. on the cortex-15 
wide average. A peak in cortical activity was flagged as a potential interictal event if it had a width of 60-16 
235 ms and a prominence of 0.03 or higher. These parameters flagged nearly all cases of apparent interictal 17 
events (Figure S6A) and identified four out of 11 mice to exhibit potential epileptiform activity (Figure S6B). 18 
None of the identified mice were raised on DOX.  19 

To ensure that epileptiform activity would not bias our results, we removed flagged events and interpolated 20 
over the resulting gaps (in low-D) with Matlab’s built-in autoregressive modeling (fillgaps.m) and a 20-frame 21 
prediction window. The result did not show any perturbations around the former interictal events (Figure 22 
S6C). When comparing modeling results between DOX- and non-DOX-raised mice, predicted variance was 23 
highly similar in all cases (Figure S6D-G). This shows that our results were not due to epileptiform activity 24 
and gave us confidence to include all mice in the dataset. 25 
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1 : Olfactory bulb (combined)
2 : Frontal pole, cerebral cortex
3 : Prelimbic area
4 : Anterior cingulate area, dorsal part
5 : Secondary motor area
6 : Primary motor area
7 : Primary somatosensory area, mouth
8 : Primary somatosensory area, upper limb
9 : Primary somatosensory area, nose
10 : Primary somatosensory area, lower limb
11 : Primary somatosensory area, unassigned
12 : Supplemental somatosensory area
13 : Primary somatosensory area, trunk
14 : Primary somatosensory area, barrel field
15 : Ventral auditory area
16 : Anterior visual area
17 : Retrosplenial area, dorsal part
18 : Anteromedial visual area
19 : Rostrolateral visual area
20 : Dorsal auditory area
21 : Primary auditory area
22 : Retrosplenial area, lateral agranular part
23 : Posteromedial visual area
24 : Primary visual area
25 : Anterolateral visual area
26 : Posterior auditory area
27 : Lateral visual area
28 : Laterointermediate area
29 : Temporal association areas
30 : Postrhinal area
31 : Posterolateral visual area

Supplementary Figure S1. Overview over cortical areas. 
Shown are cortical areas based on the Allen common coordinate framework v.3. 
The labels of the corresponding cortical areas are shown on the right.
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Supplementary Figure S2. Visual sign maps for all mice. 
Shown are visual field sign maps for all trained animals, aligned to the Allen CCF. 
Mapped areas largely agreed with corresponding location of visual areas in the CCF.
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Supplementary Figure S3. Relationship of widefield data to behavioral video
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Supplementary Figure S4. Maps of unique explained variance.
Shown are cortical maps of unique explained variance for different model variables. 
Maps are averaged over 22 recordings from 11 animals.
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Supplementary Figure S6. Controlling for potential interictal events.
(A)  Scatter plots show distribution of peaks in cortical activity, averaged over cortex. Left: Example animal, raised on a DOX-diet. 
Peaks were of variable length and remained at promince below %5. Right: Example animal, raised on a standard-diet. Clearly 
visible are peaks of short latency and high promince red dots . (B) Interictal event probability for all mice. our out of five mice 
that were raised on standard non-DOX  diet show potential interactival activity. (C) Example trace for removal of interictal activity 
using interpolation. (D-E) Modeling results for all DOX-raised animals. Similar to igure 2 E  . (F-G) Modeling results for all 
non-DOX-raised animals, showing potential interictal activity. Modeling results between the two groups were highly similar, 
demonstrating that our results are not due to potential interactical activity in some of the mice.
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