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Abstract 1 

Specific antibody reactivities are routinely used as biomarkers but the use of antibody repertoire profiles 2 

is still awaiting recognition. Here we suggest to expedite the adoption of this class of system level 3 

biomarkers by rationally designing a peptide array as an efficient probe for an appropriately chosen 4 

repertoire compartment. Most IgM antibodies are characterized by few somatic mutations, polyspecificity 5 

and physiological autoreactivity with housekeeping function. Previously, probing this repertoire with a set 6 

of immunodominant self-proteins provided only coarse information on repertoire profiles. In contrast, 7 

here we describe the rational selection of a peptide mimotope set, appropriately sized as a potential 8 

diagnostic, that also represents optimally the diversity of the human public IgM reactivities. a 7-mer 9 

random peptide phage display library was panned on pooled human IgM. Next generation sequencing of 10 

the selected phage yielded a non-exhaustive set of 224087 mimotopes which clustered in 790 sequence 11 

clusters. A set of 594 mimotopes, representative of the most significant clusters, was used to demonstrate 12 

that this approach samples symmetrically the space of IgM reactivities. When probed with diverse 13 

patients’ sera in an oriented peptide array, this set produced a higher and more dynamic signal as 14 

compared to 1) random peptides, 2) random peptides purged of mimotope-like sequences and 3) 15 

mimotopes from a small subset of clusters. In this respect, the representative library is an optimized probe 16 

of the human IgM diversity. Proof of principle predictors for randomly selected diagnoses based on the 17 

optimized library demonstrated that it contains more than 1070 different profiles with the capacity to 18 

correlate with diverse pathologies producing well separable data. Thus, an optimized small library of IgM 19 

mimotopes is found to address very efficiently the dynamic diversity of the human IgM repertoire, 20 

providing informationally dense, structurally interpretable, IgM reactivity profiles. 21 

 22 

  23 
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Introduction 1 

The repertoire of human IgM contains a considerable proportion of moderately autoreactive antibodies 2 

characterized by low intrinsic affinity/ low specificity, functioning as a first line of defense [1], as 3 

scavengers of senescent cells and debris [2-6], and even in tumor surveillance [7]. It is becoming 4 

increasingly clear that the human antibody repertoire has an organization similar to that of its murine 5 

counterpart [8-12]. About one fourth of the murine splenic B lymphocytes that respond to 6 

lipopolysaccharide have B cell receptors which are moderately autoreactive. Affected very little by 7 

somatic mutations and follicular evolution, the physiological self-reactivities largely overlap with 8 

germline-encoded polyspecific antibodies [13-15]. Eighty percent of murine serum IgM falls in this 9 

category and is referred to as natural antibodies (nAbs) [16, 17]. Apart from the polyspecific splenic B 10 

cells, the source of nAbs in mice seems to be mostly a population of B1-related IgM+ plasma cells residing 11 

in a unique IL-5 dependent bone marrow niche [18]. By interacting with structures of self and carrying 12 

housekeeping tasks, this part of the antibody repertoire reacts swiftly to and reflects changes in the 13 

internal environment. Therefore, it can be a better source of biomarkers if probed as a natural biosensor 14 

than other compartments of the antibody repertoire like IgG and IgE.  15 

Our working hypothesis is that an essential part of the human IgM repertoire involved in homeostasis can 16 

be probed by a set of mimotopes, the size of which can be tailored to the diagnostic goals by optimization. 17 

The existing approaches for immunosignature [19, 20] or immunomic [21] analysis of the immunoglobulin 18 

repertoires focus mostly on IgG and have used arrays of either 102 proteins or 104-105 random peptides. 19 

The IgM repertoire has been previously probed by protein arrays [22] containing a biologically determined 20 

representative set of autoantigens which is a structurally coarse approach. We set out to explore the 21 

feasibility of a method that, similar to the self-protein “homunculus” arrays, targets a small set of 22 

rationally selected probes, but also preserves the structural interpretability of peptides in a format 23 

applicable for routine diagnostics.  24 
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Materials and methods 1 

Deep panning 2 

Human IgM was isolated from a sample of IgM enriched IVIg - IgM-Konzentrat (Biotest AG, Dreieich, 3 

Germany, generously provided by Prof. Srini Kaveri), while human monoclonal IgM paraprotein was 4 

isolated from аn IgM myeloma patient’s serum selected from the biobank at the Center of Excellence for 5 

Translational Research in Hematology at the National Hematology Hospital, Sofia (with the kind 6 

cooperation of Dr. Lidiya Gurcheva ). In both cases, IgM was purified using affinity chromatography with 7 

polyclonal anti-µ antibody coupled to agarose (A9935, SIGMA-ALDRICH, USA). A 7-mer random peptide 8 

library (E8100S, Ph.D. -7, New England Biolabs, USA) was panned overnight at 4oC on pooled human IgM 9 

adsorbed on polystyrene plates at а concentration of 0.1 mg/ml, washed, eluted with glycine buffer at pH 10 

2.7 and immediately brought to pH7. The eluate was transferred to a plate coated with monoclonal IgM 11 

and incubated according to the same protocol, but this time the phage solution was collected after 12 

adsorption and amplified once, according to Matochko et al. [23]. Briefly, the phage DNA was extracted 13 

and the peptide-coding fragment amplified by PCR. The amplicons were subjected to deep sequencing 14 

using the Next Seq platform (Illumina, USA), performed at the Sequencing Core Facility of Oslo University 15 

Hospital.  16 

Mimotope selection 17 

The reads from the deep sequencing experiment were processed using the script provided by Matochko 18 

et al. [23]. Reads found in 3-10 copies per million (CPM) were selected and subjected to clustering using 19 

the GibbsCluster-2.0 method [24]. The number of clusters was optimized using the Kulback-Leibler 20 

distance (KLD) from the background model of random sequences [24]. Position weighted matrices (PWM) 21 

were defined for each cluster using pseudo counts as follows: 22 
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𝑃𝑃𝑃𝑃𝑃𝑃𝑘𝑘,𝑗𝑗 = 𝑙𝑙𝑙𝑙𝑙𝑙2 �
∑ 𝐼𝐼�𝑋𝑋𝑖𝑖,𝑗𝑗 = 𝑘𝑘� + 𝑏𝑏𝑘𝑘√𝑁𝑁

(𝑁𝑁 + �𝑁𝑁)𝑏𝑏𝑘𝑘
� 1 

where i=1..N are the rows of the alignment, j=1:7 are the columns of the alignment, I(aa=k) is the indicator 2 

function used to count the occurrences of amino acid k in column j and bk is the background frequency of 3 

amino acid k in the phage display library [25]. 4 

Using the PWMs, the median of the log odds (LO) scores of the peptides in each cluster was calculated. 5 

Next, the probability of the occurrence of peptides with LO greater than the respective median in a set of 6 

random peptides 10-fold larger than the analyzed library was determined empirically. Using this estimate, 7 

the probability of the chance occurrence of as many peptides with scores higher than the median score 8 

as observed in each cluster was calculated using the binomial distribution. The probabilities, thus found 9 

for each cluster, were used as a criterion for their relevance to the mimotope library being generated.  10 

The clustering of the mimotopes was visualized using the t-sne (t-Distributed Stochastic Neighbor 11 

Embedding) algorithm [26] in its implementation using the faster Barnes-Hut algorithm (Rtsne package) 12 

with theta parameter default value of 0.5 and a maximum of 1500 iterations [27].  13 

The amino acid residues were described using the 5-dimensional scale of amino acid residue properties 14 

published by Hellberg et al. [28]. The amino acid residue properties quantification used was the same as 15 

for the pepStat binding normalization [29]. The 5 scales (z1-z5) were extracted as the latent variables 16 

describing the major factors underlying the variability of amino acids in the space of 26 physicochemical 17 

parameters. Thus, each peptide was represented by a vector of 35 scores corresponding to its seven 18 

positions. For a comparison, the same number of random 7-mer peptides generated using the amino acid 19 

background frequencies of Ph.D.-7 were clustered using the same parameters. The clusters in the t-sne 20 

plot were labeled using k-mean clustering.  21 

Patients’ sera  22 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 24, 2018. ; https://doi.org/10.1101/308973doi: bioRxiv preprint 

https://doi.org/10.1101/308973


 
 

6 
 

Sera from randomly selected patients with glioblastoma multiforme (GBM), low grade glioma (G), brain 1 

metastases of breast (MB) or lung (ML) cancers, as well as non-tumor bearing patients (C) (herniated disc 2 

surgery, trauma, etc.) of the Neurosurgery Clinic of St. Ivan Rilski University Hospital, Sofia acquired 3 

according to the rules of the ethics committee of the Medical University in Sofia, after its approval and 4 

obtaining informed consent, were analyzed on the sets of peptides defined in microarray format. The sera 5 

were aliquoted and stored at -20oC. Before staining the sera were thawed, incubated for 30 min at 37oC 6 

for dissolution of IgM complexes, diluted 1:100 with PBS, pH 7.4, 0.05% Tween 20 with 0.1% BSA, further 7 

incubated for 30 min at 37oC and filtered through 0.22µm filters before application on the chips.  8 

Peptide microarray 9 

The customized microarray chips were produced by PEPperPRINTTM (Heidelberg, Germany) by synthesis 10 

in situ as 7-mer peptides attached to the surface through their C-terminus and a common spacer GGGS. 11 

The layout was in a format of a single field of up to 5500 or five fields of up to 600 peptides in randomly 12 

positioned duplicates. The chips were blocked for 60 minutes using PBS, pH 7.4, 0.05% Tween 20 with 1% 13 

BSA on a rocker, washed 3x1 min with PBS, pH 7.4, 0.05% Tween 20 and incubated with sera in dilutions 14 

equivalent to 0.01 mg/ml IgM (approx. 1:100 serum dilution) on a rocker overnight at 4oC. After 3x1 15 

minute washing the chips were incubated with secondary antibodies at RT, washed, rinsed with distilled 16 

water and dried by spinning in a vertical position in empty 50 ml test tubes at 100 x g for 2 minutes.  17 

Microarray data treatment 18 

The microarray images were acquired using a GenePix 4000 Microarray Scanner (Molecular Devices, USA). 19 

The densitometry was done using the GenePix® Pro v6.0 software. All further analysis was performed 20 

using publicly available packages of the R statistical environment for Windows (v3.4.1) (Bioconductor – 21 

Biostrings, limma, pepStat, sva, e1071, Rtsne, clvalid, entropy, RankProd, multcomp) as well as in house 22 

developed R scripts (https://github.com/ansts/IgMimoPap1 and https://github.com/ansts/IgMimoPap2 23 
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).  1 

Local normalization  2 

The spot intensities of a non-treated chip were subtracted from the stained chip spot intensities. 3 

Treatment with secondary antibody only did not result in any binding. Next, the local background had to 4 

be inferred due to the dense spot layout. To that end an approximated background was smoothed by 5 

support vector regression and the result passed to the backgroundCorrect [30] function for local 6 

normalization using the normexp (mle) method. The initial background approximation is described in the 7 

supplement file 1. 8 

Global normalization 9 

The peptides with missing values (flagged “bad”) in some of the patients were removed.  Log transformed 10 

locally normalized microarray data were next normalized for amino acid composition dependent binding 11 

using the ZpepQuad method of pepStat package [31]. This step is considered indispensable because of 12 

the strong effect of amino acid composition on binding due mostly to electrostatic interactions. The amino 13 

acid residue properties were quantified using the 5 dimensional descriptor z1-z5 of Sandberg et al. (1998) 14 

[29]. This was followed by global normalization using normalizeCyclicLoess (method affy) from the 15 

package limma [30] and subjected to batch effect compensation using the ComBat [32] function from 16 

package sva whenever necessary (for different chip batches and for different channels). The data was 17 

acquired in 2 different batches using the green (batch G) and the red channel (batch R). Eleven cases were 18 

part of an earlier experiment and that subset of the data could be used also in this assay (batch P). For 19 

batch effect compensation the groups were balanced by selecting a subset of the patients with relatively 20 

even representation of each tested diagnosis. The criterion for inclusion of the 5 GBM patients from batch 21 

“R” was the minimal difference of the mean and coefficient of variation from the mean and CV of the 22 

whole group of GBM in that batch. Finally, each peptide binding intensity was represented by the mean 23 

of its duplicates. 24 
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Because of a lack of a suitable negative control, the baseline binding was determined from the data. The 1 

clean data used for the testing of the diagnostic potential was subjected to dimensionality reduction of 2 

the peptide reactivities using t-sne [26], which clearly outlined a group of peptides with uniformly low 3 

reactivities, (Supplement fig.1) that was considered background binding. The mean of the background 4 

binding intensity was subtracted from the data before testing for significant reactivities. 5 

A general linear model, followed by Tukey contrast, was used to compare the expression of reactivities in 6 

the different tested libraries. The total correlation between the different peptide reactivity profiles of 7 

each library with 10 patients’ serum IgM was used as a measure of the redundancy of the library. The 8 

profiles were viewed as points in a 10-mer space with each dimension corresponding to a patient. Total 9 

correlation was calculated as KLD from the theoretical maximal entropy joint distribution of the profile 10 

data, binned appropriately. To keep the number of bins comparable to the number of peptides, the 11 

intensity values for each patient were discretized just to “high” and “low” relative to the median for the 12 

studied library, effectively centering each library’s data and, thus, removing the effect of the median 13 

intensity of each library. To further limit the number of bins, randomly selected bins (the same for all 14 

libraries) were aggregated in groups of 8, yielding 128 bins for the calculation of the baseline and the 15 

actual joint distributions. To equalize the size of the libraries, random samples of 380 peptides were used 16 

from each library, except for pepneglo which was excluded from this analysis due to its small size. The 17 

mean KLD values were determined in a bootstrap procedure with the described sampling repeated with 18 

replacement 100 times for the bin aggregation and 30 times for the library resampling producing 3000 19 

samples. KLD for each library was thus calculated using the entropy::KL function.  20 

The same approach could not be used for the transposed matrix, due to the disproportionately high 21 

number of bins necessary to describe the distribution in high/low values of 500-1000 different peptides. 22 

Instead, the mean correlation coefficient between the patient profiles across the peptides was used. To 23 
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compare the mean correlation values between libraries by GLM, the correlation values were converted 1 

to z-scores. 2 

Another test of the optimal sampling of the mimotope space was the mean nearest neighbor distance 3 

(NND) per library which was normalized (nNND) relative to the theoretical mean distance between the 4 

points in the 10-dimensional data cloud for the different libraries:  5 

𝑛𝑛𝑁𝑁𝑁𝑁𝑁𝑁𝐿𝐿 =
𝑁𝑁𝑁𝑁𝑁𝑁𝐿𝐿

� 𝑉𝑉𝑁𝑁𝐿𝐿
�
1
𝑘𝑘

, 6 

where L=1..8, NL is the number of peptides in each library, k is the dimensionality (10 since the peptides 7 

are compared on the basis to their reactivity to 10 patients’ sera) and V is the volume of the data cloud 8 

approximated as a k-dimensional ellipsoid [33]: 9 

𝑉𝑉 =
2𝜋𝜋

𝑘𝑘
2

𝑘𝑘Γ �𝑘𝑘2�
�(2 ∗ 𝜎𝜎𝑖𝑖)
𝑘𝑘

𝑖𝑖=1

, 10 

where σi is the standard deviation of the data along the ith dimension (the values of the ith serum) and Γ is 11 

the gamma function. The logarithms of nNND were compared by general linear models (GLM).  12 

Together with median intensity per library as a measure of the intensity of the signal, total correlation, 13 

mean correlation between patients’ sera reactivities and mean nearest neighbor distance were combined 14 

to measure the optimization of the libraries. To make all four criteria positively correlated with the desired 15 

qualities of the libraries, the sign of the correlation measures was changed. The rank product method (p 16 

value for consistent “high expression” across the four tests) was used to test the optimization of the 17 

libraries. 18 

 19 

Feature selection algorithm 20 

The composition of the library underwent a small change - 75 of the lowest scoring sequences from 21 

pepnegrnd library were added to the library as a negative control. Because of the size limit of the final 22 
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library, this addition was done by replacement of 75 of the selected positive peptides.  For the design of 1 

a practical algorithm for extracting information about a particular diagnosis, a feature selection approach 2 

was used based on recursive feature elimination. It used the quality of clustering of the predetermine 3 

diagnostic groups when mapped to only the selected subset of features as a criterion. The cluster 4 

separation of the cases of interest was measured using a combined clustering criterion: 5 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
100 ∗ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑑𝑑, 𝑐𝑐) ∗ 𝐵𝐵𝐵𝐵𝐵𝐵(𝑑𝑑, 𝑐𝑐)

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑑𝑑, 𝑐𝑐)
 6 

Where Dunn(d,c) is the Dunn’s clustering criterion [34, 35] which is based on single inter-cluster and intra-7 

cluster distances (extreme case), BHγ(d,c) is the Baker-Hubert Gamma index [36] which gives the overall 8 

agreement of distances and cluster assignment based on all the data, Conn is the connectivity validation 9 

measure for a given clustering partitioning based on 10 nearest neighbors [34], which emphasizes the 10 

agreement of distances and partitions in the vicinity of each case; d is the matrix of distances between 11 

the cases, and c is the diagnosis code for the cases. Supplement Figure 8 shows the typical traces of the 12 

clustering criterion as a function of the number of features thus obtained with the best set of features 13 

corresponding to the maximum of the clustering criterion. 14 

Let F be the set of features used - the union of features of significant expression in any diagnosis (n=380). 15 

The recursive elimination features selection from F was performed multiple times in a leave one out 16 

setting, both as a direct validation as well as a bootstrap scheme used to improve further the 17 

generalization of the proof of principle predictor. 18 

The following algorithm was used for predicting GBM as contrasted to the rest of the cases. Let N be the 19 

number of cases. Each of the 𝑁𝑁 bootstrap samples contained the binding data for 𝑁𝑁 − 1 cases. The 20 

recursive elimination feature selection applied to each of those samples ultimately produced an 21 

intersecting family of 𝑁𝑁 feature sets. To ensure better generalization, only the features common for at 22 

least 2 of those bootstrap generated feature sets were analyzed. The common features were pooled by 23 
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the number of sets they were common for (or “commonality”) in groups with commonality greater than 1 

a threshold, i.e. – the group labeled 1 included all features, group n included features found in at least n 2 

bootstrap sets and group 28 contained the features found in all bootstrap sets. These groups were used 3 

to find the commonality level providing the best performing feature set. 4 

 Results 5 

Selection of 7-mer mimotopes 6 

We chose to pan a commercially available 7-mer random peptide phage display library of diversity 109. 7 

Thus, the size of the mimotopes would be in the range of the shorter linear B cell epitopes in the IEDB 8 

database (http://www.iedb.org/). At the same time, the complete diversity of sequences of that length 9 

could be interrogated. As a repertoire template we used an experimental preparation of human 10 

immunoglobulins for intravenous use highly enriched in IgM, pool representative of the repertoire of at 11 

least 10 000 healthy donors. The phage eluted from the IgM repertoire were adsorbed on a monoclonal 12 

IgM to filter out non-specific binding of phage to the constant regions, and thereby focus binding only on 13 

the mimotopes (Fig. 1). The peptide inserts were amplified and deep sequenced using the approach 14 

described by Matochko et al.  (2012) [23]. Two separate experiments starting with 20% of the original 15 

phage library were performed (experiments A and B), while in a third one (C), a preamplified 20% sample 16 

of the original phage library was used. The yield was 688 860 (experiment A), 518 533 (experiment B) and 17 

131 475 (experiment C) unique reads. The Phred quality score cut off used was 32 with a probability for 18 

an erroneous base call of 6x10-4. The unique reads from experiments A and B were pooled so that only 19 

one copy of a sequence existed in the final set (n=1 114 845). These were further filtered based on the 20 

number of occurrences of each sequence (similar to the concept of sequencing depth). The criterion for 21 

retaining a sequence was an occurrence in 3-10 CPM, yielding 224 087 unique sequences using the 22 

following rationale. Considering that 79% of the single base changes lead to a change in the encoded 23 

amino acid [37], the used Phred score led to about 1.1 104 sequences with one erroneous amino acid 24 
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residue if there is only one wrong base call per sequence and much fewer with multiple errors per 1 

sequence. Since the criteria for inclusion is at least 3 CPM, the probability for the error to yield one 2 

sequence already present in 2 CPM (so that it is included in the selected set, there are 182 424 sequences 3 

at 2 CPM) is 7% and less than 0.3% for 2 and more incorrect sequences. This error rate could lead also to 4 

a loss of about 80 potentially selected sequences when it affects a sequence presented at 3 CPM (n=89 5 

167).  So, this Phred score can slightly restrict the selected sequences (false negatives), but produces 6 

practically no false positives. The probabilities for a change at the higher threshold (10 CPM) are negligible.  7 

The limit of 10 CPM on the high copy numbers was applied after comparison of the distributions of the 8 

number of clones by CPM between the original and the preamplified library (Fig. 2). It showed that 10 9 

CPM was the threshold discriminating the original and preamplified libraries, with diversity in the latter 10 

skewed towards highly proliferating clones. This fact was interpreted in view of the observation that the 11 

affinity selection seemed to favor low CPM clones. Therefore, the high CPM clones were excluded to avoid 12 

a possible contamination with non-selected clones having an advantage when they are highly 13 

proliferating. This restriction led to the exclusion of 9.96% of the reads.  14 

To optimally probe the mimotope sequence space, the library was clustered based on the sequences. 15 

Thus, the set of 224 087 unique 7-mer mimotope sequences (from experiment A and B) were subjected 16 

to clustering using the GibbsCluster-2.0 method [24] originally applied for inferring the specificity of 17 

multiple peptide ligands tested on multiple MHC receptors. The algorithm was used in its stand-alone 18 

version, which allowed an unlimited number of clusters and the use of large data sets. The number of 19 

clusters was optimized using the Kullback-Leibler distance from the background model of random 20 

sequences [24] in the range of 100 to 2500 clusters. This criterion indicated optimal clustering in 790 21 

clusters (Fig. 3). PWMs were calculated from each cluster and used further to find the most relevant 22 

peptide sequence as a representative of each cluster (Supplement file 2).  23 

Structural properties of the mimotope clusters 24 
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The frequencies of the amino acids residues in the mimotopes selected from the phage library showed a 1 

skewing in favor of the amino acid residues G,W,A,R,T,H,M,P,Q and against C,F,N,Y,I,L and S (Fig. 4A).  The 2 

evidence of selection stood out in the overall PWM, showing higher divergence from the random 3 

distribution of the frequencies in the N-terminal part (Fig. 4B). L,F and C were not only underrepresented, 4 

but they also were particularly reduced in frequency in the first position. The most pronounced deficit 5 

was for C being even further selected against with respect to its already reduced representation in the 6 

phage display library (accounted for by the background probabilities used to calculate the log odds). 7 

Interestingly, proline was avoided at the first position, but was highly selected for in the second positions, 8 

and in the C-terminus. G,W,A,T,M and E were also highly represented in the N-terminus. 9 

As expected, the residues found selected for or against in particular N-terminal positions were also 10 

involved in shaping the majority of the cluster features. The log odds (LO) forming the position weighted 11 

matrices for the different clusters were further combined in a linearized form in an overall matrix of 140 12 

positions/amino acids by 790 clusters. This matrix was used to determine the amino acid residue in each 13 

position defining the clusters. Biclustering of the overall LO matrix (Supplement Figure 2) again showed 14 

clearly that P, W and H in all positions stand out as the most informative residues that determine to a 15 

great extent the formation of most of the 790 prototype mimotope clusters. Cysteine and several avoided 16 

residues belong also to this cluster of informative residues due to their extremely low LO values. A small 17 

number of mimotope clusters are defined by the presence of C, which is practically lacking from the rest 18 

of the clusters.  19 

Generation of different mimotope libraries 20 

The maximal optimized library at this stage would consist of these 790 representative sequences as they 21 

evenly (symmetrically) sample the mimotope sequence space, as ensured by the GibbsCluster algorithm. 22 

The final clusters vary with respect to the probability of random occurrence of groups of the same size 23 

and PWM in a random collection of peptides. The respective probability (based on binomial distribution) 24 
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was used to rank the profiles by significance. Only the top 594 clusters (with p<1e-4) were retained, and 1 

only the mimotope with the top LO score from each cluster was kept as a mimotope prototype for the 2 

profile. This library was labeled peppos. Next, each of 2.3x106 random 7-mer peptide sequences was 3 

tested against each of the PWM of mimotope clusters defined. For each random peptide, only the score 4 

of the top scoring cluster was retained, and the peptides were ranked in the ascending order of these 5 

scores. The lowest ranking peptides represented random sequences that were the least related to any of 6 

the clusters in the selected library and the first 753 were, thus, used as a negative control (library 7 

pepnegrnd).  8 

Other libraries were also generated based on: 1) low probability for relevance to the cluster based on KLD 9 

scores of the peptides in each cluster (pepneg and pepneglo); 2) 2 groups of 5 highest scoring clusters 10 

(pep5 and pepother5); 3) random 7-mer peptides predicted to belong to 5 highest scoring clusters by 11 

calculating the respective scores relative to the PWM of the clusters (pep5pred) and 4) random 7-mer 12 

peptides (peprnd) (see Table 1 for description of all libraries). The number of peptides per library was 13 

constrained by the size of the chip. 14 

Comparison between libraries 15 

Sera from patients with glioblastoma multiforme (GBM), brain metastases of breast cancers (MB) as well 16 

as non-tumor bearing neurosurgery patients (C) (herniated disc surgery, trauma, etc.) were analyzed on 17 

the sets of peptides synthesized in an oriented (C-terminus attached) planar microarray format. In the 18 

first round of experiments, the 8 different libraries defined were compared based on the IgM reactivity in 19 

the sera from 10 patients (Supplement Fig. 3 and 4). The data on the mean serum IgM reactivity of each 20 

peptide across the different sera were grouped by library and the libraries were compared for their overall 21 

reactivity using GLM (Fig. 5A). The proposed optimized library (peppos) had significantly higher (p<0.001) 22 

average reactivity than pepneg, peprnd or pepnegrnd. Interestingly, the library theoretically purged of 23 
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relevant reactivities (pepnegrnd) had indeed the lowest reactivity, significantly lower than both the 1 

weakly clustering peptides (pepneg) and the random sequences (peprnd) (Suppl. Table 1).  2 

Next, the capacity of the different libraries to sample symmetrically the space of mimotope reactivities 3 

was tested by comparing the total correlation of the IgM reactivity profiles of the peptide mapped on the 4 

10 different sera (Fig. 5B). The total correlation is a KLD based multidimensional generalization of mutual 5 

information. High total correlation would signify redundancy in the library with many peptides sharing 6 

similar reactivity profiles. On the contrary, the minimal total correlation would be found in a library where 7 

all reactivity profiles are as dissimilar as possible. The library peppos had the lowest total correlation, 8 

while pepnegrnd, and especially pep5pred had the top total correlation, indicating redundancy, while the 9 

pools of 5 clusters – pep5 and pepother5 – had relatively low correlation. All differences, except between 10 

the top two libraries (the library purged of sequences similar to the clusters and the library of predicted 11 

sequences similar to 5 highly significant clusters), were significant (Supplement, Table 2).  12 

Another way to test the optimal probing of the mimotope space in the different libraries is to compare 13 

the mean nearest neighbor distance (MNND) of the scaled and centered data of mimotope staining 14 

intensity mapped again to the 10 patients’ sera IgM. Theoretically, the projections of the mimotope 15 

reactivities of an optimal library in the space of multiple individual sera/repertoires should be widely and 16 

symmetrically spaced. The MNND of peppos ranked second only to pepneglo (Fig. 5D) and was 17 

significantly higher than MNND of all the other libraries (Supplement Table 4.).  18 

Alternatively, the correlation of the serum profiles based on the different mimotopes (transposing the 19 

matrices of the previous tests) can be viewed as a criterion for the capacity of the libraries to extract as 20 

much information as possible from the IgM repertoire. Due to the extreme multidimensionality of this 21 

feature matrix and the very small sample size (10 patients), the total correlation approach could not be 22 

applied. Instead, the mean correlation between patient profile pairs was used to compare the libraries 23 
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after z transformation to allow comparison by linear models (Fig. 5C). Again, when tested against the 1 

peppos library, the serum IgM reactivity profiles exhibited the lowest correlation - significantly lower 2 

compared to the reactivities with the other libraries except for pepnegrnd and pepneglo (Supplement. 3 

Table 3.)  4 

Finally, all four criteria were summarized using a rank product test, which proved that reactivity with 5 

peppos stands out from all the other tested libraries as the optimal among them for probing the IgM 6 

repertoire (Table 2).  7 

Visualization of the Mimotope Space  8 

T distributed stochastic neighbor embedding (t-sne) based on the Barnes-Hut algorithm was used to 9 

visualize the structure of the mimotope sequence space as represented by the general mimotope library 10 

produced by deep panning (n=224 087). The sequences were represented by converting each amino acid 11 

residue to a 5-dimensional vector of physical property scores as described in Materials and methods. Thus, 12 

each 7-mer peptide is represented by a 35-dimensional vector. The correlation dimension showed that 13 

the intrinsic dimension of the sequence space in this mapping was 11.25 for random peptides and 11.05 14 

for the phage selected mimotope library. Principle component analysis indicated that the first 14 principle 15 

components account for approximately 75% of its variance (Supplemental Figure 5). The t-sne mapping 16 

was done after reducing the 35 dimensions to 14 by PCA (the initial.dims parameter of the Rtsne function). 17 

Figure 6 shows the maps for the mimotope library and for an equal number of random 7-mer peptides 18 

constructed using the residue background frequencies of the phage display library. Mapping also the five 19 

most significant clusters defined by GibbsCluster (the pep5 library) on the t-sne map shows that the two 20 

clustering approaches yield different results with only limited correlation between them. Nevertheless, 21 

the mapping of the optimized library (peppos) showed that even on this map it covers quite symmetrically 22 

the mimotope sequence space (Figure 7). To compare in more detail the mimotope space to the overall 23 
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random peptide space, equally sized random samples of 50 000 mimotopes and random peptides 1 

together with the pepnegrnd library were merged. After removing the duplicate sequences, the mixture 2 

contained 49964 mimotopes, 49950 random peptides and 684 peptides from library pepnegrnd.  This set 3 

of peptides was plotted again using the same approach and parameter values as for the whole library 4 

(Figure 8). While most of the clusters were uniformly represented by the mimotope library, some 5 

contained fewer mimotopes, although the sequence space was still sampled uniformly within these 6 

clusters. The random peptide sequences selected for their minimal similarity to the mimotope clusters 7 

defined in the previous section (library pepnegrnd) mapped to the areas of the low density of mimotopes. 8 

The t-sne representation of the mixture of peptides was further clustered using k-means clustering in 350 9 

clusters as a means of binning neighboring points. The number of random peptides and mimotopes were 10 

counted in each cluster (Supplement Figure 6). This plot allowed to identify the parts of the peptide space 11 

which were underrepresented by the mimotopes. According to this classification of the peptides, 12 

approximately 42 % of the random peptides, 14% of the mimotopes and 85% of the pepnegrnd library 13 

were in the underrepresented areas (Chi square, p<0.0001). The underrepresented areas had very similar 14 

sequence profiles to the normally represented areas, except for less abundant charged residues (Suppl. 15 

Data file “t-sne cluster profiles”).  16 

Diagnostic potential of a rationally designed mimotope library 17 

A universal mimotope library sampling optimally the public IgM reactivities would have multiple 18 

applications both in the theoretical research of antibody repertoires, as well as in the design of theranostic 19 

tools. Having support for the hypothesis that the mimotope library peppos, sampling major structural 20 

clusters, is optimal when compared to a set of 8 other libraries, we next studied its diagnostic potential 21 

using a larger set of patient sera (n=34). Due to the small data set, the main goal was a “proof of principle” 22 

test demonstrating the capacity of the assay to provide feature subsets suitable for building predictors. 23 

The distribution of patients by diagnosis is shown in Table 3. After cleaning, local, global normalization 24 
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and balancing the groups which warranted the use of ComBat [38] for the following batch compensation, 1 

the reactivity data represented 28 patients’ serum IgM binding to 586 peptides. The comparison between 2 

the staining intensities of the mimotopes (or features) in the patients’ diagnostic groups yielded 3 

overlapping sets of reactivities significantly expressed in each diagnosis - 290 features for GBM, 263 for 4 

ML, and 204 for C.  Overall, 380 features showed significant reactivity in at least one of the diagnostic 5 

groups. The “negative” peptides (library pepnegrnd) represented 49/206 non-significant and 24/380 6 

significant reactivities (χ2, p<0.0001). The finding of individuals with IgM reactive for some of them when 7 

testing a larger group is not a surprise. That is why the background reactivity was considered more reliably 8 

determined by the data analysis, rather than on the mean level of the pepnegrnd library. 9 

A projection of the cases on the positive reactivities by multidimensional scaling (MDS) showed no 10 

separation (Suppl. Fig.7). The feature space is highly multidimensional. The peptide library is not targeted 11 

to any particular pathology, but represents a universal tool for IgM repertoire studies. Therefore, a feature 12 

selection step is needed for each potential predictor of a given state. A recursive elimination algorithm 13 

was applied, removing at each step the feature, the removal of which improved maximally the clustering 14 

of the diagnostic groups (see Materials and methods section for details). Furthermore, this feature 15 

selection strategy was included in a leave one out validation (LOOV) setting, used additionally as a 16 

bootstrap approach for a further improvement of the feature selection.  17 

Using this approach, we tested the capacity of the selected feature sets to separate dichotomously each 18 

of the diagnoses from the rest. As expected, LOOV based on a very small training set did not show 19 

significant prediction. In an attempt to improve the generalization of the prediction, next we used the 20 

data from LOOV as a bootstrap scheme testing the predictor’s efficiency as a function of the feature set 21 

‘s “commonality” (see Materials and Methods). The predictor was constructed after dimensionality 22 

reduction by MDS to two-dimensions and using a radial basis function (Gaussian) kernel-based support 23 

vector machine. The performance of the model was measured using the Matthew’s correlation coefficient 24 
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(MCC).  As can be seen in Fig. 9, the most efficient predictors were composed on the basis of features with 1 

intermediate “commonality”, i.e. – found in more than 50% of the bootstrap derived sets. Figure 10 shows 2 

the distribution of these features after applying this algorithm to each of the three diagnoses separately.  3 

Among the set of features selected to differentiate the GBM cases, we used further those of 50% 4 

commonality (n=55) to predict the diagnoses of all the cases of batch “R”. By including cases omitted 5 

before the batch compensation, this batch served both as a source of a validation set, as well as a control 6 

for the non-confounding effect of the batch compensation. As can be seen from Fig. 11, the feature 7 

selection strategy yielded a predictor classifying correctly the validation cases using an appropriately 8 

tuned support vector machine model (the color shade of the plot stands for the probabilities of each point 9 

to belong to the GBM or non-GBM set).  The Supplemental Figure 9 shows a schematic representation of 10 

the used feature selection algorithm.   11 
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Discussion 1 

The introduction of high-throughput omics screening methods has expanded the knowledge base and the 2 

potential for diagnosis. All these approaches have led to the identification of biomarkers as profiles 3 

extracted from a particular dynamic diversity – proteome, genome, glycome, secretome, etc. A less 4 

explored source of biomarker profiles is the IgM antibody repertoire. IgM antibodies appear early in the 5 

course of an infection. However, they fall relatively fast, even after restimulation, providing a dynamic 6 

signal. Consequently, IgM antibodies have gained interest as biomarkers of physiological or pathological 7 

processes [39-43]. IgM antibodies are still underused as immunodiagnostics, although their interactions 8 

with sets of antigens have been studied in a range of platforms [39, 42-45].  These studies indicate a 9 

significant, but untapped, potential in systems level screening using arrays of appropriately designed 10 

targets for the discovery of (natural) IgM signatures, enabling diagnosis and prognosis.  11 

The use of the antibody repertoire as a source of biomarkers has been defined and approached in multiple 12 

ways. First came the technically minimalistic, but conceptually loaded, semiquantitative immunoblotting, 13 

developed 20 years ago. This technique served as no less than a paradigm setter for systems immunology 14 

[46-51]. The further development produced methods that have been referred to as functional 15 

immunomics [21] in terms of protein reactivities, as immunosignaturing [19] in terms of random peptide 16 

libraries, or described as a deep panning technique [52] and in terms of IgOme of mimotopes selected 17 

from random phage display libraries. Here we describe the design of the first mimotope library for the 18 

analysis of the human IgM repertoire of reactivities recurrent in most individuals [12, 53, 54].  19 

The deep panning approach relies on next generation sequencing (NGS), and thus requires balancing 20 

between sequence fidelity and diversity. Within a number of reads limited by the technology (i.e. – on the 21 

order of 107), high sequencing depths are impossible when the target diversity is itself on the order of 105-22 

106. Hence our choice of 3 CPM as a lower limit. In addition, highly represented sequences are to be 23 

avoided, in order to reduce the effects of the collapse of diversity during phage display amplification. 24 
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Choosing reads of less than 10 CPM , we obtain a set of 224 087 mimotopes which does not contain any 1 

of the parasitic sequences reported by Matochko et al. [55]. The use of monodispersed droplets-2 

compartmentalized phage amplification [56] can overcome the latter problem. But even with diversity 3 

affected by discarding sequences of one and two copies per million on the one hand, and overgrowth of 4 

phage clones on the other, our strategy still manages to find a general representation of the mimotope 5 

sequence space by identifying clusters of mimotopes. This relatively small set of structural classes is 6 

hypothesized to be related to the modular organization of the repertoire defined previously [57].  7 

In general structural terms, the reduced sequence entropy of the selected mimotopes, especially of their 8 

N-terminus, indicates selection and comes as a proof of the efficiency of the phage selection step. The 9 

abundance of W and P is not surprising, since these amino acids are often found in epitopes and 10 

carbohydrate mimotopes [58]. The central role of prolines in the natural antibody mimotopes has also 11 

been observed previously [59]. Since Tchernychev et al. also used a phage display library, it is possible 12 

that the high proline content is related to the structural basis of recognition by antibodies, because 13 

prolines are associated with turns and flanking structures. Proline abundance may also be related to a 14 

necessity to control the entropic component of the binding, which is important in the case of polyspecific 15 

antibodies and peptide ligands.  16 

The mimotope library of diversity 105 we derived by deep panning reflects the recurrent (also referred to 17 

as public) IgM specificities found in the human population.  It can be used as is in large arrays when 18 

applicable. Using this library, a generalization of the mimotope sequence space based on Gibbs Clustering 19 

was attempted, yielding the best clustering in 790 sequence clusters. The latter are viewed as broad 20 

structural contexts, each including multiple polyspecificities. This classification was used to produce a 21 

smaller and more applicable library for clinical use, of a subset of approx. 600 mimotopes (peppos) by 22 

picking representative sequences from the most significant clusters. Thus, this library was designed to 23 

optimally represent the mimotopes’ main public reactivity patterns found in the phage selection 24 
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experiment. The proposed optimized library could be used as a tool for the study of the IgM public 1 

repertoire, as a source of mimotopes for immunotherapeutics design [60-63], but it may serve also as a 2 

multipurpose diagnostic tool.  3 

To study the properties of the optimized small library peppos, we compared it to 7 other libraries (Table 4 

1.). Far from exhaustive, this set of 7-mer libraries represented the major classes of alternatives to the 5 

optimized library: - random peptides, restricted sets of mimotopes, different groups underrepresented 6 

sequences and predicted sequences. When the 8 libraries were compared across patients, the reactivities 7 

to the optimized library peppos had the lowest total correlation, while pepnegrnd, and especially the 8 

predicted mimotopes pep5pred, had the top total correlation indicating redundancy of the reactivity 9 

profiles. Thus, peppos proved the most informative, while the predicted pep5pred had the highest 10 

redundancy. The latter library represents similar peptides defined by a rule (PWM) derived on the basis 11 

of another library - pep5. Sequence profile captures the central structural theme, but mislead about the 12 

existing diversity in the cluster. The other measures used to test peppos were two more correlation 13 

measures that capture different aspects of this redundancy, as well as the mean intensity to ensure that 14 

the library provides a sufficiently strong signal. 15 

As a diagnostic tool, the optimized small library has some key properties that distinguish it from other 16 

omic sets. Since it is designed to represent practically ubiquitous public specificities, the diagnostic profiles 17 

would be quantitatively, rather than qualitatively, defined by combinations of reactivity to the different 18 

mimotopes. Indeed, the sets of features (mimotope reactivities), significantly expressed in the different 19 

diagnoses, were overlapping considerably. No single reactivity was correlating strongly with a whole 20 

diagnostic group, but subsets of reactivities collectively could separate the diagnoses. Thus, feature 21 

selection becomes essential for the design of predictors based on polyspecificities. Using the proposed 22 

algorithms, the typical feature set tuned for a dichotomous separation of diagnoses contained between 23 

28 and 111 sequences (median=66). The improvement of generalization by keeping only features 24 
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recurring in the bootstrap feature selection cycles helped reduce the overfitting of the models. The 1 

optimal feature set for GBM diagnosis contained 55 mimotopes. Thus, if the library provides in the order 2 

of 500 significant reactivities, the theoretical capacity of this approach is >1070 different subsets. These 3 

are further increased by at least 6 orders of magnitude when quantitative different profiles are 4 

considered. Thus, the information provided by a typical IgM binding assay with the library is probably 5 

enough to describe any physiological or pathological state of clinical relevance reflected in the IgM 6 

repertoire. Of course, this is just an estimate of the resolution of the method. The number of naturally 7 

occurring profiles and their correlation with clinically relevant states will determine the actual capacity. 8 

Training with appropriately sized teaching sets for clinically relevant predictors will help clarify this.   9 

The novelty of our approach is based on the combination of several previously existing concepts:  10 

First, the antibody repertoire is compartmentalized in various ways (by isotype, B-cell subsets, nature or 11 

origin of the antigens, relatedness to immunopathology, etc.). Early studies argued that the physiologically 12 

autoreactive natural antibodies comprise such a consistent, organized compartment [48, 51, 64-67]. The 13 

consistency of the natural antibody self-reactivity among individuals was considered evidence for the 14 

existence of a relatively small set of preferred self-antigens. Such “public reactivities” are most probably 15 

related to the germline repertoire of antibodies generated by evolutionarily encoded paratope features 16 

and negative/positive selection [22, 68]. These antibodies were targeted using protein microarrays, the 17 

utility of which has been previously demonstrated [21, 22, 43, 57]. Recently, the existence of structurally 18 

distinct public V-regions has been analyzed using repertoire sequencing [12], noting that they are often 19 

found in natural antibodies. If the repertoire should be read as a source of information providing 20 

consistent patterns that can be mapped to physiological and pathological states, the public natural 21 

autoreactivity seems to be a suitable but underused compartment. Respectively, IgM seems more suitable 22 

than IgG or IgE (although IgA could be also very useful, especially for probing the microbiome influence). 23 
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Therefore, the template used for this study was a pooled human IgM preparation, which emphasizes 1 

common specificities and dilutes out unique or rare ones.  2 

Second, germline variable regions are characterized by polyspecificity or cross-reactivity with protein and 3 

non-protein antigens [14]. This raises the question: Do nominal antigens actually exist for polyspecific 4 

germline antibodies, and what is the structure of this convoluted (because it is polyspecific) repertoire of 5 

reactivities? It seems that going for epitopes could be a way to approach the repertoire convolution. Yet, 6 

the actual epitopes will be mostly conformational and hard to study. In similar tasks, mimotopes are often 7 

used [69-72], although M.H. Van Regenmortel argues that mimotopes are of little use to structural 8 

prediction of the B-cell epitope [71]. Therefore, their utility might be rather in the structural study of the 9 

repertoire as a whole. 10 

Third, the usage of peptide arrays for the analysis of the antibody repertoire is increasingly popular [52, 11 

73-76]. It involves the use of random peptide arrays for extracting repertoire immunosignatures on the 12 

one hand and deep panning of phage display libraries to analyze antibody responses on the other. Since 13 

an antibody can often cross-react with a linear epitope that is part of the nominal conformational epitope 14 

[71], the 7-residue library offers suitable short mimotopes as compared to typical B-cell epitopes. 15 

Furthermore, from the Immunoepitope Database (http://www.iedb.org) collection of linear B cell 16 

epitopes, 4821 of 45829 entries are less than 8 residues long.  17 

The study of the IgM repertoire might be expected to give information about interactions that occur 18 

mostly in the blood and the tissues with fenestrated vessels since, unlike IgG, IgM cannot easily cross the 19 

normal vascular wall. Yet, IgM tissue deposits are a common finding in diverse inflammatory conditions 20 

[77-79] and especially in the disorganized vasculature of the tumors, where they are a key element of the 21 

innate immune surveillance mechanism [7, 80, 81]. Changes in the IgM repertoire further reflect B cell 22 

function affected by antigenic, danger and inflammatory signals, but also by anatomical changes leading 23 
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to vascular permeability or disruption. Thus, IgM repertoire monitoring has the potential to provide 1 

clinically relevant information about most of the pathologies involving inflammation and vascular 2 

remodeling, as well as all types of cancer. The library also provides a rich source of mimotopes that can 3 

be screened for different theranostic tasks focused on particular targets. On an omics scale, the optimized 4 

mimotope library proposed here probes efficiently the relevant repertoire of public IgM reactivities 5 

matching its dynamic diversity with potentially over 1070 distinct profiles. The major task ahead is 6 

designing studies aimed at efficiently extracting specific diagnostic profiles and building appropriate 7 

predictors, e.g. – for classifying immunotherapy responders, predicting the risk of malignancy in chronic 8 

inflammation, etc. 9 
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Tables 1 

Table 1. Libraries of 7-mer peptides studied. 2 

 3 

 Library Description N 

peppos The sequence with the highest score for the respective position 
weighted matrix from each significant cluster (significant clusters are 
those for which the number of sequences with more than median PWM 
score is greater than the expected number of occurrences of such score 
in random peptides - p<0.0001 by Binomial test) . 594 

pep5 A group of 5 of the 288 clusters with best binomial p<1e- 16 : clusters # 
2,6,9,10,11. 600 

pepother5 A group of 5 of the 288 clusters with best binomial p<1e- 16 : clusters #  
115,61,55,53, 258. 1193 

pep5pred A hundred and fifty random peptides with log odds scores greater than 
the median score of the respective cluster for each of 5 clusters (# 
2,6,9,10,11). 750 

pepneg The lowest scoring sequence (using KLD) from each significant cluster. 
These peptides are least certain to belong to the clusters. 594 

pepneglo Among the set of the lowest scoring  peptides (pepneg) using 
GibbsCluster’s own "Corrected" score - those with score <5 ([24]). 82 

pepnegrnd From a set of 2x106 random 7-mer peptides, get the max score for each 
peptide when tested against all cluster PWM and take the 753 lowest 
scoring. 753 

peprnd 800 random peptides. 800 

 Total 5366 

  
* The random sets are constructed with underlying frequencies in phage 
display library Ph.D -7 .  

 4 

 5 
  6 
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Table 2. Rank product test of four criteria for optimal mimotope library: 1 

Library Rank Products p Value 

pep5 4.864599 0.78057 

pep5pred 5.825901 0.924705 

pepneg 5.957892 0.937399 

pepneglo 2.114743 0.054359 

pepnegrnd 6.0548 0.945747 

pepother5 3.22371 0.318709 

peppos 1.189207 0.001071 

peprnd 4.864599 0.78057 

 2 

 3 

Table 3. Patients tested using the optimized library. 4 

  5 

   Batches  

Diagnosis Abbr. G P R Total 

Non-tumor bearing (control) C 1 3 4 8 

Glioblastoma Multiforme GBM 2 4 9(5)* 15 (11)* 

Lung Cancer (Brain Metastasis)  ML 2 4 3 9 

Breast Cancer (Brain Metastasis)  MB 0 0 2(0)* 2 (0)* 

 Total    34 

To balance the group sizes between batches, only 5/9 GBM samples from batch “R” were used and the 6 
breast cancer cases were omitted before batch compensation using the ComBat function. All cases in 7 
batch “R” were used in the validation step. 8 

 9 

Table 4. Distribution of peptides among normally represented and underrepresented parts of the 7-mer 10 
peptide space. 11 

 Random Peptides Mimotopes pepnegrnd 

Normally Represented Region 35 166 43 708 100 

Underrepresented Region 14 784 6 256 584 

 12 
  13 
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Legends 1 

Figure 1. Schematic representation of the deep panning experiment. 2 

Figure 2. Results from NGS. Plot of reads distribution by CPM (counts per million). Black – sample 1 – 3 
selected from original library, Red – sample 2 – selected form a pre-amplified original library. Here the 4 
selection caused deviation from the power law (the straight lines) with an emphasis on the lower CPM. 5 
The pre-amplification enriches in better fit phages and leads to a considerable shrinkage of the highly 6 
diverse compartment of low CPM where most of the targeted diversity lies.  7 

Figure 3. Results from GibbsCluster of the mimotopes. Different predefined number of clusters were 8 
screened for the quality of clustering measured by Kullback-Leibler Divergence – KLD. The inset shows 9 
amplified scale around the peak KLD values.  10 

Figure 4. Overall distribution of the amino acid residues in the selected 224 087 mimotopes as log odds 11 
(LO) relative to the background probabilities. Total abundance (A) and color coded LO by position in the 12 
7-mer (B). There is a clear skewing of the representation of the residues due to the selection by the IgM 13 
repertoire which is indicated by the concentration of the non-random distribution in the free N-terminus 14 
as compared to the C-terminus which is attached to the PIII protein of the phage. 15 

Figure 5. Statistics testing the libraries’ capacity to probe the mimotope reactivity space. A) Mean 16 
reactivity of each peptide across patients grouped by library.  The optimized library peppos has the 17 
highest reactivity. For library content see Table 1. B) Total correlation of the peptide profiles grouped by 18 
library across 10 patients. The optimized library peppos provides the least redundant information. C) 19 
Mean correlation of patient profiles across the peptides in each library compared after z-transformation. 20 
The optimized library peppos provides the most diverse characteristics of the patients, which indicates a 21 
high potential for discrimination of different states but increases the requirements for the size of the 22 
teaching sets to extract models of good generalization. D) Mean nearest neighbor distance of the 23 
peptide profiles across 10 patients in each library compared after z-transformation. Again, the optimized 24 
library peppos appears to sample the mimotope reactivity space evenly. The width of the bars is 25 
proportional to the size of the sample.  26 

Figure 6. Visualization of the 7-mer peptide space of the phage display selected mimotopes (A) and 27 
equal number random peptides with the same background residue frequencies (B) constructed using t-28 
sne based on the Barnes-Hut algorithm. The peptides in five clusters (included in library pep5) are color 29 
coded in (A). The peptide sequences were encoded using a 5-dimensional score reflecting basic 30 
biophysical properties of the amino acids. Each sequence is represented by a 35 dimensional vector but 31 
the t-sne mapping is performed after initial reduction to 14 dimensions by PCA.There is only moderate 32 
correlation between the clustering visualized by t-sne and the GibbsCluster classification. The image is of 33 
high resolution and can be zoomed for better detail inspection. 34 

Figure 7. Visualization of the 7-mer peptide mimotopes sequence space with the optimized library 35 
peppos marked in red (see fig.8 for details). Although, individual GibbsCluster defined clusters do not 36 
coincide with those shown by t-sne, the mapping of the optimized library apparently probes quite 37 
uniformly the mimotope sequence space.  38 

Figure 8. Visualization of the 7-mer peptide mimotope sequence space representing a mixture of 39 
random sample of 50 000 phage display selected mimotopes (red) and 50 000 random peptides(gray) 40 
plus the pepnegrnd library (blue). A part of the peptide space is represented by mimotopes at a lower 41 
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density and the peptides unrelated to the defined 790 mimotope clusters map mosty to this area (blue 1 
points). A high definition version of this figure is included in the supplemental information. 2 

Figure 9. Matthew’s correlation coefficient as a measure of the prediction quality for SVM models 3 
constructed using GBM predicting feature sets of different minimal commonality. Minimal commonality 4 
of n means that the features in the set are found in n or more of the bootstrap sets. The validation set 5 
consists of the cases in batch “R” that were omitted from the batch compensated united sets. The 6 
model predicts these cases as belonging to the same class as the rest of the respective cases in batch 7 
“R”. Since the values in batch “R” were not subject to batch compensation the validation also serves as a 8 
control against confounding introduced by the ComBat function. 9 

Figure 10. Venn diagram of the overlapping sets of features (peptide reactivities) of 50% commonality 10 
calculated separately for each diagnosis. These are the optimal sets for the prediction of each diagnosis 11 
based on the proof of principle training set. The figures correspond to the number of features in the 12 
corresponding intersection. 13 

Figure 11. Multidimensional scaling plot of cases in batch “R” based on the feature set of minimal 14 
commonality of 14 (50%). See figure 9 for details. The encircled points correspond to the validation set. 15 
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