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Abstract

Many biological processes, including tissue morphogenesis, are driven by me-

chanical sorting. However, the primary mechanical drivers of cell sorting re-

main controversial, in part because there remains a lack of appropriate three-

dimensional computational methods to probe the mechanical interactions that

drive sorting. To address this important issue, we developed a three-dimensional,

local force-based simulation method to enable such investigation into the sort-

ing mechanisms of multicellular aggregates. Our method utilises the subcellular

element method, in which cells are modeled as collections of locally-interacting

force-bearing elements, accommodating cell growth and cell division. We de-

fine two different types of intracellular elements, assigning different attributes

to boundary elements to model a cell cortex, which mediates the interfacial

interaction between different cells. By tuning interfacial adhesion and tension

in each cell cortex, we can control and predict the degree of sorting in cellular

aggregates. The method is validated by comparing the interface areas of simu-

lated cell doublets to experimental data and to previous theoretical work. We

then define numerical measures of sorting and investigate the effects of mechan-

ical parameters on the extent of sorting in multicellular aggregates. Using this

method, we find that a minimum adhesion is required for differential interfacial

tension to produce inside-out sorting of two cell types with different mechanical
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phenotypes. We predict the value of the minimum adhesion, which is in ex-

cellent agreement with observations in several developmental systems. We also

predict the level of tension asymmetry needed for robust sorting. The generality

and flexibility of the method make it applicable to tissue self-organization in a

myriad of biological processes, such as tumorigenesis and embryogenesis.

Keywords: differential interfacial tension, self-organisation, cortical tension,

cell sorting, biological physics, modelling

1. Introduction

Self-organization is a widely-studied feature of non-equilibrium systems across

a great variety of fields [1, 2, 3]. In Biology, self-organized processes range in

length- and time-scales from protein folding [4] to the dramatic murmurations of

starlings [5]. Generically, these systems exhibit emergence of macroscopic order5

from disordered states by the action of simple, local, inter-component interac-

tions. Here we focus on one such a process of self-organization - cell sorting. Cell

sorting in a multicellular aggregate (MCA) is critical for normal development

of an embryo, and is also at the heart of pathologies such as metastastic growth

of tumors.10

The spontaneous separation of mixtures of embryonic cells has long been

thought to be driven by cells’ differing “affinity” for one another [6]. Two

primary drivers have been proposed to facilitate differential affinity: differential

adhesion and differential interfacial tension.

The differential adhesion hypothesis is a widely studied driver of cell sort-15

ing [7, 8, 9]. It asserts that, in an MCA with multiple cell types, those with

strong mutual adhesion adhere together better than cells with weaker mutual

adhesion. The latter are ‘sorted’ to the outside of the MCA, resulting in cellular

segregation. Although the differential adhesion hypothesis has been applied to

a number of systems [10], it has been challenged in the light of observations that20

sorting occurs even when two cell types adhere to one another equally well [11],

and that contractile forces are more responsible than adhesion for tissue mor-
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phogenesis in a number of systems [12, 13].

The idea that sorting in many biological processes is driven primarily by

contractile forces is at the heart of the differential interfacial tension hypoth-25

esis [14], the basic postulates of which are: (i) cell surface membranes exhibit

local tension variation [15]; (ii) a cell surface tension is highest when in contact

with the external medium and lowest when in contact with cells of the same

type [16]. The variation in surface tension at cell interfaces leads to variation in

cell interface area, and hence to mutual affinity [Figure 2a]. According to the30

differential interfacial tension hypothesis, variations in mutual affinity, driven

by differences in surface tension, are primarily responsible for self-organization

in a cell aggregate. The reduction in tension at cell interfaces is proposed to

occur by the exclusion of myosin from the actomyosin cortex at the interface.

Such exclusion is caused by the intra-membrane proteins that mediate adhesion35

between the cells [13]. This passive mechanism allows morphogenesis to proceed

without active movements by the cells involved and, moreoever, provides the

local coordination between cells needed for complex global morphogenesis [17].

The importance of intercellular differential interfacial tension for tissue mor-

phogenesis and maintenance has been demonstrated in a number of systems.40

For example, it is responsible for boundary maintenance in the the dorsoventral

compartment boundary in the Drosophila wing imaginal disc [18, 19]. Much

of this body of work has focussed on 2D epithelial systems, often maintaining

boundaries rather than forming boundaries from a mixed aggregate [20]. How-

ever, further evidence of the importance of differential interfacial tension comes45

from experimental work on 3D aggregates, suggesting that local variation in

cortical tension is responsible for internalizing the first set of internal cells in

the mouse morula [21]. Moreoever, reduction in interfacial tension has also been

shown to drive morula compaction [22] and allocation of cells to the inner cell

mass of the embryo [23].50

In order to investigate in detail the effect of differential interfacial tension

on 3D MCAs, we constructed a computational model based on the subcellu-

lar element method (SCEM) [? ]. To validate the method, we compared its
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predictions to theoretical models of differential interfacial tension in cell dou-

blets [13] [Figure 2c]. We used our model to simulate sorting in 3D MCAs of55

two cell types. Using our model, we are able to predict the minimum adhesion

magnitude required for tension-driven sorting to occur. We show that, given

this minimum adhesion, interfacial tension asymmetries drive sorting in multi-

cellular aggregates. We also show that fairly significant differential adhesion is

necessary for cell sorting. Ultimately, we also quantitatively predict the amount60

of tension asymmetry necessary for sorting.

2. Subcellular Element Method (SCEM)

A number of techniques have been developed to model cellular systems [24,

25, 26, 27], including explorations of differential interfacial tension using the

vertex method in two dimensional epithelia [19, 28]. However, many of these65

methods rely on a global Hamiltonian, which is a strong, abstract assump-

tion for modelling biological systems that do not necessarily conserve energy.

Instead, we set out to develop a computational model that instead assumes dy-

namics driven by local forces. We required a method that allows integration of

subcellular-scale mechanics, including stiffness, tension, and adhesion, with 3D70

tissue-scale phenomena. Therefore, we chose to implement SCEM.

SCEM is a method for multi-scale 3D simulation that can simultaneously

model intra- and inter-cellular dynamics, as well as the development of multicel-

lular tissues. It allows us to study the effects of cell shape changes and complex

inter- and intra-cell features on tissue-scale dynamics [29]. The method treats75

each cell as a collection of elements, interacting via nearest-neighbor forces [Fig-

ure 1]. Nearest-neighbor elements of different cells also interact, facilitating

intercellular interactions by the same mechanism. All the inter-element interac-

tions are assumed to be via a Morse potential [30], which is generically repulsive

at short distances with a minimum at some equilibrium distance. Different el-80

ement types, however, have different potential parameters. For the purposes of

this work, we modified and extended the SCEM simulation code significantly
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from its original version [31].

An essential modification of SCEM was an addition of a contractile cortex

to each cell, the properties of which are different from the main bulk of the cell.85

This allowed us to control the cell cortical tensions. The modification involved

first identifying the surface elements of the cell. This was done by dividing the

cell into 32 sectors of equal steradians, emanating from its center of mass, and

defining as cortex elements all sector elements within 20% of the radius distance

to the furthest element in each sector, as illustrated in Fig. 1a.90

To ensure that the interaction between cortex elements is tangential to the

cell surface, we performed a Delaunay triangulation [32, 33] over each cell’s cor-

tex elements, which makes the cell a polyhedron covered in triangular facets.

By its nature, this triangulation favors roughly equilateral triangles, which pro-

duces a relatively smooth cell surface [Fig. 1b]. Two cortex elements sharing95

such a triangle edge are neighbors and they interact along the edge via a tensile

force. Thus defined, the cortex forces are guaranteed to span the full cell sur-

face, be tangential to it, prevent elements detaching from the cell, and enable

the modelling of intercellular mechanical interactions.

With our computational method, the cortex tension can vary locally across100

the cell surface in response to contact with surfaces of other cells. Such variation

is achieved by changing the magnitude of intra-cell tension forces between cortex

elements that lie at a cell interface. Specifically, we define a cell interface by first

identifying the cortex elements that share an adhesive inter-cell interaction with

a cortex element of a different cell. These elements are then labeled according to105

whether the other cell is of the same or different fate. An interface between the

two cells is then defined as a region containing only cortex elements of the same

label, and any cortical tension force acting between two cortex elements with

the same label can be altered [Fig. 1c]. The magnitude of intercellular tension

asymmetry can be specified differently depending on cell type and whether the110

interface is between like or unlike cells.

Changing the local interaction between cell cortex elements affects not only

the local cortical tension but also the distance between the elements and, there-
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(a) (b)

(c)

Figure 1: (a), Algorithm for allocation of cortex elements, 2D representation. Cell

is divided into π/4 radian bins. Elements with a radius greater than 80% of the

maximum radius in their bin are allocated cortex type. (b), Cutaway of one SCEM

cell showing all cytoplasm elements and part of the cortical tension network as defined

by a Delaunay triangulation. (c), Algorithm for implementing differential interfacial

tension between two cells. Solid lines indicate cortical tension forces; dotted lines

indicate inter-cell adhesive interactions. Elements that share adhesive interactions

with another cell are labelled according to the type of cell, shown with a black dot.

An interface is defined as a region in which cortex elements have the same label. The

tension is altered for any cortex interaction between two cortex elements with the same

label, shown by solid black lines. Cytoplasm elements are green and cortex elements

are red throughout.
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fore, the local element density. Since intercellular adhesion is mediated by these

elements, an increase in element density, for example, increases the local adhe-115

sion strength between neighboring cells. To compensate for this, we normalize

the adhesion magnitude by the local element density [Appendix A].

3. Simulation of cell doublets

The simplest experimental system to define the mechanical phenotype of120

cells and their interfaces is a cell doublet, for which in-vitro experiments and

theoretical models exist. This makes this system a suitable test case to validate

our method. We expect sorting to be driven by changes in relative affinity,

reflected by changes in equilibrium interfacial contact area (or, analogously,

contact angle) between cells. This interfacial contact area depends upon the125

adhesion magnitude between cells (ω) the cortical tension of the cells (γm), and

the interfacial tension (γc).

Assuming an symmetric cell doublet is in mechanical equilibrium, the de-

pendence of the contact angle between two cells on their surface tensions can

be deduced using linear force balance at the vertex [13] [Figure 2c]. Further130

assuming, based on experimental observations [34, 35, 13], that the effect of ω

is negligible in the high-tension limit, one can derive a relationship between γm,

γc, and the doublet contact angle θ [Eq. 1].

2γc = 2γm cos(θ/2) =⇒ β = cos(θ/2) where β = γc/γm (1)

To test the effect of system parameters on cell doublets in our simulations,

we allow an initial cell to divide into two, forcing both to be of the same type.135

We then allow the system to reach mechanical equilibrium without growth or

division, producing a doublet of identical cells, adhered at a joint interface

[Figure 2b].

Experimentally, a straightforward indicator of cell affinity in doublets is the

contact angle between the two cells, θ. While this measurement is intractable in140
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our simulations, we could measure straightforwardly the cell-cell interface area

as the sum the areas of all the Delaunay triangles. Using simple trigonometry,

we found the ratio, IP , of the interfacial contact areas in simulations to the total

cell surface area and related it to the contact angles obtained in experiments, θ:

IP =
sin2 (arccosβ)

2 (1 + β) + sin2 (arccosβ)
=

1− β
3− β

(2)

This allows direct comparison of our simulations to linear force balance at145

cell interfaces [Equation 2] and provides a validation test of our method’s pre-

dictions [Figure 2d]. We define an adhesion magnitude AM for our simulations,

as distinguished from ω because it reflects the sum of the local adhesion magni-

tudes between intercellular elements. The validation consisted of simulating cell

doublets, from which we obtained measurements of IP for values of β between150

0.25 and 1. We used a representative set of AM and γm values, corresponding

to low tension and high tension regimes. The resulting IP values were then

compared to the theoretical predictions of linear force balance [Fig. 2d].

We found very good agreement between the simulation results and the the-

oretical prediction of the force balance model in the high tension regime (solid155

lines in the figure), with adhesion producing a small constant offset across β.

The magnitude of this offset increases gradually with adhesion. In contrast, in

the low tension regime, adhesion cannot be ignored when considering the linear

force balance in a cell doublet. Specifically, we observe that IP depends only

weakly on β, confirming the constraints of using linear force balance to predict160

cell-cell contacts and therefore sorting of different cell types. Most importantly,

we conclude that due to the excellent agreement with linear force balance in

the high tension regime, our method can be used to predict the mechanical

interactions within MCAs.

By simulating a large number of cell doublets at different parameters, we165

constructed phase diagrams for the behavior of the cell doublet interface area

as a function of AM and γm for β = 0.5, 0.75, and 1.00 [Figs. 3a-3c]. The phase

diagrams indicate that the highest IP value achieved for any parameter set is
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(a) (b)

(c) (d)

Figure 2: a, Two dimensional diagram of cell doublets showing the effect of changing

interfacial tension on contact angle and interface area. Interfacial tension decreases

from left to right, resulting in increased interfacial area, increased contact angle, and

consequently increased mutual affinity between cells. b, Cell doublets visualised by

cortical tension force network, demonstrating variation of interface area for interfacial

tension factor values β = 1.00, 0.75, 0.50. (c), Diagram linear force balance of cell

doublet contact area, as presented in [13]. Cylindrical symmetry allows the system

to be reduced to a two dimensional force balance at the vertices of the cell interface.

The influence of adhesion is reframed as a colinear tension force ω acting to pull the

vertices apart. In order to reach equilibrium, the forces pulling the edges apart must

balance the forces pulling the edges together. (d), Plots of interface proportion against

β in high tension and low tension regimes.
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(a) (b) (c)

(d) (e) (f)

Figure 3: (a-c) Phase space plots showing variation of interface proportion (IP ) in

γm and AM space measured in cell doublet simulations. (a), β = 0.5. (b), β = 0.75.

(c), β = 1.0. Force balance predicts IP = 0.20, 0.11, 0.00 respectively. (d-f), Plots of

interface area against adhesion and tension magnitude. Dotted lines show predictions

made by balancing forces. (d), Interface against adhesion in low tension regime, γm =

0.01. (e), Interface against adhesion in high tension regime, γm = 1.2. (f), Interface

against tension magnitude at AM = 0.2.
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approximately 0.32. This value is in good agreement with the theoretical limit

for the interface between two hemispheres, which is exactly 1/3. Our doublet170

simulations also show that, for each value of β, the measurement of IP drops

sharply with increasing γm, tending to a minimum [Fig. 3f]. The minimum

is determined by AM , with very low adhesions producing little to no interface.

Increasing adhesion from zero produces a sharp increase in interface, but beyond

a threshold adhesion the increase of interface with adhesion magnitude has a175

much smaller gradient [Fig. 3d].

The doublet simulation results are even clearer if we take slices through the

phase diagram [Figs. 3d-3f]. As expected, we find that, for both low and high

tensions, little to no interface is produced at low adhesion values. However, for

both low and high tension the interface increases approximately linearly with180

increasing adhesion. In the low tension regime [Fig. 3d], interfacial contact area

increases sharply with adhesion until a value of approximately AM = 0.1, after

which the interfacial contact area plateaus. The value at which the interfacial

contact area plateaus is approximately equal to the theoretical limit for two

hemispheres (0.33) at low β. In the high tension regime [Fig. 3e], we observe185

two adhesion regimes. Below a value of AM = 0.2, the interfacial contact area

increases slowly with adhesion; beyond that value the interfacial contact area

depends very weakly on adhesion.

Our doublet simulations demonstrate that our method is an accurate pre-

dictor of the mechanical interactions between cells. Furthermore, differences190

between simulation results and theoretical predictions further highlight the con-

straints of [Equation 2] in situations for which adhesion can’t be neglected. Im-

portantly, our method doesn’t require the low adhesion assumption and can be

used in any limit of adhesion or tension.

4. Quantitative predictions of sorting in MCAs195

Having validated our method and used it to study cell doublet mechanics,

we now demonstrate the influence of adhesion and interfacial tension on the
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sorting of two cell types in MCAs.

4.1. Methods to simulate cell sorting

In order to objectively to quantitatively assess the effect of mechanics on200

the extent and speed of self-organization in a cell aggregate, we developed three

measures of sorting. These measures of sorting, as described below, are continu-

ously calculated during the evolution of an MCA, and compared to a randomized

reference distribution to produce a sorting index.

Radius measures. Since we focus here on spherical aggregates, two natural mea-205

sures of the sorting are the mean distance of each cell type either from its own

center of mass or from the center of mass of all cells. The former is a measure

of cell type aggregation while the latter of sorting of one cell type to the bound-

ary. In what follows, we focus on the mean radius of the cell type expected to

aggregate from the center of mass of that same cell type, Xr.210

Neighbor measure. In a self-organizing system, we expect a higher probability

of same-type cell neighbors. We consider two cells to be neighbors if at least

one element in one cell interacts with an element of the other. It is via such

interactions that neighbor cells apply forces to one another. The neighbor mea-

sure, Xn, is then the like-like neighbor count for the cell type expected to sort215

to the center of the aggregate.

Surface measure. For spherical inside-outside sorting, we expect one cell type to

occupy a greater proportion of the external surface of the MCA than the other.

With our model, we are able to calculate the total area that is not part of a

cell-cell interface across all cells. Therefore, for the surface measure we calculate220

the ratio, Xs, of the external surface area occupied by the two cell types.

Comparison to randomized control distribution. To contextualize the measures

described above, we introduced uniformly randomized control systems, against

which the measures could be compared. To generate such controls, the fates of

all cells in the system were randomly reassigned at each data output interval,
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(a) (b)

Figure 4: (a), Diagram showing how system fates are reassigned to produce mean,

standard deviation, maximum, and minimum values of each measure for a given spa-

tial configuration and cell type ratio. Starting from the simulation state, shown on

the left, the fate of each cell is randomly reassigned, maintaining the same spatial dis-

tribution of cells, and the same ratio of cell types. All sorting measures are calculated

for this new state. Fates are randomly reallocated up to 10000 times [Appendix B], to

find the mean, maximum, minimum, and standard deviation of sorting measures, be-

fore returning the system to the original simulation state. (b), Distributions of radius

sorting measure values over random fate reallocations for 10 and 30 cells. Distribu-

tions are seen to be approximately Gaussian, allowing calculation of mean, standard

deviation, maximum, and minimum values. The same pattern is seen for other sorting

indices. Spatial configurations at mean and 3σ shown.
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while maintaining the same number of each cell type and the spatial distribu-

tion, at which point the sorting measures were then calculated again for these

randomized systems [Fig. 4a]. Repeating this procedure 10000 times [Appendix

B] produces a normal distribution of the sorting measures [Fig. 4b] from which

we can calculate the mean, E(Xi), maximum, Xi,max, minimum, Xi,min, and

standard deviation, σ(Xi), of each sorting measure Xi. The measure as calcu-

lated from the simulation is then compared to the distribution of randomized

measures by quantifying a sorting index, Si [Eq. 3]:

Si =
Xi − E(Xi)

3σ(Xi)
. (3)

The divisor serves as a way to ensure that highly deviant results in the random-

ized distribution don’t overly affect the sorting index.

For all following sorting simulations, we used our method to simulate MCAs

growing from from 10 to 30 cells with two different cell types. We considered two225

cell types, cell type 1 and cell type 2. In the case of sorting, we define cell type

1 to be the type on the inside of the MCA [Fig. 4a]. We calculated the radius,

neighbor and surface sorting measures at regular intervals of each cell type,

from which we quantified the respective sorting indices. We define 3 interfacial

tension factors for like-like interfaces between both cell types (β1,1, β2,2) and230

unlike interfaces (β1,2). For simplicity in all simulations we set β1,2 = β2,2 = 1.0

and vary β1,1, henceforth simply referred to as β. Therefore, cell type 1 is

by default the reference cell for calculating the sorting indices, i.e. the cell

type that is assumed to aggregate on the inside of the MCA (see Figure 4).

Unless otherwise stated, both cell types were given the same cortical tension235

which is justified given that Fig. 3 suggests that γm is not a major driver of

sorting. Furthermore, we restricted ourselves to the high cortical tension limit,

and define the dimensionless adhesion parameter α = AM/γm to simulate the

dynamics of MCAs for a wide range of values of α and β. We also assume,

unless otherwise stated, the same adhesion magnitude for both cell types, for240

both like and unlike adhesion. Experimentally, α is difficult to measure, but it

is thought to be in the range of 0.2 to 0.25 at the most [13, 36, 12].
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To test also the effect of a division bias, we ran two types of simulations

for each pair of α and β values: (i) a symmetric division, in which in which

each division produced cells of the same type as the parent; (ii) an asymmetric245

division, each dividing cell had a 50% change of producing two daughter cells of

the same type as the parent, and 50% change of producing two daughter cells

of different types.

All simulations were performed with both symmetric and asymmetric di-

vision, and each was run four times for each pair of α and β to account for250

variability in the simulations. The mean result and standard deviation for each

set was calculated. The final value of sorting indices in simulations measures

the extent of sorting in the final state of the system.

We will first use our method to test the hypothesis that doublet mechanics

is a good predictor of sorting in an MCA, and then go on to use it to establish255

a better understanding of the mechanical drivers of cell sorting.

4.2. Doublet mechanics predicts sorting in MCAs

One of the main issues impeding the experimental validation of the mechan-

ical drivers of sorting in MCAs is that it is very difficult to measure forces

within an MCA. Therefore, cell doublets are often used to quantify the forces260

that can be used to predict sorting in an MCA. Therefore, we sought to test the

hypothesis that cell doublets are a good and sufficient model for MCAs.

We ran the simulations for several random values β less than or equal to 1.0

and α less than or equal to 0.4 for both symmetric and asymmetric division.

We quantified the sorting index for the final state of 30 different systems. We265

compared these values with the results of doublet testing [Fig. 3] with the same

parameters. With this, we can assess how measurements taken from cell dou-

blets predict the extent of sorting in MCAs. Fig. 5 shows final sorting indices

plotted against the difference in doublet interface proportion measured for like-

like doublets of two cell types with the same parameters as the corresponding270

MCA. The resulting scatter plots clearly show a strong positive correlation be-

tween the difference in interface proportion and the final sorting index across

15

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 26, 2018. ; https://doi.org/10.1101/308718doi: bioRxiv preprint 

https://doi.org/10.1101/308718
http://creativecommons.org/licenses/by-nc/4.0/


all sorting measures. This correlation is especially strong for systems with sym-

metric division. Importantly, this strong correlation establishes that mechanical

doublet mechanics, which is experimentally tractable, can be used to predict the275

degree of sorting of MCAs.

4.3. Mechanical drivers of cell sorting in MCAs

In the following, we will use our simulations to make quantitative predictions

about what adhesion and tension asymmetries are necessary for MCAs to sort.

To do this, we performed simulations over a wide range of values of α and β.280

From the final value of sorting measures at the end of simulations we constructed

a phase diagram in the α− β parameter space [Figs. 6a-6d]. From these phase

diagrams we can deduce the limits on the values of α and β that drive sorting.

Figure 6a-6d demonstrate that there is good agreement between sorting mea-

sures about the behavior of the systems. Moreoever, the extent of sorting in-285

creases as β is reduced. This is predictable, given that a reduction of β is

indicative of a relaxation of interfacial tension for cell type 1. Significantly,

with our method we can now quantitatively predict the minimum of β ≈ 0.6

necessary to drive sorting at experimentally realistic values of α. We also see in

Figure 6e that the kinetics of sorting are faster for smaller values of β, with very290

little sorting occurring for β = 0.75. It is also clear that a minimum adhesion is

required in order for the β parameter to have any effect: for values of α < 0.2,

little to no sorting is observed regardless of the value of β. This is interesting

because α = 0.2 is in agreement with experimental observations of adhesion

magnitude around 0.2 times cortical tension magnitude in systems where corti-295

cal tension has been proposed as a significant factor in morphogenesis [13, 12].

We also use our method to explore the effects of differential adhesion. As seen

in [Fig. 6f] differential adhesion can drive sorting, but the difference in adhesion

magnitude between the cell types has to be quite large - approximately a factor

of 10 for full sorting. This suggests, in conjunction with the fact that adhesion300

forces are much smaller than tension forces, that tension asymmetry is a more

essential factor in MCA sorting than adhesion asymmetry.
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(a) Radius, asymmetric (b) Radius, symmetric

(c) Neighbour, asymmetric (d) Neighbour, symmetric

(e) Surface, asymmetric (f) Surface, symmetric

Figure 5: Plots of final sorting index for 30 cell aggregates against the difference in

interface proportions for the two cell types found in doublet testing at corresponding

parameter values. Each row of plots shows values of a different sorting measure for

both symmetric and asymmetric division. A strong relationship is seen between the

difference in interface proportion and final sorting index. Colour of point indicates

adhesion magnitude.
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(a) (b)

(c) (d)

(e) (f)

Figure 6: (a-d), Phase space plots of final sorting index for 30 cell systems in α and

β space using (a), Radius measure, asymmetric division. (b), Neighbour measure,

asymmetric division. (c), Surface measure, asymmetric division. (c), Surface measure,

symmetric division. All cells have the same γm and all cell types adhere with the

same magnitude α. The tension at like-like interfaces for one cell type is altered

by β. (e), Neighbour sorting index against time/cell cycle time in aggregates with

asymmetric division and α = 0.2γm. (f) Example of sorting by differential adhesion

with asymmetric division from surface measure.
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5. Discussion

We introduced a simulation method, which is an extension of SCEM, to

investigate the mechanics of cell sorting. The model is based on local intra- and305

inter-cellular forces, and allows cell division and therefore evolution of any size

MCA. It also allows us to define different regions of a cell and the mechanical

properties of those regions. Therefore, our method is highly flexible and can

model intercellular and intracellular mechanical interactions in a broad range of

multicellular systems.310

We first employed the experimentally tractable cell doublet system to both

validate our numerical model and to probe the effect of adhesion and tension on

the interfacial contact area between two cells. In a doublet, this contact area is

determined by the balance of the adhesion force, cortical tension, and interfa-

cial tension. We studied the effects of these parameters on the inner doublet’s315

interfacial contact area with our method and showed that it decreases sharply

with interfacial tension before reaching a stationary phase in the high tension

regime. We also showed that no interface can form when the adhesion drops

below a threshold value. Above this value, the interfacial contact area depends

only weakly on adhesion. Informed by experimental observations that tension320

forces are at least 4 times stronger than adhesion [13, 12], we studied the high-

tension regime and found that the variation of interfacial contact area with the

tension parameter, β, agrees remarkably well with the predictions of using local

force balance at cell interfaces, neglecting adhesion. This validates our method,

showing that it captures important aspects of the underlying mechanics.325

Next, we simulated the evolution of MCAs, growing from 10 to 30 cells, to

study the effects of adhesion and tension on the sorting process. We introduced

three measures to quantify inside-outside sorting: (i) neighbour measure - the

number of same-type nearest neighbours; (ii) radius measure - the mean spread

of each type relative to its centre of mass; (iii) surface measure - the proportion330

of each cell type at the external surface of the aggregate. These measures

were compared to their mean and standard deviation across a large number
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of random MCAs and used those to define corresponding sorting indices. The

sorting indices we introduced are a novel and unbiased way to quantify sorting.

We observed a very strong correlation between the sorting indices in the335

MCAs and the interfacial contact area between cells in doublets. This obser-

vation is significant because, while experimental determination of mechanics

within MCAs are difficult, measurements of cortical tension and contact angle

in cell doublet are relatively straightforward. Furthermore, these plots [Figs. 5a-

5e] suggest that relatively large differences in doublet interface area between the340

two cell types are required to produce complete sorting reliably.

Finally, in order to disentangle the relative effects of differential interfacial

tension and differential adhesion, we constructed phase diagrams for the sorting

indices as a function of α and β. These phase diagrams show that DIT alone

is sufficient to produce full sorting of MCAs, as long as β, the relative cortical345

tension parameter, is lower than ≈ 0.6. Importantly, measurements of this

experimentally accessible parameter in cell doublets can be used as a test of this

prediction. Furthermore, we found that little to no sorting can take place when

our dimensionless adhesion parameter fell below a value of α ≈ 0.2. This sets a

lower bound on the adhesion level necessary to produce segregation in a tissue.350

Interestingly, this weak adhesion value is in agreement with the experimentally

observed adhesion magnitude in the inner cell mass of the mouse embryo [13]

and in the Drosophila eye [12]. Furthermore, the amount of differential adhesion

necessary to exclusively drive cell sorting is comparatively large ≈ 10. This

suggests that tension asymmetries are the primary driver of cell sorting.355

Our results lead us to conclude that, for relatively small MCAs, similar to

the sizes of those seen in early development, sorting can occur only if there are

relatively large differences in either interfacial tension, adhesion or both between

the different cell types. This could have vast implications in, for example, the

early developing embryo where only few cells are present in an MCA.360

Our method can be extended in several ways. For example, one can endow

intra-cellular regions with different properties, making it possible to model the

nucleus and the plasma membrane. Even more generally, this method can be
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extended straightforwardly to test aggregates that are not confined to roughly

spherical geometries, many of which occur in biological organisms. For these365

reasons, our method can be useful well beyond studying tissue morphogenesis

and could be applied to investigate a range of biological processes and patholo-

gies, such as cancer cell metastasis.
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Appendix A. Decoupling Tension From Adhesion

(a) (b) (c)

Figure A.7: Diagram demonstrating how local area around an element is calculated to

produce a normalisation factor that decouples the local adhesion magnitude from the

local element density, and hence from the local cortical tension magnitude. The inter-

cell adhesion magnitude of the element labelled with a black dot is multiplied by the

grey-shaded area defined by all Delaunay triangles that have the element with a black

dot as a vertex, divided by the mean area found for isolated cells in equilibrium. Thus

the magnitude of adhesion is inversely proportional to the local density of elements.

a, Interface over elements labelled with white dots has reduced interfacial tension. b,

Interface over elements labelled with white dots has baseline tension. c, Interface over

elements labelled with white dots has increased interfacial tension.

Care is required when implementing the DIT algorithm described in this

paper. Changes to the local cortical tension magnitude in cortex-cortex inter-480

action pairs will change the distance between elements in the pairs and thus

result in changes to the local density of elements. Since adhesion between cells

is mediated by these elements, a change in the element density will affect the

local adhesion strength between neighbouring cells. This could counteract the

expected effects of differential interfacial tension. For example, increasing the485

local tension at an interface, which should reduce the affinity between two cells,

will result in a higher density of elements and thus a stronger local adhesion

between the cells, potentially increasing their affinity in opposition to the effect

of the change in tension.
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To solve this problem, we devised an algorithm to normalise the adhesion490

magnitude of an element by the local element density. We begin by calculating

the total area of all triangles in the Delaunay triangulation of cortex elements

that have the element under consideration as one of their vertices [Figure A.7].

We then divide this area by the mean area for elements in a single cell at equi-

librium to find a factor by which the area has changed relative to equilibrium.495

This factor is then used to change the magnitude of the adhesive interactions

of the element. Thus any change from the equilibrium area will produce a

corresponding change in local adhesion magnitude.
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Figure B.8: Variation of mean, maximum, minimum, and standard deviation in neigh-

bour measure for a typical 30 cell system found over randomised tests against the

number of random orientations tested. It can be seen that the values of these param-

eters are found with small errors for many fewer random tests than the total possible

number of reallocations.

Appendix B. Randomised Measure Distributions

The distribution distribution of values from randomised sorting measures is500

approximately Gaussian, allowing us to calculate a mean, standard deviation,

maximum, and minimum value. Before performing the randomised measure-

ment routine it’s important to establish how many random reallocations to per-

form. A 30 cell system with 15 cells of each type has almost 1.6× 108 possible

different combinations of fates, and it is impossible to sample all such systems505

without increasing the run time of a simulation beyond what is computationally

feasible. Fortunately, we were able to show that values quickly tend towards

a limit over a much smaller number of repetitions. Figure B.8 shows how the

mean, standard deviation, maximum, and minimum values found across random

reallocations vary with the number of random reallocations tested for typical510
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systems of 30 cells. It can be seen that the mean and standard deviation values

are found with very little error over fairly small numbers of reallocations, whilst

the maximum and minimum values have roughly found their limits after about

104 reallocations. Thus we chose to use 104 reallocations in our simulations.

The exception to this is for small systems in which the total number of possible515

orientations is smaller than 104, in which case the maximum is used instead.
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