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Abstract1

Phylogenetic analysis algorithms require the assumption of character2

independence - a condition generally acknowledged to be violated by3

morphological data. Correlation between characters can originate from4

intra-organismal features, shared phylogenetic history or forced by particular5

character-state coding schemes. Although the two first sources can be investigated6

by biologists a posteriori and the third one can be avoided a priori with good7

practices, phylogenetic software do not distinguish between any of them.8

In this study, we propose a new metric of raw character difference as a proxy for9

character correlation. Using thorough simulations, we test the effect of increasing or10

decreasing character differences on tree topology. Overall, we found an expected11

positive effect of reducing character correlations on recovering the correct topology.12

However, this effect is less important for matrices with a small number of taxa (25 in13

our simulations) where reducing character correlation is not more effective than14

randomly drawing characters. Furthermore, in bigger matrices (350 characters),15

there is a strong effect of the inference method with Bayesian trees being16

consistently less affected by character correlation than maximum parsimony trees.17

These results suggest that ignoring the problem of character correlation or18

independence can often impact topology in phylogenetic analysis. However,19

encouragingly, they also suggest that, unless correlation is actively maximised or20

minimised, probabilistic methods can easily accommodate for a random correlation21

between characters.22

(Keywords: Character difference, correlation, topology, Bayesian, maximum parsimony)23
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Introduction24

The last two decades have witnessed a “resurgence” of interest in the use of25

morphological character data in phylogenetic studies. This owes in large part to the use26

of fossils to undertake at least partial reconstructions of phylogenetic trees, especially27

where ancestral states reconstructions or absolute calibrations of divergence times are28

necessary. Morphological character data are often considered inferior to molecular29

sequence data, but are often the only source of phylogenetic data for extinct species.30

While there is a general appreciation of the limits of morphological data, they are31

frequently dismissed without any empirical investigations into their statistical32

properties. As morphological data are likely to continue to play an extensive role in33

phylogenetic analysis, it is essential to understand the circumstances under which34

morphological data might be expected to “misbehave”. This opens up possibilities for35

predicting problematic datasets and possibly proposing new confidence measures in36

phylogenetic datasets.37

The non-independence of large numbers of morphological characters is often38

cited in anticipation of problems with morphological data. The assumption of character39

independence is central to phylogenetic inference methods such as maximum40

likelihood and maximum parsimony (e.g. Joysey and Friday, 1982; Felsenstein, 1985;41

Lewis, 2001; Felsenstein, 2004). Especially for discrete morphological data, this42

assumption of independence is probably violated frequently due to the very nature of43

phylogenetic data: correlations are expected to occur (to some degree) when characters44
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are depending on each other. Before discussing character correlation further, it is45

important to understand that it may manifest itself in at least three distinct ways:46

• Intra-organismal dependence: this is the result of an intrinsic biological link47

between two characters through development, pleiotropy, and/or biological48

function. For example the lower and upper molar characters in mammals49

generally occlude one another. Therefore, one character describing a feature of a50

lower molar will be expected to be complemented by the surface of the occluding51

upper molar. Characters of the occlusal surface of two opposing molars will be52

expected to directly covary. Pleiotropy also results in covariation between53

different aspects of phenotype. From a phylogenetic perspective, it can be54

especially pernicious because the relationship between the traits in question may55

have no obvious link from a morphological or functional comparison alone.56

Intra-organismal links can be the targets of comparative developmental biology57

(Goswami and David Polly, 2010; Kelly and Sears, 2010; Stoessel et al., 2013;58

Goswami et al., 2014) or functional investigations.59

• Evolutionary dependence: this is the result of sets of characters co-evolving due60

to selection, likely related to functional links between two traits that help serve an61

overall lifestyle trait. Unlike the case of intra-organismal dependence, there need62

not be an intrinsic constraint that causes these traits to covary. For example, in63

vertebrates, axial elongation can be correlated to limb reduction with snake-like64

bodies evolving multiple times in numerous tetrapod lineages. This is thought to65
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correspond to adaptations for fossoriality or aquatic lifestyles. Such covariances66

are generally studied in the context of a given phylogeny, often one derived from67

molecular data with the morphological traits of interest mapped on it. Many68

methods have been developed to study these correlations, especially since they69

can provide us with a lot of information on how specific groups acquired specific70

characteristics (Russell Lande, 1983; Maddison, 1990; Pagel, 1994; Mark Pagel,71

2006; Grabowski and Porto, 2016). However, these methods do not give us a72

means to objectively control correlations that might adversely affect phylogenetic73

inference.74

• Coding dependence: this is the results of researcher methodology for defining75

or/and coding discrete morphological characters (Brazeau, 2011; Simões et al.,76

2017). Coding dependence manifests itself in several ways, particularly in coding77

redundant information. For instance, coding for the same absence in different78

characters creates state transformations associated with the loss or gain of a79

particular character. This occurs when a number of multistate characters include80

two variable feature states (e.g. large, small; red, blue etc.) in conjunction with81

absence. It is worth noting, however, that these correlations could also be due to82

the nature of the available data, especially in palaeontology. For example, when83

only one fragmentary molar is available to describe a specimen, researchers have84

to “extract” as much phylogenetic information from the available data as possible,85

potentially inducing correlations. This coding dependency is linked to hierarchical86
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dependency between characters (Wilkinson, 1995; Brazeau et al., 2017). Finally87

this can also be due to a bias in the amount of characters available. For example,88

in skulls, because of their complexity, there is a high likelihood of inducing89

correlation (by effectively reducing structural complexity to discrete characters).90

Of course, the three sources of dependence have an interaction: characters describing91

the left and right lower/upper molars will have induced dependence due to the92

modularity of the molars, their shared history and the duplicated coding. Logical93

dependence, however, is easily distinguished prior to phylogenetic inference, while the94

two other ones (intra-organismal and evolutionary) are much harder. However, the95

development of algorithms and software has not yet caught up with the need to deal96

with these interdependencies (De Laet, 2015; Brazeau et al., 2017). Intra-organismal97

dependence requires more detailed, often extremely time-consuming studies (and98

possibly beyond the limits of available technology). Even after all of the effort is99

expended, the results might then only be known for a single (model) species.100

Evolutionary dependence itself requires the resolution of a phylogenetic tree, and is101

best determined by independent character sets. This is frequently accomplished by102

mapping morphological traits on molecular phylogenetic trees.103

These sources of dependence between characters are well studied in biology.104

Biological and evolutionary dependences are inherent parts to Evo-Devo and105

macroevolutionary studies and best practices to avoid coding-induced dependences are106

commonly known and applied. However, eventually, all these characters, whether they107

6

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 26, 2018. ; https://doi.org/10.1101/308742doi: bioRxiv preprint 

https://doi.org/10.1101/308742
http://creativecommons.org/licenses/by/4.0/


are independent or not are analysed through phylogenetic inferences software that are108

blind to these distinctions. If fact, what the software are confronted with is a two109

dimensional matrix problem that renders the morphological subtleties described110

opaque. This introduces a new, less studied, source of character dependence:111

Correlation between characters detected by the software: this is the result how112

software actually interprets the differences between characters. The vast majority of113

phylogenetic software ignores both the character’s definition and the different states114

signification (simply treating them as different or similar tokens). Therefore a great115

number of characters and - traditionally - a few number of tokens can easily lead to116

dependence between characters. For example, if we consider the following matrix117

containing four cetartiodactyls - say a pig (e.g. Sus), a deer (Cervus), a hippo118

(Hippopotamus) and a whale (Balaenoptera) - and four binary characters - say (C1:119

presence (1) or absence (0) of an astragalus; C2: presence (0) or absence (1) of baleen;120

C3: presence (0) or absence (1) of a left astragalus with a double pulley; C4: presence121

(0) or absence (1) of a right astragalus with a double pulley:122

In the example in Table 1, the characters C1 and C2 are the most likely to be123

truly independent; characters C3 and C4 suffer from a a coding induced dependency;124

characters C1 and C3/C4 have an evolutionary induce dependency and again,125

characters C2 and C3/C4 are likely to be independent. Yet a phylogenetic software will126

treat all these four characters in exactly the same way: only the sheer difference127

between the character states tokens will be used in order to infer the tree. Some128
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C1 C2 C3 C4

Sus 1 1 1 1

Cervus 1 1 1 1

Hippopotamus 1 1 1 1

Balaenoptera 0 0 0 0

Table 1: Example of a matrix with software induced character correlation. C1: presence

(1) or absence (0) of an astragal; C2: presence (0) or absence (1) of baleens; C3: presence

(0) or absence (1) of a left astragalus with a double pulley; C4: presence (0) or absence

(1) of a right astragal with a double pulley.

characters will therefore be expected to covary in non-phylogenetic way, and that this129

phenomenon can reasonably be expected to mislead phylogenetic analysis. Yet the130

question has never been explored through a thorough simulation framework (although131

it has been tackled empirically for morphological data Dávalos et al. 2014 or molecular132

data Zou and Zhang 2016).133

How does these correlation really affect topology? We expect matrices with a134

high level of correlation to recover precise but inaccurate topologies but will matrices135

with low level of correlation (i.e. with high levels of homoplasy) actual cancel out the136

effects of correlation? Here we formally assess the effect of discrete character’s137

correlation using simulated data. We propose a new distance metric to measure the138

difference between characters (as a proxy for these three sources of correlation as139
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interpreted by the software) and a protocol to modify discrete morphological matrices140

to increase/decrease the overall differences or similarities between characters. We141

found that overall, there is a detectable effect of character correlation on topology142

where an increase in character dependence results in a decrease in the ability to recover143

the correct topology. These results, however, vary greatly in magnitude depending on144

the size of matrix and the inference method used.145

Methods146

To assess the effects of character correlation on the accuracy of phylogenetic147

inference we generated a series of matrices exhibiting different levels of correlation148

between some characters (Fig.1 - note that each step is described in more details below):149

1. Simulating matrices: we simulated discrete morphological matrices with 25, 75150

and 150 taxa for 100, 350 and 1000 characters, hereafter called the “normal”151

matrices. This step resulted in 9 matrices.152

2. Modifying matrices: we changed the “normal” matrices by modifying the153

characters in order to maximise or minimise characters differences (hereafter154

called respectively “maximised” and “minimised” matrices) by removing155

respectively the least different or most different characters and replacing them156

randomly by the remaining characters. Our protocol for measuring character157

difference is detailed below.158
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We also randomly duplicated characters from the “normal” matrices without159

biasing towards maximising or minimising character differences to create160

randomised matrices (hereafter called the “randomised” matrices - equivalent to a161

null expectancy). This step resulted in 36 matrices.162

3. Inferring topologies: we inferred the topologies from the “normal”,163

“maximised”, “minimised” and “randomised” matrices using both maximum164

parsimony and Bayesian inference. Hereafter, the resultant topologies are called165

the “normal”, “maximised”, “minimised” and “randomised” trees). This step166

resulted in 72 topologies.167

4. Comparing topologies: finally, we compared the “normal” to the “maximised”,168

“minimised” and “randomised” trees to measure the effect of character169

correlation on topology.170

Each step was replicated 35 times and are described below in more detail, along with171

our proposed definition for measuring the difference between characters.172

Measuring differences between characters173

To measure the effect of character correlation as interpreted by the phylogenetic174

software, we define characters as being entirely correlated if they give the same175

phylogenetic information. In order to measure this, we propose a new distance metric176

to measure the difference between two characters:177
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1 2 3

"True"
tree

Normal
tree

Randomised
tree

Maximised
tree

Minimised
tree

Normal
matrix

Randomisd
matrix

Maximised
matrix

Minimised
matrix

Replace
(n+m)/2

characters

Replace n
characters

Replace m
characters

Effect of 
correlation

Comparing
topologies

Inferring
topologies

Simulating and modifying
the matrices

Figure 1: Outline of the simulation protocol: the first step includes both the simula-

tion and the modification of the matrices (thin solid lines); the second step includes tree

inference using MP and BPP methods (thick solid lines); the third step includes compar-

ing the resulting tree topologies (dashed lines). n and m corresponds to the number of

characters with a character difference < 0.25 and > 0.75 respectively.
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Character Difference (CD).—178

CD(x,y) = 1− 2
(∣∣∣∣∑n

i |xi − yi|
n

− 1
2

∣∣∣∣) (1)

Where n is the number of taxa with comparable characters x, y and xi, yi are each179

character’s state for the ith taxon. CD is a continuous distance metric bounded between180

0 and 1 (see the mathematical demonstration in the supplementary material 1). Since181

we are considering differences as being only Fitch-like (non-additive) and unweighted,182

we calculated the difference between character states in a qualitative way. Two same183

character states tokens have a difference of zero and two different ones have a184

difference of one (e.g. 0− 0 = 0 or 1− 8 = 1). Additionally, we only consider185

differences for taxa with shared information (i.e. a Gower distance; Gower, 1971).186

We standardised each character by arbitrarily modifying their character state187

tokens (or symbols) by order of appearance. In other words, we replaced all the188

occurrences of the first token to be 1, the second to be 2, etc. This procedure was used189

to treat all the characters are unordered with no assumption on the meaning of the190

character state (e.g. in a binary character 0 is not necessary ancestral to 1). It also191

greatly improved the speed of our algorithm implementation to compare the characters.192

This way, a character A = {2,2,3,0,0,3} for six taxa would be standardised as A’ =193

{1,1,2,3,3,2} (following the xyz notation in Felsenstein, 2004, p.13). Note that in194

terms of phylogenetic signal, both A and A’ are exactly identical (forming three distinct195

splits in the tree inference process).196

When the character difference is null (0) it means that characters convey the197
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same phylogenetic signal (i.e. characters are entirely correlated). When the character198

difference is maximal (1) it means it conveys the greatest difference in phylogenetic199

signal (i.e. characters are uncorrelated). It is important to stress that a character200

difference of 0 (i.e. the same phylogenetic signal) does not mean the opposite of 1 (i.e.201

not the opposite phylogenetic signal but the most different number of implied splits) .202

For example with three characters A = {0,1,1,1}, B = {1,0,0,0} and C = {0,1,2,3},203

CD(A,B) = 0 and CD(A,C) = 1. Because the character is continuous and bounded204

between (0, 1), it can be interpreted as the probability of two characters leading to a205

different set of splits (i.e. a different phylogenetic signal).206

Simulating discrete morphological matrices207

To simulate the matrices we applied a protocol very similar to Guillerme and Cooper208

(2016b). First, we generate random birth-death trees with the birth (λ) and death (µ)209

parameters sampled from a uniform (0, 1) distribution maintaining λ > µ using the210

diversitree R package (v0.9-8; FitzJohn, 2012) and saving the tree after reaching either211

25, 75 or 150 taxa. For each tree, we arbitrarily set the outgroup to be the first taxon212

(alphabetically) thus effectively rooting the trees on this taxon. These trees are hereafter213

called the “true” trees (see distinction below). We then simulated discrete214

morphological characters on the topology of these trees using the either of the two215

following models:216

• The morphological HKY-binary model (O’Reilly et al., 2016) which is an HKY217

model (Hasegawa et al., 1985) with a random states frequency (sampled from a218
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Dirichlet distribution Dir(1, 1, 1, 1)) and using a transition/transvertion rate of 2219

(Douady et al., 2003) but where the purines (A,G) were changed into state 0 and220

the pyrimidines (C,T) in state 1. This model has the advantage of not favouring221

Bayesian inference (since it doesn’t use an Mk model; O’Reilly et al., 2016, ; see222

discussion) but the downside of it is it can only generate binary state characters223

(or 4 states; Puttick et al., 2017).224

• To generate more than binary states characters, we used the Mk model (Lewis,225

2001). We draw the number of character states with a probability of 0.85 for226

binary characters and 0.15 for three state characters (Guillerme and Cooper,227

2016b; Zou and Zhang, 2016). This model assumes a equal transition rate between228

character states which might seem overly simplistic, excluding other observed229

transition patterns (e.g. Dollo characters; Dollo, 1893; Wright et al., 2015).230

Recently however, Wright et al. (2016) have shown that an equal rate transition is231

still the most present in empirical data.232

For each character, both models (morphological HKY-binary or Mk) where chosen233

randomly and run with an overall evolutionary rate drawn from a gamma distribution234

(β = 100 and α = 5). These low evolutionary rate values allowed reduction in the235

number of homoplasic character changes, thus reinforcing the phylogenetic information236

in the matrices. We re-simulated every invariant characters to obtain a matrix with no237

invariant characters in order to better approximate real morphological data matrices. To238

ensure that our simulations were reflecting realistic observed parameters, we only239
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selected matrices with Consistency Indices (CI) superior to 0.26 (O’Reilly et al., 2016).240

For each tree with 25, 75 or 150 taxa we generated matrices with 100, 350 and241

1000 characters following O’Reilly et al. (2016). The matrices were generated using the242

dispRity R package (Guillerme, 2016). To estimate the variance of our simulations and243

assess the effect of our random parameters, we repeated this step 35 times resulting in244

315 “normal” morphological matrices.245

Modifying the matrices246

We calculated the pairwise character differences for each generated matrix using the247

dispRity R package (Guillerme, 2016). We then modified the matrices to either248

maximise or minimise the pairwise character differences for each matrix using three249

different algorithms. For maximising the pairwise differences between characters, we250

selected the characters that were the most similar to all the others (i.e. with an average251

character difference < 0.25) and replaced them randomly by any of the remaining252

characters. This operation increased the overall pairwise character difference in the253

matrix thus making the characters more dissimilar. Conversely, for minimising the254

pairwise character differences, we selected the most dissimilar characters (i.e. with an255

average character difference < 0.75) and randomly replaced them with the remaining256

ones. Finally, because this operation effectively changes the weight of characters (i.e.257

giving the characters < 0.25 or > 0.75 a weight of 0 and giving the randomly selected258

remaining characters a weight of +1), we randomly replaced the average number of259

characters replaced in the character maximisation and minimisation by any other260
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characters as a randomised expectation modification (i.e. randomly weighting261

characters). Each of the three matrices are effectively a bootstrap pseudo-replication of262

the “normal” matrix with the “randomised” one being a random one and the263

“maximised” and “minimised” being conditional bootstraps. This step resulted in a264

total of 1260 matrices (hereafter called the “normal”, “maximised”, “minimised” and265

“randomised” matrices - see Fig. 2 for an illustration). The algorithms for the three266

modifications are available on GitHub267

(https://github.com/TGuillerme/CharactersCorrelation)268

Inferring topologies269

We inferred the topologies with both BPP and MP using MrBayes (v3.2.6; Ronquist270

et al., 2012) and PAUP* (v4.0a151; Swofford, 2001) respectively. For both methods, we271

used the arbitrarily chosen outgroup in the simulations to root our trees. The272

maximum parsimony inference was run using a heuristic search with random sequence273

addition replicate 100 times with a limit of 5× 106 rearrangements per replicates274

(hsearch addseq=random nreps=100 rearrlimit=5000000 limitperrep=yes).275

Bayesian inference was run using an Mk model with ascertainment bias and four276

discrete gamma rate categories (Mkv 4Γ - lset nst=1 rates=gamma Ngammacat=4) with277

an variable rate prior an exponential (0.5) shape (prset ratepr=variable278

Shapepr=Exponential(0.5)). We ran two runs of 6 chains each (2 hot, 4 cold) for a279

maximum of 1× 109 generations with a sampling every 200 generations. We280

automatically stopped the MCMC when the average standard deviation of split281
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A − Simulated tree
outgroup

sp3

sp4

sp5
sp6

sp9
sp10

sp11

sp12
sp13

sp14

sp15

sp16
sp17

sp18
sp19

sp20
sp21

sp22
sp23

sp24
sp25

sp26
sp27
sp28

B − Normal matrix

●

C − Maximised matrix D − Minimised matrix E − Randomised matrix

Figure 2: Example illustration of the protocol for modifying matrices. The matrices rep-

resent the pairwise character differences for 100 characters. Blue colours correspond to

low character differences and orange colours correspond to high character differences.

A - a random Birth-Death tree is simulated and used for generating the “normal” matrix

(B), characters in this matrix are then removed or duplicated to favour maximised (C),

minimised (D) or randomise character difference (E). The differences between the char-

acters is low in C (minimised compared to A) implying a high correlation between the

characters. Conversely, the character differences is high in D (maximised compared to

A) implying a low correlation between the characters.
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frequencies (ASDSF) between both runs fell below 0.01 (with a diagnosis every 1× 104
282

generations - mcmc nruns=2 Nchains=6 ngen=1000000000 samplefreq=200283

printfreq=2000 diagnfreq=10000 Stoprule=YES stopval=0.01 mcmcdiagn=YES). Due284

to cluster hardware requirements an to save some time, when chains didn’t converged285

and the runs exceeded 5GB each, we aborted the MCMC and computed the consensus286

tree from the unconverged chains. In practice, these few MCMC got stuck at an ASDSF287

around (but not below) 0.01.288

A strict majority rule tree was then calculated for both Bayesian an maximum289

parsimony trees. For the Bayesian consensus trees, the 25% first trees of the posterior290

tree distribution were excluded as a burnin. The 2880 tree inferences took around one291

CPU century on the Imperial College High Performance Computing Service (2-3GHz292

clock rate; ICHPC, 2011).293

Comparing topologies294

We compared the topologies using the same approach as in Guillerme and Cooper295

(2016b): we measured both the Robinson-Foulds distance (Robinson and Foulds, 1981)296

and the triplets distance (Dobson, 1975) between the trees inferred from the297

“maximised”, “minimised” and “randomised” matrices and the tree inferred from the298

“normal” matrix. We explored the effect of character difference on recovering the299

“normal” topology by comparing the “maximised”, “minimised” and “randomised”300

trees to the “normal” tree (Figs 3 and 4 and supplementary materials 3 Figs 1 and 2).301

Note that we are not comparing the trees to the “true” tree used to simulate the302
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matrices. First, in biology, this tree is always unknown. Second, our objective is to303

measure the direct effect of character correlation approximated by the difference in304

topology between the “normal”, “maximised” and “minimised” trees. When measuring305

the difference between these trees and the “true” tree, we would also confound the306

effect of simulating a birth-death tree and simulating a discrete morphological matrices307

from it.308

The metric scores where calculated using the TreeCmp javascript (Bogdanowicz309

et al., 2012). The measurements where then standardised using the Normalised Tree310

Similarity metric (NTS; i.e. centering the metrics scores using the mean metric score for311

1000 pairwise comparisons between random trees with n taxa; Bogdanowicz et al.,312

2012; Guillerme and Cooper, 2016b). When the normalised metric has a score of one it313

means both trees are identical, when it has a score of zero it means the trees are no314

more different than expected by chance and when it has a score < 0 the trees are more315

different than expected by chance. The normalised score for both metrics thus reflects316

two distinct aspects of tree topology: (1) the Normalised Robinson-Foulds (NTSRF)317

Similarity reflects the conservation of clades (i.e. a score close to 1 indicates that most318

clades are identical in both trees); and (2) the Normalised Triplets Similarity (NTSTr)319

reflects the position of taxa (i.e. a score close to 1 indicates that most taxa have the same320

neighbours in both trees).321

Because both NTSRF and NTSTr metrics are bounded at one. The residuals of322

any model based on the NTS scores were not normal thus preventing the use of323
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parametric tests for comparisons (see online material324

https://rawgit.com/TGuillerme/CharactersCorrelation/master/Analysis/325

02-EffectCorrelationFullResults.html). Similarly, a non-parametric Wilcoxon rank326

test (Hollander et al., 2013) would be biased in its p-value calculation due to the327

presence of equal values in the NTS distributions (e.g. when multiple trees are equal to328

the “normal” tree). Therefore, we used a combination of the Wilcoxon rank test with a329

Bonferonni-Holm corrections (to ensure our significant results were robust to Type I330

error rate inflation; Holm, 1979) and a simple non-parametric metric for measuring the331

probability of overlap between two distributions, the Bhattacharyya Coefficient (BC;332

Bhattacharyya, 1943; Guillerme and Cooper, 2016b; Soto et al., 2016). Thus, additionally333

to the Wilcoxon test results, we considered distribution to be significantly similar if they334

had an overlap probability > 0.95 and different if they had an overlap probability335

> 0.05. Comparisons falling between these range can not be designated as strictly336

similar/different but can still be ranked (e.g. for three distributions A, B, C, if337

BC(A,B) = 0.15 and BC(A,C) = 0.65, we cannot consider either distribution significantly338

different or similar but B still has a lower probability of being similar to A than C).339

The resulting full simulation was 3.5TB big so is not shared here (though the340

parameters are). However, the resulting consensus trees on which the topological341

differences are calculated are available at342

https://figshare.com/s/7a8fde8eaa39a3d3cf56.343

Results344
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Figure 3: Effect of character difference on recovering the “normal” topology. The y axis rep-

resents the Normalised Tree Similarity using Robinson-Fould distance for matrices with 25, 75

and 150 taxa from top to bottom respectively. The x axis represents the different character differ-

ence scenarios and tree inference method with the “maximised” character difference in Bayesian

(red) and under maximum parsimony (orange), the “minimised” character difference in Bayesian

(dark green) and under maximum parsimony (light green) and the “randomised” character dif-

ference in Bayesian (dark blue) and under maximum parsimony (light blue) for matrices of 100,

350 and 1000 characters in the panels from left to right.
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Figure 4: Effect of character difference on recovering the “normal” topology. The axis are

identical to figure 3 but y axis represents the Normalised Tree Similarity using Triplets

distance.
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Effect of character differences on topology345

The overall amount of character difference in a matrix has an effect of the ability346

to recover the correct topology when maximising character difference leading to the347

smallest loss in phylogenetic information (median NTSRF = 0.956 and median NTSTr =348

0.839) followed by simply randomising the characters (median NTSRF = 0.762 and349

median NTSTr = 0.628) and minimising the character difference (median NTSRF = 0.605350

and median NTSTr = 0.303 - see supplementary material 3 for the full summary351

statistics). There is a significant difference between all scenarios (maximising,352

minimising and randomising) with the highest probability of overlap being between353

maximising and randomising the character difference (Bhattacharrya Coefficient of354

0.873 for the NTSRF and 0.908 for the NTSTr - Table 2) and the lowest probability355

between maximising and minimising the character difference (Bhattacharrya coefficient356

of 0.573 for the NTSRF and 0.614 for the NTSTr - Table 2)357

Number of characters.— This effect of the character difference is not dependent on the358

number of characters when looking at clade conservation (i.e. NTSRF). The median359

NTSRF was similar for 100, 350 and 1000 characters (0.730, 0.745, 0.767 respectively -360

see supplementary materials 3) with a significant difference only between 100 and 1000361

and 350 and 1000 characters (Table 3). The number of characters affects the character362

difference more in terms of taxon placement for a low number of characters (median363

NTSTr for 100, 350 and 1000 characters equals 0.544, 0.693, 0.799 respectively - see364

supplementary materials 3) with a significant difference between 100 and 350 or 1000365
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metric test bhatt.coeff statistic p.value

RF maxi:mini 0.573 356436.000 0

maxi:rand 0.873 287225.000 0

mini:rand 0.856 95841.500 0

Tr maxi:mini 0.614 358800.000 0

maxi:rand 0.908 288223.500 0

mini:rand 0.858 98507.500 0

Table 2: Difference between the pooled scenarios. Bhatt.coeff is the Bhattacharrya Co-

efficient (probability of overlap), the statistic and the p.value are from a non-parametric

wilcoxon test (with Bonferonni-Holm correction)

characters (Table 3). However, these differences have to be contrasted by a very high366

probability of overlap between each number of characters and metrics (Bhattacharrya367

Coefficient always > 0.95) suggesting that the significant effects of the number of368

characters still leads to really similar distributions.369

Number of taxa.—370

Similar to the effect of number of characters on character difference, the number371

of taxa seems to have only a marginal effect. A low number of taxa (25) resulted in372

significant differences with both 75 or 150 taxa in both NTSRF and NTSTr but no373

differences between 75 and 150 taxa (medians for 25, 75 and 150 taxa equals 0.802, 0.76,374

0.763 NTSRF and 0.758, 0.588 and 0.615 NTSTr respectively - Table 4 and see375
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metric test bhatt.coeff statistic p.value

RF c100:c350 0.99 190357.500 1

c100:c1000 0.98 174085.500 0.001

c350:c1000 0.984 180460.000 0.032

Tr c100:c350 0.961 166609.500 0

c100:c1000 0.956 151389.500 0

c350:c1000 0.981 178793.500 0.014

Table 3: Difference between the pooled number of characters. Bhatt.coeff is the Bhat-

tacharrya Coefficient (probability of overlap), the statistic and the p.value are from a

non-parametric wilcoxon test (with Bonferonni-Holm correciton)

supplementary materials 3). Again, however, the significant differences have to be376

contrasted with still high probabilities of overlaps for each NTSRF and NTSTr377

distributions for every number of taxa (Table 4).378

Effect of character differences on the inference method379

Regarding the inference method, there is a significant difference in clade380

conservation between Bayesian and maximum parsimony (Table 5 - median NTSRF of381

0.828 and 0.679 respectively) but not in terms of individual taxon placements (Table 5 -382

median NTSTr of 0.738 and 0.601 respectively).383

Combined effects of taxa, characters and correlation on topology384
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metric test bhatt.coeff statistic p.value

RF t25:t75 0.976 218421.000 0.012

t25:t150 0.988 220529.000 0.004

t75:t150 0.99 201037.000 1

Tr t25:t75 0.976 233282.000 0

t25:t150 0.978 227288.000 0

t75:t150 0.992 194201.000 1

Table 4: Difference between the pooled number of taxa. Bhatt.coeff is the Bhattachar-

rya Coefficient (probability of overlap), the statistic and the p.value are from a non-

parametric wilcoxon test (with Bonferonni-Holm correciton)

When looking at the combined effect of each parameter, the “maximised” and385

“minimised” scenarios are always significantly different with no high probability of386

overlap for both NTSRF and NTSTr (Wilcoxon rank test p.value < 0.05 and387

Bhattacharrya Coefficient < 0.95 - see supplementary material 3). The same differences388

are observed when comparing the “maximised” scenario against the “randomised” one389

expect for: (1) the Bayesian inference with 25 taxa (with 100, 350 and 1000 characters)390

and with 75 taxa with 1000 characters for both NTSRF and NTSTr; and (2) the391

maximum parsimony for 25 taxa (with 350 and 1000) characters for both NTSRF and392

NTSTr and 75 taxa with 100 characters for NTSTr. Identically, there was always a393

significant difference between the “minimised” scenario and the “randomised” one was394
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metric test bhatt.coeff statistic p.value

RF bayesian:parsimony 0.891 579437.500 0

Tr bayesian:parsimony 0.984 470621.500 0.084

Table 5: Difference between the pooled methods. Bhatt.coeff is the Bhattacharrya Coef-

ficient (probability of overlap), the statistic and the p.value are from a non-parametric

wilcoxon test (with Bonferonni-Holm correciton)

expect for the matrix of 150 taxa and 100 characters under maximum parsimony for395

NTSRF and the matrix of 150 and 1000 characters under Bayesian inference for NTSTr.396

The full list of comparisons and summary statistics are available in the supplementary397

materials 3.398

Discussion399

Effect of character differences on topology400

As expected, there is a significant effect of the character difference in the ability to401

recover the correct topology. The character difference metric can be seen as the inverse402

of character correlation (see Methods ): a high character difference approximates a low403

level of character correlation and vice versa. When characters are correlated, one could404

expect the matrices to convey a strong (but potentially misleading) phylogenetic signal405

since every character agrees with each other and conversely, when characters are406
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uncorrelated, one could expect them to convey a weaker phylogenetic signal with a407

high amount of homoplasy. Intuitively, this would lead the “minimised” character408

difference scenario to lead to incorrect but consistent trees, the “maximised” scenario to409

lead to poorly resolved once (really homoplasic trees) and the “randomised” scenario to410

perform the best at recovering the correct topology. Although the expected results411

appear to be true for a low character difference scenario, increasing the character412

difference surprisingly improves the ability to recover the “normal” topology both in413

terms of clade conservation (NTSRF) and taxa placement (NTSTr) for both inference414

methods (especially in bigger matrices; Figs 3 and 4). Furthermore, the trees generated415

by the “minimised” scenario do not appear better resolved (towards any topology) than416

the other scenarios (see Supplementary material 3, Figs 3, 4 and 5).417

Number of characters and taxa.— Because of the nature of our simulation protocol, one418

could expect that the effect of character correlation would have increased with the419

number of characters (i.e. the more characters available, the more characters are420

modified in each scenario). Similarly, one could expect the number of taxa to have an421

effect of the raw ability to recover the “normal” topology (i.e. the more taxa, the more422

likely taxa are misplaced by chance).423

Although we measured a significant difference between “small” and larger424

matrices (both in terms of number of taxa and characters; Tables 3 and 4), these425

differences have to be contrasted with the probability of overlap between the results426

distributions that are always really high between every matrices sizes (Bhattacharrya427
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Coefficients > 0.965 for both the different number of characters and taxa). This suggest428

that the effect of character correlation on recovering the right topology is independent429

of the size of the matrix when pooling the data. For the number of characters, this430

suggests that the overall character difference metric is a good proxy for character431

correlation as it is independent of the number of characters analysed. Similarly, using432

the a Normalised Tree Similarity metric (NTS) accounts for the fact that topological433

difference is affected by the sheer number of taxa considered (i.e. we corrected for the434

expected difference when comparing two random trees with the same number of taxa).435

Effect of character differences on the inference method436

When considering the pooled effect of the tree inference method, we only detected a437

significant difference between the Bayesian and the maximum parsimony trees in terms438

of clade conservation but none in terms of taxa placement (both using a Wilcoxon test439

and the Bhattacharrya Coefficient; Table 5). The difference in the ability of each method440

to recover the “correct” topology has been heavily discussed in the last five years with441

some indications that Bayesian inference will outperform parsimony when analysing442

discrete morphological characters alone (Wright and Hillis 2014; O’Reilly et al. 2016;443

Puttick et al. 2017; although some critics have raised issues with these investigations444

Spencer and Wilberg 2013; Goloboff et al. 2017). In this study, it is possible that our445

simulation protocol for generating the characters (favouring slightly more Mk-based446

characters rather than HKY ones) could slightly favour Bayesian inference over447

maximum parsimony, however, our protocol for selecting matrices (i.e. those with in a448
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CI < 0.26 in a quick preliminary parsimony search; O’Reilly et al., 2016) could also449

favour maximum parsimony analysis. It was however not the purpose of this study to450

compare the overall performance of both methods but rather to measure the effect of451

character correlation on each of those methods separately.452

The differences in performance of the two methods observed here could be due453

to the inherent mechanisms of each method. For any given topology T that was454

obtained from the “normal” matrix and a matrix with high homoplasy, both methods455

will generate score differently: (1) in parsimony, the topology will probably be given a456

bad optimality score (on that implies many changes along the tree) and the optimality457

criterion (favouring the minimum score) will likely discard the tree. The tree search will458

thus likely result in a topology island that will not contain the given topology T. (2) in459

Bayesian inference, the topology will also be given a bad optimality score (i.e. low460

likelihood) although the high homoplasy can be accommodated in the tree through461

high evolution rates or/and long branches. The rate and the branch length being two462

parameters among others, the optimality score (the likelihood) will change less463

drastically than for using parsimony. Furthermore, in Bayesian inference, a reasonable464

difference in optimality between two topologies (the acceptance) will not necessarily465

mean that the given topology T will be discarded. This difference in both mechanisms466

could explain why, on average, Bayesian Inference seems better to recover the “normal”467

topology than maximum parsimony.b468

Distinction between different character correlations469
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Here we mention three different types of character correlations but evolutionary470

biologists are mainly interested in the intra-organismal and evolutionary correlations471

(e.g. in evo-devo Goswami and Janis 2006; or in macroevolution FitzJohn et al. 2014).472

These two types of correlations can only be studied a posteriori with a phylogenetic473

hypothesis and should not used a priori as a criterion to select characters. In other474

words, intra-organisaml and evolutionary correlation should be studied based on an475

underlying phylogenetic framework making the correlation induced by data collection476

(i.e. coding correlation) the only type of correlation that can affect the phylogeny a477

priori. This dichotomy thus creates a trade of between: (1) coding fewer characters478

(stochastically reducing a priori correlation) but making the a posteriori correlation more479

dependent on the coding; and (2) coding more characters (increasing a priori480

dependence) but allowing the a posteriori correlation being less dependent on the481

coding correlations.482

It is important to note that the two other sources of character correlation could483

also be present in our simulations although they were not explicitly modelled: (1)484

evolutionary correlation is implied by simulating the characters based on Birth-Death485

trees; and (2) intra-organismal correlation could also be present in the matrices for486

those characters randomly simulated but sharing similar evolutionary simulation487

regimes (i.e. creating “modules” of characters). However, the effect of these sources of488

correlation was out of the scope of this study and would have required a posteriori489

changes to the matrices which are - when using empirical data - at best bad practice490
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and at worth dishonest.491

Limitations492

First, simulating evolutionary history is complex. Not only because the models we’re493

using to infer phylogenies are ever improving (e.g. Heath et al., 2014; Wright et al.,494

2016) but also because generalising morphological evolution across vastly different495

organisms is probably impossible (see constrasted discussions from Goloboff et al.,496

2018; O’Reilly et al., 2018). However, we do not compare the “maximised”,497

“minimised” and “randomised” to the “true” tree but rather to the “normal” tree. This498

allows us to reduce the caveats from our simulations on the effect of character499

correlation since we only compare the simulation end products to each other (the500

outputs) rather than to the simulation inputs.501

Second, measuring and modifying character correlation is difficult. In our502

simulation protocol we chose to create simulation by duplicating characters in a matrix503

to maximise or minimise correlation. In biology, this correlation arises from either504

intra-organismal or evolutionary mechanisms. This could lead to correlations between505

characters to be more present in some parts of the trees that other (e.g. in the case of506

inapplicable data Brazeau et al., 2017). However, because of the number of characters, it507

is actually complex to actually measure their correlation in a biological sense and is still508

actively discussed in the literature (Russell Lande, 1983; Maddison, 1990; Pagel, 1994;509

Mark Pagel, 2006; Goswami and Janis, 2006; Goswami and David Polly, 2010; Goswami510

et al., 2014; Grabowski and Porto, 2016). Additionally, as discussed in the introduction,511
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character correlation can also simply arise by chance due to the discrete coding scheme512

(i.e. some sets of characters can be highly correlated but effectively describe513

independent information). Therefore, we made the choice to simplify our simulations514

by generating character correlation as a stochastic process rather than a biological one.515

Third, comparing phylogenetic inference methods is not trivial. As mentioned516

above, both maximum parsimony and Bayesian inference, although aiming (and often517

achieving) to infer evolutionary history only have similar outputs and vastly differ in518

how optimality is measured. But there are also difficulties in summarising both519

methods with consensus trees OReilly and Donoghue (2017). However, we want to520

point out again that here we’re no comparing the methods to each other per se but521

rather how they both, individually, react to an increase or decrease of correlated522

characters.523

Potential applications524

Effectively, our simulation protocol bootstraps our data “with bias”. In the525

“randomised” scenarios the data is simply randomly bootstrapped simply we526

randomly remove and resample characters (i.e. giving the weight of 0 to some and > 1527

to other). However, in the “minimised” and “maximised” scenario, the bootstrapping528

we remove the characters with the lowest/highest overall character difference. For529

example, in the “maximised” scenario, we randomly remove some characters that are530

strongly correlated with other and randomly resample from the left characters.531
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It is noteworthy to point that in rather small matrices (25 × 100), there was no532

significant difference in terms of recovering the right topology when maximising or533

randomising the character differences. Since many discrete morphological matrices are534

of similar size (Guillerme and Cooper, 2016a) a simple bootstrap re-sampling (i.e. the535

equivalent of randomising the character differences in our analysis) will be sufficient to536

obtain a robust topology (cf. actively collecting different characters). In matrices with537

more taxa, however, the “maximised” scenario resulted in better topological recovery538

than any other scenarios. Applying this kind of bootstraps that maximises character539

difference by biasing the random sampling could thus results in better resolved trees.540

Conclusion541

Correlation between characters can be induced through three main phenomena:542

intra-organismal relationships, selection-driven covariation or biases in coding the543

characters yet only the latter can be improved upon to investigate phylogenetic544

relationships. Useful best practices guidelines (e.g. Brazeau, 2011; Simões et al., 2017)545

and algorithms for dealing with different types of character correlations (e.g. for546

characters hierarchy ?Brazeau et al., 2017) already exist. However, with the regain of547

popularity in discrete morphological data and the expansion of dataset size (e.g. Ni548

et al., 2013; O’Leary et al., 2013, with more than 1000 characters each), we can expect549

the correlation between characters to increase stochastically. Moreover, because550

phylogenetic inference software are unable to a priori differentiate these difference551
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correlations, it is important to understand to what extant topologies can be induced by552

such bias.553

We found that character differences as a proxy for character correlation have a554

strong effect on recovering the “normal” topology: when character correlation was high555

(low character differences), the topology was always the furthest away from the556

“normal” topology. Conversely, when correlation between characters was low, the557

topology was always the closest to the “normal” topology. These results seem558

independent on the size of the matrix (number of taxa and/or characters) but can be559

influenced by the phylogenetic inference method used with Bayesian inference faring560

better in terms of clade conservation, especially in larger matrices.561

However, in modest size matrices (25 taxa; 100 to 350 characters), the effect of562

actively choosing to minimise character correlation was not more significant than563

simply bootstrapping the matrix, suggesting that character correlation is more a564

problem in large discrete morphological matrices. For such matrices, minimising the565

character correlation (resampling characters < 25% different) or maximising it (> 75%)566

respectively significantly decreased and increased correct topological recovery567

compared to randomly resample matrices.568

Data availability, repeatability and reproducibility569

The consensus trees are available on figshare at570

https://figshare.com/s/7a8fde8eaa39a3d3cf56. The simulations are fully replicable571
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following the explanations at572

https://github.com/TGuillerme/CharactersCorrelation. The post-simulation573

analysis, tables and figures (reported in this manuscript) are fully reproducible see574

(https://github.com/TGuillerme/CharactersCorrelation).575
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