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Abstract 13 
 14 
Modern phenotypic high-throughput screens (HTS) present several challenges including 15 
identifying the target(s) that mediate the effect seen in the screen, characterizing ‘hits’ with a 16 
polypharmacologic target profile, and contextualizing screen data within the large potential 17 
space of drugs and biological screening model combinations. To address these challenges, we 18 
developed an interactive web application that enables exploration of the chemical-biological 19 
interaction space. Compound-target interaction data from public resources were quantified for 20 
over 280,000 molecules. Each molecule was annotated with a name and chemical structure, 21 
and every target was annotated with gene identifiers. The Drug-Target Explorer allows users to 22 
query molecules within this database of experimentally-derived and curated compound-target 23 
interactions and identify structurally similar molecules. It also enables network-based 24 
visualizations of the compound-target interaction space, and incorporates comparisons to 25 
publicly-available in vitro HTS datasets. Users can also identify compounds given one or more 26 
targets of interest. The Drug Target Explorer is a multifunctional platform for exploring chemical 27 
space as it relates to biological targets, and may be useful at several steps along the drug 28 
development pipeline including target discovery, structure-activity relationship, and lead 29 
compound identification studies. 30 
 31 
 32 
Keywords 33 

Drug targets, polypharmacology, webapp, phenotypic drug screen, compound-target 34 
network 35 
 36 
 37 
 38 
 39 
 40 
 41 
 42 
 43 
 44 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 3, 2018. ; https://doi.org/10.1101/308700doi: bioRxiv preprint 

https://doi.org/10.1101/308700
http://creativecommons.org/licenses/by/4.0/


Introduction 45 
 46 
 In the modern drug discovery and development process, high-throughput screens (HTS) 47 
of drugs have become a common and important step in the identification of novel treatments for 48 
disease. In the past decade, studies describing or citing high throughput drug screening are 49 
increasingly prevalent, topping 1000 per year for the past 5 years (Figure 1) and span many 50 
disease domains such as cancer, neurodegenerative disease, and cardiopulmonary diseases. 51 
These screens are often phenotypic in nature whereby a large panel of compounds of known, 52 
presumed known, and/or unknown mechanisms of action are tested in a biological model of 53 
interest and generate phenotypic readouts such as apoptosis or proliferation. While these types 54 
of screens facilitate the rapid identification of biologically active drugs or chemical probes, they 55 
also present several challenges. 56 

  57 
Figure 1 -  High throughput drug screening is an increasingly common experimental 58 
approach. Yearly count of Pubmed-indexed publications that appear with the search term “high 59 
throughput drug screening.” Search performed on January 30, 2018.  60 
 61 

One prevailing challenge is the identification of the specific biological mechanisms within 62 
a cell that determine the response in a screen. The search for novel drugs constantly pushes 63 
the pharmaceutical researchers to include novel chemical sets in phenotypic screens, with the 64 
caveat that the underlying mechanism of action (MoA) of a particular compound cannot usually 65 
be gleaned from the phenotypic screens. (1) Most of the time, identifying the MoA requires 66 
additional experimentation, particularly if the molecule represents a novel or understudied 67 
chemical entity. Another challenge is that the polypharmacologic nature of many small 68 
molecules can make it difficult to interpret HTS results as a given drug may affect multiple 69 
targets with a range of efficacy. This, in turn, presents the difficulty of consolidating multiple 70 
targets into a unified biological mechanism or set of mechanisms leading to poorly annotated 71 
targets, misunderstood MoAs (2), and unknown or ambiguous off-targets with potential deadly 72 
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side effects (3,4). A final challenge is that identification of related molecules and their targets is 73 
not always straightforward; in the context of HTS analysis, structurally and functionally related 74 
molecules that are not contained in a screening library might be useful to explore.  75 
 Multiple tools and databases have attempted to address various aspects of the 76 
challenges outlined above (see Table 1). These tools allow the user to explore known 77 
polypharmacology of small molecules. Many also allow users to explore compound-target 78 
relationships by querying either by molecule or by target: DGIdb, DT-Web, BindingDB, 79 
Polypharmacology Browser, STITCH, and SuperTarget allow users to identify MoAs/targets of a 80 
given compound by evaluating a query drug (5–10), while DT-Web, BindingDB, 81 
Polypharmacology Browser, and STITCH allow users to search by chemical similarity using any 82 
query molecule (Table 1). Probe Miner, alternatively, is designed primarily to handle target-83 
based queries (11). All tools listed in Table 1 allow users to identify molecules with known 84 
polypharmacology, but only two, STITCH and SuperTarget, provide the ability to summarize 85 
these targets into biological pathways/mechanisms using a gene list enrichment approach 86 
(9,10). The final challenge - identifying structurally or functionally related molecules - is 87 
addressed by DT-Web, BindingDB, Polypharmacology Browser, and STITCH (6–9).  88 
 While several of the tools listed address one or more of these challenges, there are 89 
some gaps (Table 1). For example, ChEMBLSpace does not have a web interface and therefore 90 
requires installation on a compatible system before use (12). In addition, not all of these tools 91 
are open-source (STITCH, SuperTarget, and BindingDB). An easy to modify open-source 92 
application could enable users to create features that are helpful for their specific analyses. 93 
While most tools allow both drug-based and target-based queries, none appear to facilitate 94 
queries for molecules that affect several targets, which may be useful for users who want to 95 
leverage polypharmacology by employing drugs that inhibit multiple biological mechanisms. 96 
While multiple targets can be queried at one time in STITCH, it is not straightforward to identify 97 
single molecules that affect all query targets. In addition, DGIdb and ChEMBLSpace cannot be 98 
used to explore similar chemical space to the query molecule. These two, plus SuperTarget, 99 
also cannot be queried using molecules that are not in the database; a feature that might help 100 
users with novel preclinical candidate drugs. With the exception of DT-Web and STITCH, these 101 
tools do not allow visualization of drug-target networks, which may help users address the 102 
challenge of identifying structurally or functionally related drugs. No tools other than STITCH 103 
perform gene list enrichment, which may help users interpret the biological MoAs of 104 
polypharmacologic molecules.  105 
 To address these gaps, we developed the Drug-Target Explorer. Specifically, the Drug-106 
Target Explorer enables the user to (1) look up targets for individual molecules and groups of 107 
molecules, (2) explore networks of targets and drugs, (3) perform gene list enrichment of targets 108 
to assess target pathways of compounds, (4) compare query molecules to cancer cell line 109 
screening datasets, and (5) discover bioactive molecules using a query target and exploration of 110 
these networks. We anticipate that the users will include biologists and chemists involved in 111 
drug discovery who are interested in performing hypothesis generation of human targets for 112 
novel molecules, identifying off-targets for bioactive small molecules of interest, and exploring of 113 
the polypharmacologic nature of small molecules.  114 
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 115 
 116 
Table 1 - Summary of selected features/uses of databases and applications for exploring 117 
molecule-target relationships and their overlapping features with the Drug-Target 118 
Database. Related tools include Probe Miner (11), DGIdb (5), DT-Web (6), BindingDB (7), 119 
Polypharmacology Browser (8), STITCH (9), ChEMBLSpace (12), and SuperTarget (10).  120 
 121 
 122 
Results  123 

 124 
The Drug Target Explorer was designed to facilitate the following use-cases: hypothesis 125 

generation of targets for newly-discovered molecules, identification of off-targets for bioactive 126 
research molecules, and exploration of the polypharmacologic nature of many drugs. Below, we 127 
include vignettes highlighting how the Drug-Target Explorer can facilitate analysis in these 128 
areas. 129 

 130 
Identifying potential off-target effects of novel molecules  131 
 132 
To highlight the use of this app to find potential off-targets of a novel molecule, we 133 

queried the Drug-Target Explorer for C21, a recently-published Polo like kinase (PLK) inhibitor 134 
that is not captured in our database (13). This molecule inhibits Plk2 and Plk1 in the low nM 135 
range, and Plk3 in the low uM range (13). Using a Tanimoto similarity of 0.65 or greater, we 136 
identified 14 molecules (Figure 2A, Supplemental Table 1). PLK1, PLK2, and PLK3 are known 137 
targets of several of these molecules, such as BI 2536 and volasertib. Curiously, CAMKK, 138 
BRD4, PDXK, and PTK2 are also targeted by molecules in this chemical set, with pChEMBL 139 
values >6-8. A plausible hypothesis could be that these targets are affected by this family of 140 
molecules, including the query molecule, in the 10-1000 nM range, which would indicate that 141 
further research is needed to determine the selectivity of C21 or other structurally related 142 
molecules.   143 

 144 

Drug-Target Explorer Probe Miner DGIdb v3.0 DT-Web BindingDB Polypharmacology Browser STITCH ChEMBLSpace SuperTarget

Web app? X X X X X X X X

Open-source software? X X
X - underlying R 

package only
unknown X X

Search by targets to find drugs? X X X X X X - only by PDB-listed ligands X X X

Search by drugs to find targets? X X X X X X X

Identification of molecules that are 
associated with multiple query targets?

X unknown

Drug structure input? X X X X X

Drug name/ID input? X X X X X X X

Visualize drug-target networks? X
X, with user provided 
drug-target networks

not currently 
functioning

X

Identify chemically similar drugs? X
X, with user provided 
drug-target networks

X X X X

Allows queries using molecules not in 
database?

X
X, with user provided 
drug-target networks

X X X

Target organism? human human human human human and others human and others human and others unknown human and others

Target space? 3.6k 2.2k 6.1k 3.8k >7k 4.6k 9.6mil unknown >6k

Chemical space? 280k 400k 10k 4.4k >642k 870k 500k unknown >196k

Quantitative interactions? X X unknown X X X X X

Qualitative interaction? X X X X unknown X

Explore polypharmacology? X X X X X X X X X

Polypharmacologic target enrichment? X X X

Comparison of query molecule to HTS 
drug response datasets?

X

Target prediction? X X X

Database access? Open Open Open Open Open Open
Full database 

requires license
unknown unknown

Last known update 2018 2018 2018 2018 2018 2016 2016 2015 2012
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 145 
 146 
Figure 2 - Molecule-target networks highlight targets within chemical families. (A) 147 

Using the novel Plk inhibitor C21 as a query with a Tanimoto cutoff of 0.65 (SMILES: 148 
CCNC(=O)C1=CC2=C(C=C1)N(C=C2)C1=NC=C2N(C)C(=O)[C@@H](CC)N(C3CCCC3)C2=N1), we identify 14 related 149 
molecules (blue vertices), and observe several targets (green vertices) common to multiple 150 
members of this family, including PLK1, PLK2, BRD4, CAMKK2, PTK2, and PDXK. (B) A gene-151 
based query for two targets (green vertices), LIMK1 and LIMK2, identifies 10 molecules (blue 152 
vertices), as well as other targets affected by these molecules. (C) A query for multiple targets 153 
relevant to tumors caused by neurofibromatosis type 2 identifies three promiscuous molecules 154 
that have associations with these targets.  155 

 156 
 Identifying off targets of existing molecules 157 
 158 

 This app may also be useful in identifying off-targets of existing molecules in a 159 
preclinical or exploratory research setting. In order to confidently interrogate the role of cellular 160 
targets, one must use compounds with specificity for those targets. A well-known example of a 161 
non-specific inhibitor is imatinib. This molecule, developed for use in the treatment of chronic 162 

A B

C
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myelogenous leukemia, was initially considered a selective inhibitor of Abl (14). More recently, 163 
several other targets have been identified for imatinib such as KIT, PDGFRA, and PDFGRB 164 
(15). Querying the Drug Target Explorer indicates that there is evidence for 61 targets of 165 
imatinib, several of which have pChEMBL values within a reasonable range of Abl, PDGFRA, 166 
and PDFGRB (Supplemental Table 2). These targets must all be considered when evaluating 167 
imatinib in human model systems.  168 

A more recent example is the tool compound G-5555, a selective PAK1 inhibitor (16). 169 
This compound has been used to demonstrate the role of PAK1 in cellular processes such as 170 
invasion (17). A search of the Drug-Target Explorer database showed that this molecule not 171 
only binds PAK1 (mean pChEMBL = 8.01), but there is qualitative evidence for effects on 172 
PAK2/3, and quantitative evidence suggesting an effect on SIK2, MAP4K5, and PAK2 at similar 173 
concentrations of G-5555 (mean pChEMBLs 8.05, 8, and 7.96 respectively, Table 2). G-5555 174 
also may have an effect on STK family proteins (STK3, STK24, STK25, STK26) and LCK. 175 
Therefore, any findings with G-5555 with regards to PAK1 inhibition must be validated with other 176 
selective inhibitors or genetic approaches, as Jeannott and colleagues did (using other PAK 177 
inhibitors such as FRAX597 and FRAX1036, as well as PAK1 silencing RNA), to confirm that 178 
the effects observed are PAK1 specific (17).  179 
 180 

 181 
Table 2 – Targets of G-5555 found in the Drug-Target Explorer Database.  182 
 183 

Identifying polypharmacologically-targeted pathways and drugs with similar biological 184 
effects  185 

 186 
In order to provide biological context, this app allows the user to aggregate multiple 187 

targets from compounds into functional categories. Using the previous example of G-5555, we 188 
performed enrichment analysis on the list of targets to identify potential biological pathways and 189 
MoAs that this molecule may disrupt. In doing so, we observed that G-5555 targets are enriched 190 
in several Gene Ontology terms and KEGG Pathways like T-cell receptor signaling, Ras/MAPK 191 
signaling, and Golgi-localized proteins (Supplemental Table 3). The app also allows the user to 192 
compare the query molecule to drugs in the Cancer Cell Line/CTRP and GDSC/Sanger cell line 193 
screening datasets. Specifically, the app identifies the most similar molecule available in these 194 

Molecule Name HGNC Symbol Mean pChEMBL n Quantitative n Qualitative KSI Confidence 

CHEMBL3770443 PAK1 8.01 3 1 0.1 11 

CHEMBL3770443 PAK2 7.96 2 1 0.1 9.96 

CHEMBL3770443 SIK2 8.05 1  0.1 9.05 

CHEMBL3770443 MAP4K5 8 1  0.1 9 

CHEMBL3770443 STK26 7.7 1  0.1 8.7 

CHEMBL3770443 STK25 7.47 1  0.1 8.47 

CHEMBL3770443 STK24 7.37 1  0.1 8.37 

CHEMBL3770443 STK3 7.37 1  0.1 8.37 

CHEMBL3770443 LCK 7.28 1  0.1 8.28 

CHEMBL3770443 PAK3   1 0.1 1 
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datasets and uses that molecule as a reference to plot chemical similarity vs drug response 195 
correlation.  196 

 197 
Finding a drug for known targets 198 
 199 
Finally, the tool allows users to perform a reverse search, i.e. identify molecules that 200 

have an association with a query target or targets and assess the known selectivity of these 201 
molecules. For example, Petrilli et. al. identified LIM domain kinases as targets of interest in 202 
tumors caused by the genetic disease neurofibromatosis type 2 (NF2) (18). They found that 203 
pharmacologic (LIMK1/2 inhibitor BMS-5) and genetic modulation of LIMK1 and LIMK2 caused 204 
cell-cycle inhibition and reduced viability in merlin (Nf2) deficient Schwann cells (18). In the 205 
context of follow-up and validation studies, it may be beneficial to use alternate molecules that 206 
target LIMK1/2 at the same or greater potency than BMS-5. We used the Drug-Target Explorer 207 
to find molecules that target LIMK1 and LIMK2 (Supplemental Table 4, Figure 2B). For example, 208 
BMS-5 (CHEMBL2141887 in the Drug-Target Explorer) has mean pChEMBLs of 7.33 and 7.07 209 
for LIMK1 and LIMK2 respectively. A good alternative to validate the effects of this molecule 210 
might be CHEMBL3623442, a relatively structurally distinct small molecule (extended fingerprint 211 
Tanimoto similarity of 0.433 to BMS-5 in this database), with pChEMBLs of 9 and 8.52 for 212 
LIMK1 and LIMK2 respectively. Another interesting possibility is the identification of multiple 213 
molecules with overlapping desired targets and non-overlapping off-targets to reduce off-target 214 
effects, or to identify synergistic/additive single-target, multi-drug combinations as outlined by 215 
Fitzgerald et al 2006 (19). Using the above scenario with LIMK1/2, it may be possible to use 216 
structurally distinct molecules in combination or in sequence, like CHEMBL3356433 and 217 
Compound 31 highlighted in Figure 2B, to reduce off-target effects or inhibit LIMK1/2 in an 218 
additive or synergistic manner. The opposite approach could also be taken by finding a single 219 
molecule that binds multiple desired targets. In the case of merlin-deficient cells, focal adhesion 220 
kinases (FAKs) such as PTK2 (FAK2) and PTK2B, as well as Aurora kinase A (AURKA) have 221 
been highlighted as potential targets of interest (18,20,21). Using the Drug-Target Explorer, we 222 
can identify molecules that target LIMK1/2, PTK2/2B, and AURKA (Supplemental Table 5, 223 
Figure 2C). Using this information, a rational hypothesis might be that CYC116 or danusertib 224 
could be effective and selective for NF2-deficient tumor cells; to our knowledge, the use of these 225 
molecules in this setting has yet not been explored.  226 

 227 
 228 
Discussion  229 
 230 
 In the present study, we demonstrate that the Drug-Target Explorer enables the user to 231 
look up targets for novel and known molecules such as C21, G-5555, and imatinib, as well as 232 
explore networks of these drugs and their targets. Users can perform target enrichment to 233 
consolidate multiple targets to into pathways, compare query molecules to screening datasets, 234 
and identify bioactive molecules given a query target.  235 

Several future directions are envisioned for this application. The code and database has 236 
been designed in such a way that any database with structural information and drug-gene target 237 
information (qualitative associations, or quantitative associations that can be coerced to 238 
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pChEMBL values) can be harmonized and integrated into the database. Therefore, as new 239 
datasets become available, such as the recently-published Drug-Target Commons (22), they 240 
can be integrated and released. We also envision occasional errors being identified as the 241 
database is explored and vetted by users and have included a feedback form for users to 242 
suggest new data to integrate, as well as to highlight necessary corrections to the dataset. 243 
Currently, the query molecule to full database similarity calculation is computationally intensive. 244 
One solution to speed up calculation times may be to implement a locality sensitive hashing 245 
method in future versions of the database and web app, such as the method devised by Cao et 246 
al 2010 (23). An additional planned feature for this app is the implementation of a bulk 247 
annotation feature to allow users to annotate HTS data with targets and/or putative targets of 248 
identical or structurally related molecules. Finally, the integration of a predictive framework for 249 
identifying targets of query drugs based on drug and target feature data would enable users to 250 
quantitatively predict targets of novel molecular entities rather than manually exploring 251 
structurally similar molecules.  252 

The Drug-Target Explorer enables users to explore known molecule-human target 253 
relationships as they relate to chemical similarity rapidly and with minimal effort. We anticipate 254 
that users such as biologists and chemists using chemical probes or studying preclinical 255 
therapeutics will find this tool useful in several areas. Specifically, this tool may aid drug 256 
discovery efforts by accelerating hypothesis generation, simplifying the transition from 257 
phenotypic HTS results to mechanistic studies, and streamlining the identification of candidate 258 
molecules that target a protein or mechanism of interest. 259 
 260 
Methods 261 
 262 

To build the database of known compound-target interactions, we aggregated five data 263 
sources containing qualitative and quantitative interactions (Figure 3). We considered qualitative 264 
interactions to be curated compound-target associations with no associated numeric value. 265 
Quantitative interactions were defined as compound-target information with a numeric value 266 
indicating potency of compound-target binding or functional changes. Qualitative compound-267 
target associations were retrieved from the DrugBank 5.0.11 XML database, the DGIdb v3.0.1 268 
interactions.tsv file, and ChemicalProbes.org (acc. Jan 17 2018) (5,24,25). pChEMBL, IC50, 269 
C50, EC50, AC50, Ki, Kd, and potency values for Homo sapiens targets were retrieved from the 270 
ChEMBL v23 MySQL database (26). Kd values were also obtained from Klaeger et al 2017, in 271 
which the authors determined the Kd of 244 kinase inhibitors against 343 kinases (27). For all 272 
quantitative and qualitative data sources, compound structural information (SMILES) was 273 
retrieved when available. When not available, it was batch annotated using the Pubchem 274 
Identifier Exchange Service, or, in some cases, manually annotated via PubChem and 275 
ChemSpider search (28,29). 276 
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 277 

 278 
Figure 3 - Process for developing the Drug-Target Explorer. Molecule-target and chemical279 
structure data were collected from public sources. In the case of DGIdb, chemical structures280 
were assigned using the PubChem Chemical Identifier Exchange or manually assigned using281 
ChemSpider and PubChem. Chemical structures were converted to circular fingerprints and the282 
databases were mapped to internal Drug-Target Explorer identifiers. Qualitative and quantitative283 
data were summarized by calculating several summary statistics, and these data were stored284 
together with the internal identifiers to form the Drug-Target Explorer database.  285 
 286 

To consolidate data for “identical” molecules within and across multiple databases, the287 
functional connectivity fingerprint (FCFP6)-like ‘circular’ fingerprint for each SMILES was288 
calculated using the R interface (rcdk) to the Java Chemical Development Kit (CDK) (30–32).289 
The package was modified to use the latest version of the CDK (2.1.1), which enables290 
perception of chiral centers, enabling differentiation between isomeric molecules. Each unique291 
circular fingerprint and all external IDs and SMILES associated with that fingerprint were then292 
assigned an internal identifier, so that groups of molecules with identical fingerprints were293 
assigned to the same internal ID. The internal molecular IDs were then mapped to each294 
database to permit their aggregation. All datasets were combined and summaries were295 
generated for each compound-target comparison using functions from the R ‘tidyverse’ (33). 296 

The summary metrics described in Table 3 were calculated. One of these metrics,297 
pChEMBL, is used to convey the efficacy of a given molecule. It is calculated from one of298 
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several semi-comparable values in the ChEMBL database, and is defined as the negative log 299 
10 molar of the IC50, XC50, EC50, AC50, Ki, Kd, or potency (26). For example, a pChEMBL 300 
value of 7 would indicate that there is a measurable effect on a given target in the presence of 301 
100 nM of molecule. To harmonize the data from Klaeger et al with ChEMBL data, the Kd 302 
values were converted to pChEMBLs. The mean pChEMBL was calculated for every molecule-303 
target combination, as well as the number of quantitative and qualitative associations found in 304 
the source databases.  305 

 306 

 307 
Table 3 - Drug-target association metrics summarized in the Drug-Target Explorer 308 
database.  309 

 310 
We calculated a known selectivity score for each molecule, which we defined as 1 311 

divided by the total number of targets for that molecule (lower values correspond to lower 312 
molecule selectivity), and a confidence score for each molecule-target relationship, which we 313 
defined as the mean pChEMBL multiplied by the number of quantitative measurements, in 314 
addition to the number of qualitative annotations. A larger confidence score indicates greater 315 
confidence in this relationship; this confidence is weighted by the potency to give increased 316 
preference to high-potency compound-target interactions.  317 

This resulted in a database containing 3645 human targets (represented by HUGO gene 318 
symbols), ~280,000 small molecules, and ~623,500 molecule-target relationships summarized 319 
from ~598,000 quantitative associations and ~25,000 qualitative associations. Finally, this 320 
database as well as fingerprints and chemical aliases for each molecule were saved as R binary 321 
files and stored on Synapse. All of the data, as well as snapshots of the source databases used 322 
to build the Drug Target Explorer database (with the exception of DrugBank, which requires a 323 
license to access) are accessible at www.synapse.org/dtexplorer. The Drug-Target Database is 324 
licensed under CC BY-SA 4.0.   325 

 326 
 327 
 328 
 329 
 330 
 331 
 332 

Metric Unit Meaning 

mean IC50/AC50/EC50/C50/Potency/Ki/Kd nM mean of values obtained from quantitative 
datasets; available in database but not app 

mean pChEMBL -log10(nM) mean -log10(nM) of all semi-comparable 
quantitative values  

n_qualitative count number of qualitative associations identified 

n_quantitative count number of quantitative associations 
identified 

known selectivity score N/A 1 divided by the number of known targets, 
lower is less selective  

confidence score N/A mean pChEMBL, multiplied by 
n_quantitative, plus n_qualitative 
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 333 
Figure 4 - Layout of the Drug-Target Explorer. The “About” tab describes the apps 334 

functions and uses, the “Molecules” tab permits molecule-based searching, the “Genes” tab 335 
permits target queries, and the “Settings” tab allows the user to pick the fingerprinting method 336 
used.  337 

 338 
We developed a Shiny application to permit exploration of the database (34,35). For 339 

chemical queries, users can search for molecules in the database by one of three methods: 340 
from a list of aliases obtained from the source databases, retrieving the chemical structure using 341 
the ‘webchem’ interface to the Chemical Identifier Resolver, or by directly inputting the SMILES 342 
string (36). A Tanimoto similarity threshold allows the user to narrow or widen the chemical 343 
space of the results. After querying, the input molecule is converted to a fingerprint and it’s 344 
similarity calculated relative to all molecules in the database, using ‘extended’ fingerprints. The 345 
user then can view the resulting set of molecules as well as the molecule-target relationships in 346 
interactive tables and graphs (Figure 4). In addition, the user can remove or include molecules 347 
on an a-la-carte basis, view the 2D structural representation of the input molecule, and perform 348 
target list enrichment analysis (37,38). Furthermore, the query molecule can be compared 349 
against molecules in the CTRP and Sanger cancer cell line drug-screening datasets to identify 350 
identical or similar structures in these datasets, and compare the relationship between chemical 351 
structure and correlations in drug response.  352 

For target queries, users can input one or more query HUGO gene(s) and identify 353 
molecules that are reported to bind those targets, and view these data in an interactive table. 354 
Users can also view these drugs in an interactive graph format to view their association with the 355 
query target and their other targets. The Drug-Target Explorer is available at 356 
www.synapse.org/dtexplorer. The source code for the Drug-Target Explorer app is available at 357 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 3, 2018. ; https://doi.org/10.1101/308700doi: bioRxiv preprint 

https://doi.org/10.1101/308700
http://creativecommons.org/licenses/by/4.0/


https://github.com/Sage-Bionetworks/polypharmacology-db. The source code is licensed under 358 
Apache 2.0. 359 
 360 
 361 
Supplemental table legends:  362 
 363 
Supplemental Table 1 – Targets of C21-like compounds in the Drug-Target Explorer 364 
Database.  365 
 366 
Supplemental Table 2 – Targets of imatinib in the Drug-Target Explorer Database.  367 
 368 
Supplemental Table 3 – Target enrichment analysis of G-5555 highlights putative 369 
mechanistic effects.  G-5555 targets were enriched in multiple Gene Ontology terms and 370 
KEGG pathways.  371 
 372 
Supplemental Table 4 – Molecules targeting LIMK1/2. The database was queried for 373 
molecules that may modulate LIMK1 and LIMK2; this analysis revealed a large set of putative 374 
tool compounds.  375 
 376 
Supplemental Table 5 – Identification of multi-kinase-targeting molecules for NF2. A query 377 
of the database for molecules that target several kinases of interest in NF2 (AURKA, LIMK1/2, 378 
PTK2/2B) identified 3 polypharmacologic compounds.  379 
 380 
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